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Abstract

The aim of this paper is to study an evolution variational inequality
that generalizes some contact problems with Coulomb friction in small
deformation elasticity. Using an incremental procedure, appropriate
estimates and convergence properties of the discrete solutions, the
existence of a continuous solution is proved. This abstract result is
applied to quasistatic contact problems with a local Coulomb friction
law for nonlinear Hencky and also for linearly elastic materials.

1 Introduction

This paper concerns the analysis of an evolution variational inequality that
represents a generalization of some quasistatic elastic problems with point-
wise Coulomb friction and relaxed unilateral contact.

Existence and approximation of solutions to the quasistatic elastic prob-
lems have been studied for various contact conditions. Based on the vari-
ational formulation proposed in [1], the quasistatic unilateral contact prob-
lems with local Coulomb friction have been studied in [2, 3, 4] and the nor-
mal compliance models have been investigated by several authors, see, e.g.
[5, 6, 7] and references therein. Dynamic frictional contact problems with
normal compliance laws for some viscoelastic bodies have been studied in
[8, 5, 9, 10, 11].
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A comprehensive presentation of contact models for the quasistatic pro-
cesses can be found in [12]. An unified approach, which can be applied to
various quasistatic problems, including unilateral and bilateral contact with
nonlocal friction, or normal compliance conditions, has been considered in
[13], and different (quasi)static contact problems with nonlocal friction are
analyzed in [14].

A static contact problem with relaxed unilateral conditions and pointwise
Coulomb friction was studied in [15], based on abstract formulations and Ky
Fan’s fixed point theorem. Recently, an extension of these results to dynamic
contact problems in viscoelasticity was treated in [16, 17].

This paper extends the results presented in [15] to a new evolution vari-
ational inequality involving a nonlinear operator and with applications to
two-field formulations of some nonsmooth elastic quasistatic contact prob-
lems with friction.

The paper is organized as follows. In Section 2, a general evolution varia-
tional inequality is analyzed by an incremental method. Using the Ky Fan’s
theorem, the existence of incremental solutions is proved. Then several es-
timates and compactness arguments enable to pass to limits in order to es-
tablish the existence of a continuous solution. In Section 3, applications
to quasistatic contact problems with local Coulomb friction, for nonlinear
Hencky and linearly elastic bodies, are presented.

2 An implicit variational inequality

For simplicity and also in view of applications to contact mechanics, we shall
confine attention to the case when Ω is an open, bounded, connected set
Ω ⊂ Rd, d = 2, 3, with the boundary Γ ∈ C1,1 and with Ξ an open part of Γ.

We denote ΞT := Ξ × (0, T ), where 0 < T < +∞, and define the closed
convex cones L2

−(Ξ), L2
−(ΞT ) in the Hilbert spaces L2(Ξ), L2(ΞT ), respec-

tively, as follows:

L2
−(Ξ) := {δ ∈ L2(Ξ); δ ≤ 0 a.e. in Ξ},

L2
−(ΞT ) := {δ ∈ L2(0, T ;L2(Ξ)); δ ≤ 0 a.e. in ΞT}.

Let κ, κ : R→ R be two mappings with κ lower semicontinuous and κ upper
semicontinuous, satisfying the following conditions:

κ(s) ≤ κ(s) ≤ 0 ∀ s ∈ R, (1)

∃ r0 ≥ 0 such that |κ(s)| ≤ r0 ∀ s ∈ R. (2)
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For every ζ ∈ L2(Ξ), define the following subset of L2
−(Ξ):

Λ(ζ) = {η ∈ L2
−(Ξ);κ ◦ ζ ≤ η ≤ κ ◦ ζ a.e. in Ξ }, (3)

which is clearly nonempty, because the bounding functions belong to the
respective set, closed and convex.

Since meas(Ξ) <∞ and κ, κ satisfy (2), it is also readily seen that for all
ζ ∈ L2(Ξ) the set Λ(ζ) is bounded in norm in L2(Ξ) by R0 = r0(meas(Ξ))1/2

and in L∞(Ξ) by r0.
The following compactness theorem proved in [18] will be used in this

paper.

Theorem 2.1. Let X̂, Û and Ŷ be three Banach spaces such that X̂ ⊂ Û ⊂ Ŷ
with compact embedding from X̂ into Û .

(i) Let G be bounded in Lp(0, T ; X̂), where 1 ≤ p < ∞, and ∂G/∂t :=
{ḟ ; f ∈ G} be bounded in L1(0, T ; Ŷ ). Then G is relatively compact in
Lp(0, T ; Û).

(ii) Let G be bounded in L∞(0, T ; X̂) and ∂G/∂t be bounded in Lr(0, T ; Ŷ ),
where r > 1. Then G is relatively compact in C([0, T ]; Û).

If H is a Hilbert space, unless otherwise stated we shall denote by 〈. , .〉H
its inner product and by ‖.‖H the corresponding norm.

Let (V, ‖.‖, 〈. , .〉) and (U, ‖.‖U) be two Hilbert spaces such that V ⊂ U
with continuous and compact embedding.

Consider a functional F : V → R differentiable on V and assume that its
derivative F ′ : V → V is strongly monotone and Lipschitz continuous, that
is there exist two constants α, β > 0 for which

α‖v − u‖2 ≤ 〈F ′(v)− F ′(u), v − u〉 (4)

and
‖F ′(v)− F ′(u)‖ ≤ β‖v − u‖ (5)

for all u, v ∈ V .
Using the relations

F (v)− F (u) =

1∫
0

〈F ′(u+ r(v − u)), v − u〉dr

= 〈F ′(u), v − u〉+

1∫
0

〈F ′(u+ r(v − u))− F ′(u), v − u〉dr
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and (4), (5), it is easily seen that for all u, v ∈ V it results

〈F ′(u), v − u〉+
α

2
‖v − u‖2 ≤ F (v)− F (u)

≤ 〈F ′(u), v − u〉+
β

2
‖v − u‖2. (6)

We remark that since F satisfies (6), it follows that F is strictly convex and
sequentially weakly lower semicontinuous on V .

Let (X, ‖.‖X) be a Hilbert space such that X ⊂ L2(Γ) with continuous
and compact embedding, and l0 : V → X, l : V → L2(Ξ), φ : L2

−(Ξ)× V →
R be three mappings satisfying the following conditions:

l0 is linear and continuous, (7)

∃ k1 > 0 such that ∀ v1, v2 ∈ V,
‖l(v1)− l(v2)‖L2(Ξ) ≤ k1‖v1 − v2‖U ,

(8)

∀ γ, δ ∈ L2
−(Ξ), ∀ v, w ∈ V verifying γ ∈ Λ(l(v)) and δ ∈ Λ(l(w)),

〈γ − δ, l0(v − w)〉L2(Ξ) ≤ 0.
(9)

∀ γ ∈ L2
−(Ξ), ∀ θ ≥ 0, ∀ v1, v2, v ∈ V,

φ(γ, v1 + v2) ≤ φ(γ, v1) + φ(γ, v2), (10)

φ(γ, θv) = θ φ(γ, v), (11)

∀ v ∈ V, φ(0, v) = 0, (12)

∃ k2, k3 > 0 such that ∀ γ, δ ∈ L2
−(Ξ), ∀ v ∈ V,

|φ(γ, v)− φ(δ, v)| ≤ k2‖γ − δ‖L2(Ξ) ‖v‖U , (13)

|φ(γ, v)− φ(δ, v)| ≤ k3‖γ − δ‖X′ ‖v‖, (14)

∃ k4 > 0 such that ‖γ1 − γ2‖X′ ≤ k4(‖u1 − u2‖+ ‖f1 − f2‖), (15)

for all γ1,2 ∈ L2
−(Ξ), u1,2, f1,2, d1,2 ∈ V verifying

(Q1) 〈F ′(u1), v − u1〉 − 〈γ1, l0(v − u1)〉L2(Ξ)

+φ(γ1, v − d1)− φ(γ1, u1 − d1) ≥ 〈f1, v − u1〉 ∀ v ∈ V,

(Q2) 〈F ′(u2), v − u2〉 − 〈γ2, l0(v − u2)〉L2(Ξ)

+φ(γ2, v − d2)− φ(γ2, u2 − d2) ≥ 〈f2, v − u2〉 ∀ v ∈ V,

and we assume that k3k4 < α. (16)
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Let f ∈ W 1,2(0, T ;V ), u0 ∈ V , λ0 ∈ Λ(l(u0)) be given and satisfy the
following compatibility condition:

〈F ′(u0), v − u0〉 − 〈λ0, l0(v − u0)〉L2(Ξ) (17)

+φ(λ0, v)− φ(λ0, u0) ≥ 〈f(0), v − u0〉 ∀ v ∈ V.

Consider the following problem.
Problem Q : Find u ∈ W 1,2(0, T ;V ), λ ∈ W 1,2(0, T ;X ′) such that u(0) =
u0, λ(0) = λ0, λ(t) ∈ Λ(l(u(t))) for almost all t ∈ (0, T ), and

〈F ′(u), v − u̇〉 − 〈λ, l0(v − u̇)〉L2(Ξ) + φ(λ, v) (18)

−φ(λ, u̇) ≥ 〈f, v − u̇〉 ∀ v ∈ V a.e. on (0, T ).

2.1 Incremental formulations

For n ∈ N∗, we set ∆t := T/n, ti := i∆t, i = 0, 1, ..., n. If θ is a continuous
function of t ∈ [0, T ] valued in some vector space, we use the notations
θi := θ(ti) unless θ = u, and if $i, ∀ i ∈ {0, 1, ..., n}, are elements of some
vector space, then we set

∂$i :=
$i+1 −$i

∆t
, ∆$i := $i+1 −$i ∀ i ∈ {0, 1, ..., n− 1}.

We approximate the problem Q using the following sequence of incremental
problems (Qi,n)i=0,1,...,n−1 .
Problem Qi,n : Find ui+1 ∈ V , λi+1 ∈ Λ(l(ui+1)) such that

〈F ′(ui+1), v − ∂ui〉 − 〈λi+1, l0(v − ∂ui)〉L2(Ξ) + φ(λi+1, v) (19)

−φ(λi+1, ∂ui) ≥ 〈f i+1, v − ∂ui〉 ∀ v ∈ V.

It is easily seen that for all i ∈ {0, 1, ..., n−1} the problem Qi,n is equivalent
to the following implicit variational inequality.
Problem Q̂i,n : Find ui+1 ∈ V , λi+1 ∈ Λ(l(ui+1)) such that

〈F ′(ui+1), v − ui+1〉 − 〈λi+1, l0(v − ui+1)〉L2(Ξ) + φ(λi+1, v − ui) (20)

−φ(λi+1, ui+1 − ui) ≥ 〈f i+1, v − ui+1〉 ∀ v ∈ V.
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Let us define the following functions:

un(0) = ûn(0) = u0, λn(0) = λ0, fn(0) = f 0 and

∀ i ∈ {0, 1, ..., n− 1}, ∀ t ∈ (ti, ti+1],

un(t) = ui+1, λn(t) = λi+1,

ûn(t) = ui + (t− ti)∂ui,

λ̂n(t) = λi + (t− ti)∂λi,

fn(t) = f i+1.

Then for all n ∈ N∗ each of the sequences of inequalities (Qi,n)i=0,1,...,n−1,

(Q̂i,n)i=0,1,...,n−1 is equivalent to the following incremental formulation.
Problem Qn : Find un ∈ L2(0, T ;V ), λn ∈ L2(ΞT ) such that λn(t) ∈
Λ(l(un(t))) ∀ t ∈ (0, T ) and

〈F ′(un(t)), v − d

dt
ûn(t)〉 − 〈λn(t), l0(v − d

dt
ûn(t))〉L2(Ξ)

+φ(λn(t), v)− φ(λn(t),
d

dt
ûn(t)) (21)

≥ 〈fn(t), v − d

dt
ûn(t)〉 ∀ v ∈ V, a.e. on (0, T ).

First, we prove the existence of a solution to the incremental problem Q̂i,n

by a fixed point method.
Let Φi : L2

−(Ξ)→ 2L
2
−(Ξ) \ {∅} be the set-valued mapping defined by

for all γ ∈ L2
−(Ξ) Φi(γ) = Λ(l(uγ)), (22)

where uγ is the solution of the following variational inequality of the second
kind: find uγ ∈ V such that

〈F ′(uγ), v − uγ〉 − 〈γ, l0(v − uγ)〉L2(Ξ) + φ(γ, v − ui) (23)

−φ(γ, uγ − ui) ≥ 〈f i+1, v − uγ〉 ∀ v ∈ V.

It is easily seen that λ is a fixed point of Φi, i.e. λ ∈ Φi(λ), iff (ui+1, λi+1) =
(uλ, λ) is a solution of the problem Q̂i,n.

We shall prove the existence of a fixed point of the multifunction Φi by
using a corollary of the Ky Fan’s fixed point theorem [19], proved in [15] in
the particular case of a reflexive Banach space.
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Definition 2.1. Let Y be a reflexive Banach space, D a weakly closed set in
Y , and Φ : D → 2Y \ {∅} be a multivalued function. Φ is called sequentially
weakly upper semicontinuous if zp ⇀ z, yp ∈ Φ(zp) and yp ⇀ y imply y ∈
Φ(z).

Proposition 2.1. ([15]) Let Y be a reflexive Banach space, D a convex,
closed and bounded set in Y , and Φ : D → 2D \ {∅} a sequentially weakly
upper semicontinuous multivalued function such that Φ(z) is convex for every
z ∈ D. Then Φ has a fixed point.

Note that since Y is a reflexive Banach space and D is convex, closed and
bounded, there is no assumption that Y is separable, see [15, 20].

Theorem 2.2. Assume that (1 - 5), (7 - 14) hold. Then there exists λ ∈
L2
−(Ξ) such that λ ∈ Φi(λ) and (ui+1, λi+1)=(uλ, λ) is a solution of the prob-

lem Q̂i,n.

Proof. We apply Proposition 2.1 to Φ = Φi, Y = L2(Ξ) and D = L2
−(Ξ) ∩{

ζ ∈ L2(Ξ); ‖ζ‖L2(Ξ) ≤ R0

}
.

The set D ⊂ L2(Ξ) is clearly convex, closed and bounded.
By (4), (5), (7), (8), (10 - 14), for every γ ∈ D the classical variational

inequality (23) has a unique solution uγ.
Since for each ζ ∈ L2(Ξ) the set Λ(ζ) is nonempty, convex, closed, and

bounded by R0, it follows that Φi(γ) = Λ(l(uγ)) is a nonempty, convex and
closed subset of D for every γ ∈ D.

In order to prove that the multifunction Φi is sequentially weakly upper
semicontinuous, let γp ⇀ γ in L2(Ξ), γp ∈ D, ηp ∈ Φi(γp) ∀ p ∈ N, ηp ⇀ η in
L2(Ξ) and let us verify that η ∈ Φi(γ).

Let uγp ∈ V be the solution of the variational inequality

〈F ′(uγp), v − uγp〉 − 〈γp, l0(v − uγp)〉L2(Ξ) + φ(γp, v − ui) (24)

−φ(γp, uγp − ui) ≥ 〈f i+1, v − uγp〉 ∀ v ∈ V.

Taking v = 0 in (24) and using (10), we obtain

〈F ′(uγp)− F ′(0), uγp〉 ≤ 〈γp, l0(uγp)〉L2(Ξ) + φ(γp,−uγp) + 〈f i+1 − F ′(0), uγp〉,

so that, by (4), (7), (12), (14),

α‖uγp‖2 ≤ (‖γp‖X′‖l0‖+ k3‖γp‖X′ + ‖f i+1‖+ ‖F ′(0)‖)‖uγp‖,

which implies

‖uγp‖ ≤ α−1(‖l0‖+ k3)‖γp‖X′ + ‖f i+1‖+ ‖F ′(0)‖).
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Thus
‖uγp‖ ≤ C1(‖γp‖X′ + ‖f i+1‖+ ‖F ′(0)‖) ∀ p ∈ N, (25)

where C1 = α−1 max(‖l0‖+ k3, 1).
As the sequence (γp)p is bounded in L2(Ξ), it follows that (uγp)p is

bounded in V which implies that there exists a subsequence, still denoted by
(uγp)p, and an element u ∈ V such that

uγp ⇀ u in V. (26)

By (6) and (10), the inequality (24) implies

F (v)− F (uγp)− 〈γp, l0(v − uγp)〉L2(Ξ) + φ(γp, v − uγp) (27)

≥ 〈f i+1, v − uγp〉+
α

2
‖v − uγp‖2 ∀ v ∈ V,

and taking v = u, we obtain

F (u)− F (uγp)− 〈γp, l0(u− uγp)〉L2(Ξ) + φ(γp, u− uγp)

≥ 〈f i+1, u− uγp〉+
α

2
‖u− uγp‖2.

As F is sequentially weakly lower semicontinuous, using the previous relation,
(7), (13) and the compact embeddings X ⊂ L2(Ξ), V ⊂ U , we have

lim sup
p→∞

α

2
‖u− uγp‖2

≤ F (u) + lim sup
p→∞

(−F (uγp)) + lim
p→∞
|〈γp, l0(u− uγp)〉L2(Ξ)|

+ lim
p→∞

φ(γp, u− uγp)− lim
p→∞
〈f i+1, u− uγp〉

≤ F (u)− lim inf
p→∞

F (uγp) + lim
p→∞
‖γp‖L2(Ξ) ‖l0(u− uγp)‖L2(Ξ)

+ lim
p→∞

k2‖γp‖L2(Ξ) ‖u− uγp‖U − lim
p→∞
〈f i+1, u− uγp〉

= F (u)− lim inf
p→∞

F (uγp) ≤ 0,

which proves that
uγp → u in V. (28)

Passing to the limit in (24), it follows that u is a solution of (23) and since
its solution is unique we obtain that uγ = u = lim

p→∞
uγp .

Now, the relation ηp ∈ Φi(γp) implies

ηp ∈ Λ(l(uγp))
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that is
κ ◦ lp ≤ ηp ≤ κ ◦ lp a.e. in Ξ, (29)

for all p ∈ N, where lp := l(uγp). The relations (29) are equivalent to∫
ω

κ ◦ lp ≤
∫
ω

ηp ≤
∫
ω

κ ◦ lp,

for every measurable subset ω ⊂ Ξ and for all p ∈ N.
Using (28), (8), the semi-continuity of κ and κ, the relations (1), (2),

the convergence property

∫
ω

ηp →
∫
ω

η, and passing to limits according to

Fatou’s lemma, we obtain∫
ω

κ ◦ l(uγ) ≤
∫
ω

η ≤
∫
ω

κ ◦ l(uγ), (30)

for every measurable subset ω ⊂ Ξ, which implies η ∈ Φi(γ).
By Proposition 2.1 there exists a fixed point λ of Φi and (uλ, λ) is clearly

a solution to the problem Q̂i,n.

Remark 2.1. This existence result insures also that there exists (u0, λ0)
satisfying the compatibility condition (17).

2.2 Existence of a solution to the continuous problem

We now establish some useful estimates independent of n for the solutions of
the incremental formulations Q̂i,n and Qn.

Lemma 2.1. Under the above hypotheses, for all n ∈ N∗ and all i ∈
{0, 1, ..., n− 1} the following estimates hold:

‖ui+1‖ ≤ C1(‖λi+1‖X′ + ‖f i+1‖+ ‖F ′(0)‖), (31)

‖∆ui‖ ≤ k3

α
‖∆λi‖X′ +

1

α
‖∆f i‖), (32)

‖∆λi‖X′ ≤ k4(‖∆ui‖+ ‖∆f i‖), (33)

‖∆ui‖ ≤ C2‖∆f i‖, (34)

‖∆λi‖X′ ≤ C3‖∆f i‖, (35)

where C2 =
k3k4 + 1

α− k3k4

, C3 =
(α + 1)k4

α− k3k4

.
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Proof. By similar arguments to those that enabled to prove (25), using (20)
the estimate (31) follows.

If we take v = ui in (20) then

〈F ′(ui+1), ui − ui+1〉 − 〈λi+1, l0(ui − ui+1)〉L2(Ξ) (36)

−φ(λi+1, ui+1 − ui) ≥ 〈f i+1, ui − ui+1〉,

and taking v = ui+1 in (20), corresponding to i − 1 if i ≥ 1, or in (17) if
i = 0, we have

〈F ′(ui), ui+1 − ui〉 − 〈λi, l0(ui+1 − ui)〉L2(Ξ) + φ(λi, ui+1 − ui−1) (37)

−φ(λi, ui − ui−1) ≥ 〈f i, ui+1 − ui〉.

By (10), the inequalities (36) and (37) imply

〈F ′(ui+1)− F ′(ui), ui+1 − ui〉 ≤ 〈λi+1 − λi, l0(ui+1 − ui)〉L2(Ξ) (38)

+φ(λi, ui+1 − ui)− φ(λi+1, ui+1 − ui) + 〈f i+1 − f i, ui+1 − ui〉.

As (ui+1, λi+1) and (ui, λi) are solutions of Q̂i+1,n and Q̂i,n, respectively, we
have λi+1 ∈ Λ(l(ui+1)), λi ∈ Λ(l(ui)), so that by (9)

〈λi+1 − λi, l0(ui+1 − ui)〉L2(Ξ) ≤ 0.

Using this relation, (4) and (14) in (38), we have

α‖ui+1 − ui‖2 ≤ k3‖λi+1 − λi‖X′ ‖ui+1 − ui‖+ ‖f i+1 − f i‖ ‖ui+1 − ui‖,

from which (32) follows.
From (15), we obtain (33) and by (32), (33) the estimates (34), (35) can

be easily verified.

Based on the previous lemma and the fact that f ∈ W 1,2(0, T ;V ) is
absolutely continuous, after possibly being redefined on a set of measure zero,
the following estimates can be established by a straightforward computation,
see, e.g. [21], [22].
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Lemma 2.2. For all n ∈ N∗

‖un(t)‖ ≤ C1(‖λn(t)‖X′ + ‖fn(t)‖+ ‖F ′(0)‖) ∀ t ∈ [0, T ], (39)

‖un(t)− ûn(t)‖ ≤ T

n

∥∥∥∥ ddtûn(t)

∥∥∥∥ ≤ C2

∥∥∥∥fn(t)− fn(t− T

n
)

∥∥∥∥ (40)

≤ C2

∫ min{t+T
n
,T}

t−T
n

‖ḟ(τ)‖ dτ ∀ t ∈ [0, T ],

‖λn(t)− λ̂n(t)‖X′ ≤
T

n

∥∥∥∥ ddtλ̂n(t)

∥∥∥∥
X′

(41)

≤ C3

∥∥∥∥fn(t)− fn(t− T

n
)

∥∥∥∥ ∀ t ∈ [0, T ],

‖un − ûn‖L2(0,T ;V ) =
T

n
√

3

∥∥∥∥ ddtûn
∥∥∥∥
L2(0,T ;V )

(42)

≤ C2
T

n
√

3
‖ḟ‖L2(0,T ;V ),

‖λn − λ̂n‖L2(0,T ;X′) =
T

n
√

3

∥∥∥∥ ddtλ̂n
∥∥∥∥
L2(0,T ;X′)

(43)

≤ C3
T

n
√

3
‖ḟ‖L2(0,T ;V ).

Using Lemma 2.2, it follows that (ûn)n is bounded in W 1,2(0, T ;V ), (λ̂n)n
is bounded in W 1,2(0, T ;X ′) ∩ L∞(ΞT ), and since all these functions are
absolutely continuous, after possibly being redefined on a set of measure
zero, we have the following convergence results.

Lemma 2.3. There exist subsequences of (un, ûn)n and (λn, λ̂n)n, denoted
by (unp , ûnp)p and (λnp , λ̂np)p, and two elements u ∈ W 1,2(0, T ;V ), λ ∈
W 1,2(0, T ;X ′) ∩ L2(ΞT ) such that

unp(t) ⇀ u(t) in V ∀ t ∈ [0, T ], (44)

ûnp ⇀ u in W 1,2(0, T ;V ), (45)

λnp(t) ⇀ λ(t) in X ′ ∀ t ∈ [0, T ], (46)

λnp , λ̂np ⇀ λ in L2(0, T ;L2(Ξ)), (47)

λ̂np ⇀ λ in W 1,2(0, T ;X ′). (48)
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Lemma 2.4. For the subsequences (ûnp)p, (λnp)p, the following relation
holds:

lim inf
p→∞

∫ T

0

φ(λnp(t),
d

dt
ûnp(t)) dt ≥

∫ T

0

φ(λ(t),
d

dt
û(t)) dt. (49)

Proof. According to Theorem 2.1 with G = (λ̂np)p, X̂ = L2(Ξ), Û = H ι−1/2(Ξ),

Ŷ = X ′, p = 2, 0 < ι < 1
2
, and to (47), (48), we obtain that

λnp , λ̂np → λ in L2(0, T ;X ′). (50)

By (14) it follows that∣∣∣∣∫ T

0

(φ(λnp(t),
d

dt
ûnp(t))− φ(λ(t),

d

dt
ûnp(t))) dt

∣∣∣∣
≤ k3

∫ T

0

‖λnp(t)− λ(t)‖X′ ‖
d

dt
ûnp(t)‖ dt

≤ k3‖λnp − λ‖L2(0,T ;X′) ‖
d

dt
ûnp‖L2(0,T ;V ),

which implies

lim
p→∞

∫ T

0

(φ(λnp(t),
d

dt
ûnp(t))− φ(λ(t),

d

dt
ûnp(t))) dt = 0. (51)

Since by (10), (11), (14), φ(λ(t), ·) is convex lower semicontinuous on V for

a.e. t ∈ [0, T ], the mapping

∫ T

0

φ(λ(t), ·) dt is convex lower semicontinuous

on L2(0, T ;V ) (see, e.g. [23]), so that

lim inf
p→∞

∫ T

0

φ(λ(t),
d

dt
ûnp(t)) dt ≥

∫ T

0

φ(λ(t),
d

dt
û(t)) dt. (52)

From (51) and (52), (49) follows.

Now, we prove the main strong convergence and existence result.

Theorem 2.3. Under the assumptions (1 - 5), (7 - 16), every conver-
gent subsequence of Lemma 2.3, (unp , ûnp)p, (λnp , λ̂np)p, and their limits
u ∈ W 1,2(0, T ;V ), λ ∈ W 1,2(0, T ;X ′) ∩ L2(ΞT ) have the following strong
convergence properties

unp(t)→ u(t) in V ∀ t ∈ [0, T ], (53)

λnp(t)→ λ(t) in X ′ ∀ t ∈ [0, T ], (54)

and (u, λ) is a solution to the problem Q.

12



Proof. In order to prove (53), we use the same method as the one that enabled
to obtain (28). By (10) the sequence (Q̂i,n)i=0,1,...,n−1 implies the following
inequality: for every t ∈ [0, T ]

〈F ′(un(t)), v − un(t)〉 − 〈λn(t), l0(v − un(t))〉L2(Ξ) (55)

+φ(λn(t), v − un(t)) ≥ 〈fn(t), v − un(t)〉 ∀ v ∈ V

and taking v = u, by (6) we derive

F (u(t))− F (unp(t))− 〈λnp(t), l0(u(t)− unp(t))〉L2(Ξ) (56)

+φ(λnp(t), u(t)− unp(t)) ≥ 〈fnp(t), u(t)− unp(t)〉+
α

2
‖u(t)− unp(t)‖2 ∀ p ∈ N.

Using that F is sequentially weakly lower semicontinuous, (7), (13), the
compact embeddings X ⊂ L2(Ξ), V ⊂ U and that for all t ∈ [0, T ] (λnp(t))p
is bounded in L2(Ξ) by R0, the previous relation implies

lim sup
p→∞

α

2
‖u(t)− unp(t)‖2

≤ F (u(t)) + lim sup
p→∞

(−F (unp(t))) + lim
p→∞
|〈λnp(t), l0(u(t)− unp(t))〉L2(Ξ)|

+ lim
p→∞

φ(λnp(t), u(t)− unp(t))− lim
p→∞
〈fnp(t), u(t)− unp(t)〉

≤ F (u(t))− lim inf
p→∞

F (unp(t)) + lim
p→∞
‖λnp(t)‖L2(Ξ) ‖l0(u(t)− unp(t))‖L2(Ξ)

+ lim
p→∞

k2‖λnp(t)‖L2(Ξ) ‖u(t)− unp(t)‖U − lim
p→∞
〈fnp(t), u(t)− unp(t)〉

= F (u(t))− lim inf
p→∞

F (unp(t)) ≤ 0,

which proves (53).
By Theorem 2.1 with G = (λ̂np)p, X̂ = L2(Ξ), Û = H ι−1/2(Ξ), Ŷ = X ′,

r = 2, 0 < ι < 1
2
, it follows that

λ̂np → λ in C([0, T ];X ′), (57)

so that by (41) we obtain (54).
It remains to prove that (u, λ) is a solution of the problem Q.
First, since λnp(t) ∈ Λ(l(unp(t))) for all t ∈ (0, T ), we have∫

ω

κ ◦ l(unp) ≤
∫
ω

λnp ≤
∫
ω

κ ◦ l(unp), (58)

for every measurable subset ω ⊂ ΞT and for all p ∈ N.
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Using (53), (8), the semi-continuity of κ and κ, the relations (1), (2),

(47), which implies the convergence property

∫
ω

λnp →
∫
ω

λ, and passing to

limits according to Fatou’s lemma, we obtain∫
ω

κ ◦ l(u) ≤
∫
ω

λ ≤
∫
ω

κ ◦ l(u), (59)

for every measurable subset ω ⊂ ΞT , which implies λ(t) ∈ Λ(l(u(t))) for
almost all t ∈ (0, T ).

Second, integrating both sides in (21) over [0, T ] and passing to the limit,
by the relations (53), (54), (45), (49), it follows that for all v ∈ L2(0, T ;V )∫ T

0

〈F ′(u(t)), v(t)− u̇(t)〉dt−
∫ T

0

〈λ(t), l0(v(t)− u̇(t))〉L2(Ξ)dt

+

∫ T

0

φ(λ(t), v(t))dt−
∫ T

0

φ(λ(t), u̇(t))dt ≥
∫ T

0

〈f(t), v(t)− u̇(t)〉dt.

By Lebesgue’s theorem, it follows that (u, λ) is a solution of the variational
inequality (18).

3 Applications to two quasistatic contact prob-

lems

Consider an elastic body occupying the set Ω ⊂ Rd, d = 2, 3, with Γ =
Γ1∪Γ2∪Γ3, where Γ1, Γ2, Γ3 are open, disjoint parts of Γ and meas(Γ1) > 0.
Assume the small deformation hypothesis and that the inertial effects are
negligible.

We denote by u = u(x, t) the displacement field, by ε the infinitesimal
strain tensor and by σ the stress tensor, with the components u = (ui),
ε = (εij) and σ = (σij), respectively. We use the classical decompositions
u = uNn + uT , uN = u · n, σn = σNn + σT , σN = (σn) · n, where n is
the outward normal unit vector to Γ with the components n = (ni). The
usual summation convention will be used for i, j, k, l = 1, . . . , d.

Consider the Hilbert space V and the closed convex sets L2
−(Γ3), Λ1(ζ)

as follows:

V = {v ∈ H1(Ω;Rd); v = 0 a.e. on Γ1},

L2
−(Γ3) := {δ ∈ L2(Γ3); δ ≤ 0 a.e. in Γ3},

Λ1(ζ) = {η ∈ L2
−(Γ3);κ ◦ ζ ≤ η ≤ κ ◦ ζ a.e. in Γ3 } ∀ζ ∈ L2(Γ3).
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Assume that in Ω a body force ϕ1 ∈ W 1,2(0, T ;L2(Ω;Rd)) is prescribed,
on Γ1 the displacement vector equals zero and on Γ2 a traction ϕ2 ∈
W 1,2(0, T ;L2(Γ2;Rd)) is applied.

On Γ3, the contact between the body and a support is possible with the
initial gap denoted by g0 and the gap corresponding to the solution u denoted
by [uN ] := uN−g0. We assume that there exists g ∈ V such that gN = g0 on
Γ3. Since the displacements, their derivatives and the gap are assumed small,
we obtain the following unilateral contact condition at time t : [uN ] ≤ 0 on
Γ3.

On the potential contact surface Γ3, the displacements and the stress
vector will satisfy some contact conditions having the following form:

κ([uN ]) ≤ σN ≤ κ([uN ]).

Assume that, for all γ, δ ∈ L2
−(Γ3) and all v,w ∈ V such that γ ∈

Λ1([vN ]), δ ∈ Λ1([wN ]),

〈γ − δ, vN − wN〉L2(Γ3) ≤ 0. (60)

Different choices for κ, κ will give various contact and friction conditions as
can be seen in the following examples.
Example 1. (Friction conditions with controlled normal stress)

Let M ≥ 0 be a constant and define

κ(s) = κM(s) =

{
0 if s < 0,
−M if s ≥ 0,

κ(s) = κM(s) =

{
0 if s ≤ 0,
−M if s > 0.

The classical Signorini’s conditions correspond formally to M = +∞.
Example 2. (Normal compliance conditions)

Various normal compliance conditions and friction laws can be obtained if
one considers κ = κ = κ, where κ : R→ R is some negative, decreasing, and
bounded Lipschitz continuous function, so that σN is given by the relation
σN = κ([uN ]).

It is easily seen that these two examples verify the condition (60).
Let F ≥ 0 be the coefficient of friction, assumed to be a Lipschitz con-

tinuous function on Γ, which ensures to belong to the set of the multipli-
ers on H1/2(Γ) denoted by M, see, e.g. [2], [4]. Therefore the mapping
H1/2(Γ) 3 v 7→ Fv ∈ H1/2(Γ) is bounded with norm ‖F‖M.
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In order to describe the frictional contact conditions on Γ3, we define

∀ l ∈ V , Sl := {v ∈ V ;

∫
Ω

σ(v) · ε(ψ)dx = 〈l,ψ〉V

∀ψ ∈ V such that ψ = 0 a.e. on Γ3},

L ∈ V , 〈L,w〉V = 〈ϕ1,w〉L2(Ω;Rd) + 〈ϕ2,w〉L2(Γ2;Rd) ∀w ∈ V ,

∀v ∈ SL, 〈σN(v), w〉Γ =

∫
Ω

σ(v) · ε(w̄)dx− 〈L, w̄〉V ∀w ∈ H1/2(Γ),

where 〈· , ·〉Γ denotes the duality pairing on H−1/2(Γ) × H1/2(Γ), w̄ ∈ V
satisfies w̄T = 0 a.e. on Γ3, w̄N = w a.e. on Γ3. It is easy to verify that
for all v ∈ SL σN(v) depends only on the values of w on Γ3 and not on the
choices of w̄ having the above properties.

3.1 A contact problem with Coulomb friction for a
nonlinear Hencky material

Assume that the elastic body satisfies the following nonlinear Hencky-Mises
constitutive equation (see [24], [25]):

σ(u) = σ̂(u) = (k − 2

3
µ(γ̂(u)))(tr ε(u)) I + 2µ(γ̂(u)) ε(u),

where k is the constant bulk modulus, µ is a continuously differentiable
function in [ 0,+∞) satisfying

0 < µ0 ≤ µ(r) ≤ 3

2
k, 0 < µ1 ≤ µ(r) + 2

∂µ(r)

∂r
r ≤ µ2, ∀ r ≥ 0, (61)

and, for all u, v ∈ V ,

γ̂(u) := γ̂(u,u), γ̂(u,v) = −2

3
ϑ(u)ϑ(v)+2 ε(u)·ε(v), ϑ(u) := tr ε(u) = div u.

Consider the following quasistatic contact problem with Coulomb friction.
Problem P c

1 : Find u such that u(0) = u0 and, for all t ∈ (0, T ),

divσ(u) = −ϕ1 in Ω, (62)

σ(u) = σ̂(u) in Ω, (63)

u = 0 on Γ1, σn = ϕ2 on Γ2, (64)

κ([uN ]) ≤ σN ≤ κ([uN ]) on Γ3, (65)

|σT | ≤ F |σN | and (66)

u̇T 6= 0⇒ σT = −F|σN |
u̇T
|u̇T |

on Γ3.
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Let F1 : V → R be defined by

F1(v) =
1

2
k

∫
Ω

ϑ2(v)dx+
1

2

∫
Ω

(∫ γ̂(v)

0

µ(r)dr

)
dx ∀v ∈ V , (67)

and J : L2
−(Γ3)× V → R be defined by

J(γ,v) = −
∫

Γ3

F γ |vT |ds ∀ γ ∈ L2
−(Γ3), ∀v ∈ V . (68)

One can verify, see, e.g. [24], Ch. 8, that F1 is differentiable on V and for
all u, v ∈ V

〈F ′1(u),v〉V =

∫
Ω

[(k− 2

3
µ(γ̂(u)))ϑ(u)ϑ(v)+2µ(γ̂(u)) ε(u) ·ε(v)]dx. (69)

Let u0 ∈ V , λ0 ∈ Λ1([u0N ]) satisfy the following compatibility condition:

〈F ′1(u0),v − u0〉V − 〈λ0, vN − u0N〉L2(Γ3) (70)

+J(λ0,v)− J(λ0,u0) ≥ 〈L(0),v − u0〉V ∀v ∈ V .

We have the following variational formulation of problem P c
1 .

Problem P v
1 : Find u ∈ W 1,2(0, T ;V ), λ ∈ W 1,2(0, T ;H−1/2(Γ)) such that

u(0) = u0, λ(0) = λ0, λ(t) ∈ Λ1([uN(t)]) for almost all t ∈ (0, T ), and

〈F ′1(u),v − u̇〉V − 〈λ, vN − u̇N〉L2(Γ3) + J(λ,v) (71)

−J(λ, u̇) ≥ 〈L,v − u̇〉V ∀v ∈ V a.e. on (0, T ).

The formal equivalence between the variational problem P v
1 and the classi-

cal problem (62)–(66) can be easily proved by using Green’s formula. The
Lagrange multiplier λ ∈ L2(Γ3) satisfies the relation σN = λ in H−1/2(Γ)
that is

〈σN(u), w〉Γ = 〈λ,w〉L2(Γ3) ∀w ∈ H1/2(Γ).

Taking Ξ = Γ3, Λ = Λ1, V = V , U = H ι(Ω;Rd), 1 > ι > 1
2
, X =

H1/2(Γ), F = F1, φ = J , f = L, and l0(v) = vN , l(v) = [vN ] = vN − g0

∀v ∈ V , it results that the problem P v
1 is a particular case of problem Q.

As it is straightforward to verify the assumptions (1 - 5), (7 - 15), and also
(16) if ‖F‖M is sufficiently small, by Theorem 2.3 we obtain the following
existence result.

Proposition 3.1. Under the previous assumptions and if ‖F‖M is suffi-
ciently small there exists a solution to problem P v

1 .
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3.2 A contact problem with local friction for a linearly
elastic body

Let A denote the elasticity tensor, with the components A = (Aijkl) sat-
isfying the following classical symmetry and ellipticity conditions: Aijkl =
Ajikl = Aklij ∈ L∞(Ω) ∀ i, j, k, l = 1, . . . , d, ∃αA > 0 such that Aijklτijτkl ≥
αA τijτij ∀ τ = (τij) satisfying τij = τji, ∀ i, j = 1, . . . , d.

Consider the following elastic contact problem with Coulomb friction.
Problem P c

2 : Find u such that u(0) = u0, satisfying

σ(u) = Aε(u) in Ω, (72)

and (62), (64 - 66) for all t ∈ (0, T ).
Let us define the bilinear and symmetric mapping a : V × V → R by

a(v,w) =

∫
Ω

Aε(v) · ε(w) dx =

∫
Ω

Aijklεij(v)εkl(w)dx ∀v,w ∈ V . (73)

The form a is continuous on V × V and, since meas(Γ1) > 0, by Korn’s
inequality is also V -elliptic.

Let u0 ∈ V , λ0 ∈ Λ1([u0N ]) satisfy the following compatibility condition:

a(u0,v − u0)− 〈λ0, vN − u0N〉L2(Γ3) (74)

+J(λ0,v)− J(λ0,u0) ≥ 〈L(0),v − u0〉V ∀v ∈ V .

We have the following variational formulation of problem P c
2 .

Problem P v
2 : Find u ∈ W 1,2(0, T ;V ), λ ∈ W 1,2(0, T ;H−1/2(Γ)) such that

u(0) = u0, λ(0) = λ0, λ(t) ∈ Λ1([uN(t)]) for almost all t ∈ (0, T ), and

a(u,v − u̇)− 〈λ, vN − u̇N〉L2(Γ3) + J(λ,v) (75)

−J(λ, u̇) ≥ 〈L,v − u̇〉V ∀v ∈ V a.e. on (0, T ).

The Lagrange multiplier λ ∈ L2(Γ3) satisfies again the relation σN = λ in
H−1/2(Γ).

Taking Ξ, Λ, V , U , X, φ, f , l0, l as in 3.1 and F (v) = 1
2
a(v,v) ∀v ∈ V ,

we see that the problem P v
2 is a particular case of problem Q so that by using

again Theorem 2.3 one obtains the following existence result.

Proposition 3.2. Under the previous assumptions and if ‖F‖M is suffi-
ciently small there exists a solution to problem P v

2 .

Finally, we remark that viscoelastic or viscoplastic bulk behaviors can
also be studied by using similar methods to those presented here.
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