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Path-dependent Martingale Problems and
Additive Functionals

Adrien BARRASSO ∗ Francesco RUSSO†

April 19th 2018

Abstract. The paper introduces and investigates the natural extension
to the path-dependent setup of the usual concept of canonical Markov class
introduced by Dynkin and which is at the basis of the theory of Markov pro-
cesses. That extension, indexed by starting paths rather than starting points
will be called path-dependent canonical class. Associated with this is the gen-
eralization of the notions of semi-group and of additive functionals to the path-
dependent framework. A typical example of such family is constituted by the
laws (Ps,η)(s,η)∈R+×Ω, where for fixed time s and fixed path η defined on [0, s],
Ps,η being the (unique) solution of a path-dependent martingale problem or
more specifically a weak solution of a path-dependent SDE with jumps, with
initial path η. In a companion paper we apply those results to study path-
dependent analysis problems associated with BSDEs.

MSC 2010 Classification. 60H30; 60H10; 35S05; 60J35; 60J75.

KEY WORDS AND PHRASES. Path-dependent martingale problems;
path-dependent additive functionals.

1 Introduction
In this paper we extend some aspects of the theory of Markov processes to the
(non-Markovian) path-dependent case. The crucial object of Markov canonical
class introduced by Dynkin is replaced with the one of path-dependent canonical
class. The associated notion of Markov semigroup is extended to the notion of
path-dependent system of projectors. The classical Markovian concept of (Mar-
tingale) Additive Functional is generalized to the one of path-dependent (Mar-
tingale) Additive Functional. We then study some general path-dependent mar-
tingale problems with applications to weak solutions of path-dependent SDEs
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(possibly) with jumps and show that, under well-posedness, the solution of the
martingale problem provides a path-dependent canonical class. The compan-
ion paper [3] will exploit these results to extend the links between BSDEs and
(possibly Integro) PDEs obtained in [4], to a path-dependent framework.

The theory of Additive Functionals associated to a Markov process was ini-
tiated during the early ’60s, see the historical papers [14], [18], [8] and see [12]
for a complete theory in the homogeneous setup. The strong links between
martingale problems and Markov processes were first observed for the study of
weak solutions of SDEs in [20], and more generally in [15] or [16] for example.
Weak solutions of path-dependent SDEs possibly with jumps were studied in
[16], where the author shows their equivalence to some path-dependent martin-
gale problems and proves existence and uniqueness of a solution under Lipschitz
conditions. More recent results concerning path-dependent martingale problems
may be found in [7]. However, at our knowledge, the structure of the set of so-
lutions for different starting paths was not yet studied.

The setup of this paper is the canonical space (Ω,F) where Ω := D(R+, E)
is the Skorokhod space of cadlag functions from R+ into a Polish space E and
F is its Borel σ-field. X = (Xt)t∈R+ denotes the canonical process and the
initial filtration Fo is defined by Fot := σ(Xr|r ∈ [0, t]) for all t ≥ 0.

A path-dependent canonical class will be a set of probability measures
(Ps,η)(s,η)∈R+×Ω defined on the canonical space and such that, for some fixed
(s, η), Ps,η models a forward (path-dependent) dynamics in law, with imposed
initial path η on the time interval [0, s]. As already mentioned, it constitutes
the natural adaptation to the path-dependent world of the notion of canoni-
cal Markov class (Ps,x)(s,x)∈R+×E , where in general, Ps,x models the law of
some Markov stochastic process, with imposed value x at time s. Fs,η is the
augmented initial filtration fulfilling the usual conditions.

In substitution of a Markov semigroup associated with a Markov canonical
class, we introduce a path-dependent system of projectors denoted (Ps)s∈R+ and
a one-to-one connection between them and path-dependent canonical classes.
Each projector Ps acts on the space of bounded random variables. This brings
us to introduce the notion of weak generator (D(A), A) of (Ps)s∈R+

which
will permit us in the companion paper [3] to define mild type solutions of path-
dependent PDEs of the form{

DΦ + 1
2Tr(σσ

ᵀ∇2Φ) + β∇Φ + f(·, ·,Φ, σσᵀ∇Φ) = 0 on [0, T ]× Ω
ΦT = ξ on Ω,

(1.1)

where D is the horizontal derivative and ∇ the vertical gradient in the sense of
[13, 9] and β, σ are progressively measurable path-dependent coefficients.

As mentioned earlier, given a path-dependent canonical class we also intro-
duce the notion of path-dependent Additive Functional (resp. path-dependent
square integrable Martingale Additive Functional), which is a real-valued random-
field M := (Mt,u)0≤t≤u<+∞ such that for any (s, η) ∈ R+ × Ω, there exists a
real cadlag Fs,η-adapted process (resp. Fs,η-square integrable martingale)Ms,η

called the cadlag version ofM under Ps,η, and verifying for all s ≤ t ≤ u that
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Mt,u = Ms,η
u −Ms,η

t Ps,η a.s. Under some reasonable measurability assump-
tions on the path-dependent canonical class, we extend to our path-dependent
setup some classical results of Markov processes theory concerning the quadratic
covariation and the angular bracket of square integrable MAFs. As in the Marko-
vian set-up, examples of path-dependent canonical classes arise from solutions
of a (this time path-dependent) martingale problem as we explain below. Let χ
be a set of cadlag processes adapted to the initial filtration Fo. For some given
(s, η) ∈ R+ × Ω, we say that a probability measure Ps,η on (Ω,F) solves the
martingale problem with respect to χ starting in (s, η) if

• Ps,η(ωs = ηs) = 1;

• all elements of χ are on [s,+∞[ (Ps,η,Fo)-martingales.

We show that merely under some well-posedness assumptions, the set of so-
lutions for varying starting times and paths (Ps,η)(s,η)∈R+×Ω defines a path-
dependent canonical class. This in particularly holds for weak solutions of
path-dependent SDEs possibly with jumps.

The paper is organized as follows. In Section 3, we introduce the notion of
path-dependent canonical class in Definition 3.4 and of path-dependent system
of projectors in Definition 3.8 and prove a one-to-one correspondence between
those two concepts in Corollary 3.11. In Section 4, we introduce the notion of
path-dependent Additive Functional, in short AF (resp. Martingale Additive
Functional, in short MAF). We state in Proposition 4.6 and Corollary 4.9 that
for a given square integrable path-dependent MAF (Mt,u)(t,u)∈∆, we can ex-
hibit two non-decreasing path-dependent AFs with L1-terminal value, denoted
respectively by ([M ]t,u)(t,u)∈∆ and (〈M〉t,u)(t,u)∈∆, which will play respectively
the role of a quadratic variation and an angular bracket of it. Then in Corollary
4.12, we state that the Radon-Nikodym derivative of the mentioned angular
bracket of a square integrable path-dependent MAF with respect to a reference
function V , is a progressively measurable process which does not depend on
the probability. In Section 5, we introduce what we mean by path-dependent
martingale problem with respect to a set of processes χ, to a time s and a
starting path η, see Definition 5.4. Suppose that χ is a countable set of cadlag
Fo-adapted processes which are uniformly bounded on each interval [0, T ]; in
Proposition 5.12, we state that, whenever the martingale problem with respect
to χ is well-posed, then the solution (Ps,η)(s,η)∈R+×Ω defines a path-dependent
canonical class. In Subsection 5.2, Definition 5.14 introduces the notion of weak
generator of a path-dependent system of projectors, and Definition 5.15 that of
martingale problem associated to a path-dependent operator (D(A), A). Sup-
pose now that for any (s, η) the martingale problem associated with (D(A), A)
is well-posed, and let (Ps)s∈R+ be the system of projectors associated to the
canonical class constituted by the solutions (Ps,η)(s,η)∈R+×Ω. Then (D(A), A)
is a weak generator of (Ps)s∈R+

, and (Ps)s∈R+
is the unique system of projectors

such that this holds. In other words, (Ps)s∈R+
can be analytically associated to

(D(A), A) without ambiguity. Finally, in Section 6, we consider path-dependent
SDEs with jumps, whose coefficients are denoted by β, σ, w. If for any couple
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(s, η), the SDE has a unique weak solution, then Theorem 6.7 ensures that the
set of solutions (Ps,η)(s,η)∈R+×Ω defines a path-dependent canonical class. Un-
der the additional assumptions that β, σ, w are bounded and continuous in ω
for fixed other variables, then Proposition 6.13 states that (s, η) 7−→ Ps,η is
continuous for the topology of weak convergence.

2 Preliminaries
In the whole paper we will use the following notions, notations and vocabulary.

A topological space E will always be considered as a measurable space with
its Borel σ-field which shall be denoted B(E) and if S is another topological space
equipped with its Borel σ-field, B(E,S) will denote the set of Borel functions
from E to S. For some fixed d ∈ N∗, C∞c (Rd) will denote the set of smooth
functions with compact support. For fixed d, k ∈ N∗, Ck(Rd), (resp. Ckb (Rd))
will denote the set of functions k times differentiable with continuous (resp.
bounded continuous) derivatives.

Let (Ω,F), (E, E) be two measurable spaces. A measurable mapping from
(Ω,F) to (E, E) shall often be called a random variable (with values in
E), or in short r.v. If T is indices set, a family (Xt)t∈T of r.v. with val-
ues in E, will be called a random field (indexed by T with values in E).
In the particular case when T is a subinterval of R+, (Xt)t∈T will be called
a stochastic process (indexed by T with values in E). If the mapping

(t, ω) 7−→ Xt(ω)
(T× Ω,B(T)⊗F) −→ (E, E)

is measurable, then the process (or random

field) (Xt)t∈T will be said to be measurable (indexed by T with values in E).
On a fixed probability space (Ω,F ,P), for any p ≥ 1, Lp will denote the

set of real-valued random variables with finite p-th moment. Two random fields
(or stochastic processes) (Xt)t∈T, (Yt)t∈T indexed by the same set and with
values in the same space will be said to be modifications (or versions) of
each other if for every t ∈ T, P(Xt = Yt) = 1. A filtered probability space(
Ω,F ,F := (Ft)t∈R+

,P
)
will be called called stochastic basis and will be

said to fulfill the usual conditions if the filtration is right-continuous, if the
probability space is complete and if F0 contains all the P-negligible sets. Let us
fix a stochastic basis (Ω,F ,F,P). If Y = (Yt)t∈R+

is a stochastic process and τ
is a stopping time, we denote Y τ the process t 7→ Yt∧τ which we call stopped
process (by τ). If C is a set of processes, we will say that Y is locally in C
(resp. locally verifies some property) if there exist an a.s. increasing sequence
of stopping times (τn)n≥0 tending a.s. to infinity such that for every n, the
stopped process Y τn belongs to C (resp. verifies this property).

Given two martingalesM,N , we denote by [M ] (resp. [M,N ]) the quadratic
variation of M (resp. covariation of M,N). If M,N are locally square
integrable martingales, 〈M,N〉 (or simply 〈M〉 if M = N) will denote their
(predictable) angular bracket. Two locally square integrable martingales van-
ishing at zero M,N will be said to be strongly orthogonal if 〈M,N〉 = 0.
If A is an adapted process with bounded variation then V ar(A) (resp. Pos(A),
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Neg(A)) will denote its total variation (resp. positive variation, negative vari-
ation), see Proposition 3.1, chap. 1 in [17]. In particular for almost all ω ∈ Ω,
t 7→ V art(A(ω)) is the total variation function of the function t 7→ At(ω).

3 Path-dependent canonical classes
We will introduce here an abstract context which is relevant for the study of
path-dependent stochastic equations. The definitions and results which will be
presented here are inspired from the theory of Markov processes and of additive
functionals which one can find for example in [12].

The first definition refers to the canonical space that one can find in [16],
see paragraph 12.63.

Notation 3.1. In the whole section E will be a fixed Polish space, i.e. a sepa-
rable complete metrizable topological space, that we call the state space.

Ω will denote D(R+, E) the space of functions from R+ to E being right-
continuous with left limits (e.g. cadlag). For every t ∈ R+ we denote the
coordinate mapping Xt : ω 7→ ω(t) and we define on Ω the σ-field F := σ(Xr|r ∈
R+). On the measurable space (Ω,F), we introduce initial filtration Fo :=
(Fot )t∈R+

, where Fot := σ(Xr|r ∈ [0, t]), and the (right-continuous) canonical
filtration F := (Ft)t∈R+ , where Ft :=

⋂
s>t
Fos . (Ω,F ,F) will be called the

canonical space (associated to E). On R+×Ω, we will denote by Proo (resp.
Preo) the Fo-progressive (resp. Fo-predictable) σ-field. Ω will be equipped with
the Skorokhod topology which is Polish since E is Polish (see Theorem 5.6 in
chapter 3 of [15]), and for which the Borel σ-field is F , see Proposition 7.1 in
chapter 3 of [15]. This in particular implies that F is separable, being the Borel
σ-field of a separable metric space.
P(Ω) will denote the set of probability measures on Ω and will be equipped

with the topology of weak convergence of measures which also makes it a Polish
space since Ω is Polish (see Theorems 1.7 and 3.1 in [15] chapter 3). It will
also be equipped with the associated Borel σ-field.

Notation 3.2. For any ω ∈ Ω and t ∈ R+, the path ω stopped at time t
r 7→ ω(r ∧ t) will be denoted ωt.

Remark 3.3. In Sections 3,4 and Subsections 5.1, 5.2, all notions and results
can easily be adapted to different canonical spaces Ω: for instance, C(R+, E), the
space of continuous functions from R+ to E; C([0, T ], E) (resp. D([0, T ], E)) the
space of continuous (resp. cadlag) functions from [0, T ] to E, for some T > 0;
fixing x ∈ E, Cx(R+, E) (resp. Cx([0, T ], E)) the space of continuous functions
from R+ (resp. [0, T ]) to E starting at x .

Definition 3.4. A path-dependent canonical class will be a family (Ps,η)(s,η)∈R+×Ω

of probability measures defined on the canonical space (Ω,F), which verifies the
three following items.

1. For every (s, η) ∈ R+ × Ω, Ps,η(ωs = ηs) = 1;
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2. for every s ∈ R+ and F ∈ F , the mapping
η 7−→ Ps,η(F )
Ω −→ [0, 1]

is Fos -measurable;

3. for every (s, η) ∈ R+ × Ω, t ≥ s and F ∈ F ,

Ps,η(F |Fot )(ω) = Pt,ω(F ) for Ps,η almost all ω. (3.1)

This implies in particular that for every (s, η) ∈ R+ × Ω and t ≥ s, then
(Pt,ω)ω∈Ω is a regular conditional expectation of Ps,η by Fot , see the Definition
above Theorem 1.1.6 in [20] for instance.

A path-dependent canonical class (Ps,η)(s,η)∈R+×Ω will be said to be progres-
sive if for every F ∈ F , the mapping (t, ω) 7−→ Pt,ω(F ) is Fo-progressively
measurable.

In concrete examples, path-dependent canonical classes will always verify
the following important hypothesis which is a reinforcement of (3.1).

Hypothesis 3.5. For every (s, η) ∈ R+ × Ω, t ≥ s and F ∈ F ,

Ps,η(F |Ft)(ω) = Pt,ω(F ) for Ps,η almost all ω. (3.2)

Remark 3.6. By approximation through simple functions, one can easily show
the following. Let Z be a random variable.

• Let s ≥ 0. The functional η 7−→ Es,η[Z] is Fos -measurable and for every
(s, η) ∈ R+ × Ω, t ≥ s, Es,η[Z|Fot ](ω) = Et,ω[Z] for Ps,η almost all ω,
provided previous expectations are finite;

• if the path-dependent canonical class is progressive, (t, ω) 7−→ Et,ω[Z] is
Fo-progressively measurable, provided previous expectations are finite.

Notation 3.7.

• Bb(Ω) (resp. B+
b (Ω)) will denote the space of measurable (resp. non-

negative measurable) bounded r.v.

• Let s ≥ 0. Bsb(Ω) will denote the space of Fos -measurable bounded r.v.

Definition 3.8.

1. A linear map Q : Bb(Ω) → Bb(Ω) is said positivity preserving mono-
tonic if for every φ ∈ B+

b (Ω) then Q[φ] ∈ B+
b (Ω) and for every increas-

ing converging (in the pointwise sense) sequence fn −→
n

f we have that
Q[fn] −→

n
Q[f ] in the pointwise sense.

2. A family (Ps)s∈R+
of positivity preserving monotonic linear operators on

Bb(Ω) will be called a path-dependent system of projectors if it verifies
the three following properties.
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• For all s ∈ R+, the restriction of Ps to Bsb(Ω) coincides with the
identity;

• for all s ∈ R+, Ps maps Bb(Ω) into Bsb(Ω);

• for all s, t ∈ R+ with t ≥ s, Ps ◦ Pt = Ps.

Proposition 3.9. Let (Ps,η)(s,η)∈R+×Ω be a path-dependent canonical class.
For every s ∈ R+, we define Ps : φ 7−→ (η 7→ Es,η[φ]). Then (Ps)s∈R+

defines
a path-dependent system of projectors.

Proof. For every s ≥ 0 each map Ps is linear, positivity preserving and mono-
tonic using the usual properties of the expectation under a given probability.
The rest follows taking into account Definitions 3.4, 3.8 and Remark 3.6.

Proposition 3.10. Let (Ps)s∈R+
be a path-dependent system of projectors. For

any (s, η) ∈ R+ × Ω, we set

Ps,η :

(
F 7−→ Ps[1F ](η)
F −→ R

)
. (3.3)

Then for all (s, η), Ps,η defines a probability measure and (Ps,η)(s,η)∈R+×Ω is
a path-dependent canonical class.

Proof. We fix s and η. Since ∅,Ω ∈ Fos , then by the first item of Definition 3.8,
Ps[1∅] = 1∅ and Ps[1Ω] = 1Ω, so Ps,η(∅) = 0 and Ps,η(Ω) = 1. For any F ∈ F ,
since Ps is positivity preserving and 1∅ ≤ 1F ≤ 1Ω then 1∅ ≤ Ps[1F ] ≤ 1Ω so,
Ps,η takes values in [0, 1]. If (Fn)n is a sequence of pairwise disjoint elements of
F then the increasing sequence

∑N
k=01Fk converges pointwise to 1

⋃
n
Fn . Since the

Ps are linear and monotonic then
∑
n
Ps[1Fn ] = Ps[1⋃

n
Fn ], hence

∑
n
Ps,η(Fn) =

Ps,η
(⋃
n
Fn

)
. So for every (s, η), Ps,η, is σ-additive, positive, vanishing in ∅

and takes value 1 in Ω hence is a probability measure.
Then, for any (s, η) we havePs,η(ωs = ηs) = Ps[1{ωs=ηs}](η) = 1{ωs=ηs}(η) = 1
since {ωs = ηs} ∈ Fos , so item 1. of Definition 3.4 is satisfied. Concerning item
2., at fixed s ∈ R+ and F ∈ F , we have (η 7→ Ps,η(F )) = Ps[1F ] which is
Fos -measurable since Ps has its range in Bsb(Ω), see Definition 3.8.

It remains to show item 3. We now fix (s, η) ∈ R+ × Ω, t ≥ s and F ∈ F
and show that (3.1) holds. Let G ∈ Fot . We need to show that Es,η[1G1F ] =
Es,η[1G(ζ)Et,ζ [1F ]]. We have

Es,η[1G1F ] = Es,η[Et,ζ [1G(ω)1F (ω)]]

= Es,η[Et,ζ [1G(ζ)1F (ω)]]

= Es,η[1G(ζ)Et,ζ [1F (ω)]],

where the first equality comes from the fact that Ps = Ps ◦ Pt and the second
from the fact that G ∈ Fot and Pt,ζ(ωt = ζt) = 1 so 1G = 1G(ζ) Pt,ζ a.s.
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Corollary 3.11. The mapping

Φ : (Ps,η)(s,η)∈R+×Ω 7−→ (Z 7−→ (η 7→ Es,η[Z]))s∈R+
, (3.4)

is a bijection between the set of path-dependent canonical classes and the set of
path-dependent system of projectors, whose reciprocal map is given by

Φ−1 : (Ps)s∈R+
7−→ (F 7→ Ps[1F ](η))(s,η)∈R+×Ω . (3.5)

Proof. Φ is by Proposition 3.9 well-defined. Moreover it is injective since if
P1 and P2 are two probabilities such that respective expectations of all the
bounded r.v. are the same then P1 = P2. Then given a path-dependent system
of projectors (Ps)s∈R+ , by Proposition 3.10 (Ps,η : F 7→ Ps[1F ](η))(s,η)∈R+×Ω

is a path-dependent canonical class. It is then enough to show that the im-
age through Φ of that path-dependent canonical class is indeed (Ps)s∈R+

. Let
(Qs)s∈R+

denote its image by Φ, in order to conclude we are left to show that
Qs = Ps for all s.
We fix s. For every F ∈ F , η ∈ Ω we have Qs[1F ](η) = Ps,η(F ) = Ps[1F ](η)
so Qs and Ps coincide on the indicator functions, hence on the simple functions
by linearity, and everywhere by monotonicity and the fact that every bounded
Borel function is the limit of an increasing sequence of simple functions.

Definition 3.12. From now on, two elements mapped by the previous bijection
will be said to be associated.

Remark 3.13. Path-dependent canonical classes naturally extend canonical
Markov classes (see Definition C.5 in [4] for instance) as follows.
Let (Ps,x)(s,x)∈R+×E be a canonical Markov class with state space E and let
(Ps,t)0≤s≤t denote its transition kernel, see Definition C.3 in [4].
For all (s, η) ∈ R+ × Ω, let Ps,η be the unique probability measure on (Ω,F)
such that Ps,η(ωs = ηs) and Ps,η coincides on σ(Xr|r ≥ s) with Ps,η(s). Then
(Ps,η)(s,η)∈R+×Ω is a path-dependent canonical class. Let (Ps)s∈R+ denote the
associated path-dependent system of projectors. Then for all bounded Borel
φ : E 7→ R, η ∈ Ω and 0 ≤ s ≤ t we have

Ps[φ ◦Xt](η) = Es,η[φ(Xt)] = Es,η(s)[φ(Xt)] = Ps,t[φ](η(s)). (3.6)

Notation 3.14. For the rest of this section, we are given a path-dependent
canonical class (Ps,η)(s,η)∈R+×Ω and (Ps)s∈R+

denotes the associated path-dependent
system of projectors.

Definition 3.15. Let P be a probability on (Ω,F). If G be a sub-σ-field of F ,
we call P-closure of G the σ-field generated by G and the set of P-negligible
sets. We denote it GP. In the particular case G = F , we call FP P-completion
of F .

Remark 3.16. Thanks to Remark 32.b) in Chapter II of [10], we have an
equivalent definition of the P-closure of some sub-σ-field G of F which can be
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characterized by the following property: B ∈ GP if and only if there exist F ∈ G
such that 1B = 1F P a.s.
Moreover, P can be extended to a probability on GP by setting P(B) := P(F )
for such events.

Notation 3.17. For any (s, η) ∈ R+ × Ω we will consider the stochastic basis(
Ω,Fs,η,Fs,η := (Fs,ηt )t∈R+ ,P

s,η
)
where Fs,η is the Ps,η-completion of F , Ps,η

is extended to Fs,η and Fs,ηt is the Ps,η-closure of Ft for every t ∈ R+.

We remark that, for any (s, η) ∈ R+×Ω, (Ω,Fs,η,Fs,η,Ps,η) is a stochastic
basis fulfilling the usual conditions, see 1.4 in [17] Chapter I.

A direct consequence of Remark 32.b) in Chapter II of [10] is the following.

Proposition 3.18. Let G be a sub-σ-field of F , P a probability on (Ω,F) and
GP the P-closure of G. Let ZP be a real GP-measurable random variable. There
exists a G-measurable random variable Z such that Z = ZP P-a.s.

Proposition 3.18 yields the following.

Proposition 3.19. Let P be a probability measure on (Ω,F), let G := (Gt)t∈R+

be a filtration and GP denote (GPt )t∈R+
. Let Z be a positive or L1-random

variable and t ∈ R+. Then E[Z|Gt] = E[Z|GPt ] P a.s. In particular, (P,G)-
martingales are also (P,GP)-martingales.

According to Proposition 3.19 for P = Ps,η, the related conditional expec-
tations with respect to Fs,ηt coincide with conditional expectations with respect
to Ft. For that reason we will only use the notation Es,η[ · |Ft] omitting the
(s, η)-superscript over Ft.

In the next proposition, Fo,s,ηt will denote for any (s, η) ∈ R+×Ω and t ≥ s
the Ps,η-closure of Fot .

Proposition 3.20. Assume that Hypothesis 3.5 holds. For any (s, η) ∈ R+×Ω
and t ≥ s, Fo,s,ηt = Fs,ηt .

Proof. We fix s, η, t. Since inclusion Fo,s,ηt ⊂ Fs,ηt is obvious, we show the con-
verse inclusion.
Let F s,η ∈ Fs,ηt . By Remark 3.16, there exists F ∈ Ft, such that 1F s,η = 1F
Ps,η a.s. It is therefore sufficient to prove the existence of some F o ∈ Fot such
that 1F o = 1F P

s,η a.s. (and therefore 1F o = 1F s,η P
s,η a.s.) to conclude that

F s,η ∈ Fo,s,ηt .

We set Z :
ω 7−→ Pt,ω(F )
Ω −→ [0, 1]

. By (3.2) and the fact that F ∈ Ft, we have

Z(ω) = Pt,ω(F ) = Es,η[1F |Ft](ω) = 1F (ω) Ps,ηa.s. (3.7)

By Definition 3.4, Z is Fot -measurable, so F o := Z−1({1}) belongs to Fot , and
we will proceed showing that 1F o = 1F P

s,η a.s.
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By construction, 1F o(ω) = 1 iff Pt,ω(F ) = 1 and 1F o(ω) = 0 iff Pt,ω(F ) ∈ [0, 1[.
So

{ω : 1F o(ω) 6= 1F (ω)}
= {ω : 1F o(ω) = 1 and 1F (ω) = 0}

⋃
{ω : 1F o(ω) = 0 and 1F (ω) = 1}

= {ω : Pt,ω(F ) = 1 and 1F (ω) = 0}
⋃
{ω : Pt,ω(F ) ∈ [0, 1[ and 1F (ω) = 1}

⊂ {ω : Pt,ω(F ) 6= 1F (ω)},
(3.8)

where the latter set is Ps,η-negligible by (3.7).

Combining Propositions 3.18 and 3.20, we have the following.

Corollary 3.21. Assume that Hypothesis 3.5 holds and let us fix (s, η) ∈ R+×Ω
and t ≥ s. Given an Fs,ηt -measurable r.v. Zs,η, there exists an Fot -measurable
r.v. Zo such that Zs,η = Zo Ps,η a.s.

Definition 3.22. If (Ω̃, F̃ , P̃) is a probability space and G is a sub-σ-field of F̃ ,
we say that G is P-trivial if for any element G of G, then P(G) ∈ {0, 1}.

Corollary 3.23. Assume that Hypothesis 3.5 holds. For every (s, η) ∈ R+×Ω,
Fos and Fs are Ps,η-trivial.

Proof. We fix (s, η) ∈ R+×Ω. We start by showing that Fos is Ps,η-trivial. For
every B ∈ Fos and ω we have 1B(ω) = 1B(ωs), and since Ps,η(ωs = ηs) = 1, we
have 1B(ωs) = 1B(ηs) Ps,η a.s. So Ps,η(B) = Es,η[1B(ω)] = 1B(ηs) ∈ {0, 1}.
Then, it is clear that addingPs,η-negligible sets does not change the fact of being
Ps,η-trivial, so Fo,s,ηs (which by Proposition 3.20 is equal to Fs,ηs ) is Ps,η-trivial
and therefore so is Fs ⊂ Fs,ηs .

4 Path-dependent Additive Functionals
In this section, we introduce the notion of Path-dependent Additive Functionals
that we use in the paper. As already anticipated, this can be interpreted as a
path-dependent extension of the notion of non-homogeneous Additive Function-
als of a canonical Markov class developed in [5]. For that reason, several proofs
of this section are very similar to those of [5] and are inspired from [12] Chapter
XV, which treats the time-homogeneous case.

We keep on using Notation 3.1 and we fix a path-dependent canonical class
(Ps,η)(s,η)∈R+×Ω and assume the following for the whole section.

Hypothesis 4.1. (Ps,η)(s,η)∈R+×Ω is progressive and verifies Hypothesis 3.5.

We will use the notation ∆ := {(t, u) ∈ R2
+|t ≤ u}.

Definition 4.2. On (Ω,F), a path-dependent Additive Functional (in
short path-dependent AF) will be a random-field A := (At,u)(t,u)∈∆ with val-
ues in R verifying the two following conditions.
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1. For any (t, u) ∈ ∆, At,u is Fou-measurable;

2. for any (s, η) ∈ R+ × Ω, there exists a real cadlag Fs,η-adapted process
As,η (taken equal to zero on [0, s] by convention) such that for any η ∈ Ω
and s ≤ t ≤ u,

At,u = As,ηu −A
s,η
t Ps,η a.s.

We denote by At the (Fo-adapted) process u 7→ At,u indexed by [t,+∞[. For
any (s, η) ∈ [0, t]× Ω, As,η· −As,ηt is a Ps,η-version of At on [t,+∞[. As,η will
be called the cadlag version of A under Ps,η.

A path-dependent Additive Functional will be called a path-dependent Mar-
tingale Additive Functional (in short path-dependent MAF) if under any
Ps,η its cadlag version is a martingale.

More generally, a path-dependent AF will be said to verify a certain prop-
erty (being non-decreasing, of bounded variation, square integrable, having L1-
terminal value) if under any Ps,η its cadlag version verifies it.

Finally, given two increasing path-dependent AFs A and B, A will be said
to be absolutely continuous with respect to B if for any (s, η) ∈ R+ × Ω,
dAs,η � dBs,η in the sense of stochastic measures. This means that dAs,η(ω)
is absolutely continuous with respect to dBs,η(ω) for Ps,η almost all ω.

Remark 4.3. The set of path-dependent AFs (resp. path-dependent AFs with
bounded variation, path-dependent AFs with L1-terminal value, path-dependent
MAFs, square integrable path-dependent MAFs) is a linear space.

Lemma 4.4. Let M be an Fo-adapted process such that for all (s, η), on
[s,+∞[, M is a (Ps,η,Fo)-martingale.
Then, for all (s, η), M·∨s−Ms admits a Ps,η-version which is a (Ps,η,Fs,η) cad-
lag martingaleMs,η vanishing in [0, s]. In particularMt,u(ω) := Mu(ω)−Mt(ω)
defines a path-dependent MAF with cadlag version Ms,η under Ps,η.

Proof. By Propositions 3.19 and 3.20, M is also on [s,+∞[ a (Ps,η,Fs,η)-
martingale hence M·∨s −Ms is on R+ a (Ps,η,Fs,η)-martingale and vanishes
on [0, s]. Since Fs,η satisfies the usual conditions, then M·∨s −Ms admits a
cadlag Ps,η-modification Ms,η which also is a (Ps,η,Fs,η)-martingale vanishing
in [0, s]. It clearly verifies that Mt,u = Mu−Mt = Ms,η

u −M
s,η
t Ps,η-a.s. for all

s ≤ t ≤ u.

Example 4.5. Let Z be an F-measurable bounded r.v. A typical example of pro-
cess verifying the conditions of previous Lemma 4.4 is given by MZ : (t, ω) 7−→
Et,ω[Z], see Remark 3.6.

The following results state that, for a given square integrable path-dependent
MAF (Mt,u)(t,u)∈∆ we can exhibit two non-decreasing path-dependent AFs with
L1-terminal value, denoted respectively by ([M ]t,u)(t,u)∈∆ and (〈M〉t,u)(t,u)∈∆,
which will play respectively the role of a quadratic variation and an angular
bracket of it. Moreover we will show that the Radon-Nikodym derivative of the
mentioned angular bracket of a square integrable path-dependent MAF with
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respect to a reference function V is a progressively measurable process which
does not depend on the probability.
The proof of the proposition below is postponed to the appendix.

Proposition 4.6. Let (Mt,u)(t,u)∈∆ be a square integrable path-dependent MAF,
and for any (s, η) ∈ R+×Ω, [Ms,η] denote the quadratic variation of its cadlag
version Ms,η under Ps,η. Then there exists a non-decreasing path-dependent
AF with L1-terminal value which we will call ([M ]t,u)(t,u)∈∆ and which, for any
(s, η) ∈ R+ × Ω, has [Ms,η] as cadlag version under Ps,η.

The next result can be seen as an extension of Theorem 15 Chapter XV in
[12] to a path-dependent context and will be needed to show that the result
above also holds for the angular bracket. Its proof is also postponed to the
appendix.

Proposition 4.7. Let (Bt,u)(t,u)∈∆ be a non-decreasing path-dependent AF
with L1- terminal value. For any (s, η) ∈ R+ × Ω, let Bs,η be its cadlag
version under Ps,η and let As,η be the predictable dual projection of Bs,η in
(Ω,Fs,η,Fs,η,Ps,η). Then there exists a non-decreasing path-dependent AF with
L1-terminal value (At,u)(t,u)∈∆ such that under any Ps,η, the cadlag version of
A is As,η.

Remark 4.8.

1. About the notion of dual predictable projection (also called compensator)
related to some stochastic basis we refer to Theorem 3.17 in Chapter I of
[17].

2. We recall that, whenever M,N are two local martingales, the angle bracket
〈M,N〉 is the dual predictable projection of [M,N ], see Proposition 4.50
b) in Chapter I of [17].

Corollary 4.9. Let (Mt,u)(t,u)∈∆, (Nt,u)(t,u)∈∆ be two square integrable path-
dependent MAFs, let Ms,η (respectively Ns,η) be the cadlag version of M (re-
spectively N) under Ps,η. Then there exists a bounded variation path-dependent
AF with L1-terminal value, denoted (〈M,N〉t,u)(t,u)∈∆, such that under any
Ps,η, the cadlag version of 〈M,N〉 is 〈Ms,η, Ns,η〉. If M = N the path-
dependent AF 〈M,N〉 will be denoted 〈M〉 and is non-decreasing.

Proof. This can be proved as for Corollary 4.11 in [5], replacing parameter (s, x)
with (s, η).

The result below concerns the Radon-Nikodym derivative of a non-decreasing
continuous path-dependent AF with respect to some reference measure dV . Its
proof is postponed to the Appendix.

Proposition 4.10. Let V : R+ −→ R be a non-decreasing continuous function.
Let A be a non-negative, non-decreasing path-dependent AF absolutely continu-
ous with respect to V , and for any (s, η) ∈ R+×Ω let As,η be the cadlag version
of A under Ps,η. There exists an Fo-progressively measurable process h such that
for any (s, η) ∈ R+×Ω, As,η =

∫ ·∨s
s

hrdVr, in the sense of indistinguishability.

12



Proposition 4.11. Let (At,u)(t,u)∈∆ be a path-dependent AF with bounded vari-
ation, taking L1-terminal value. Then there exists an increasing path-dependent
AF that we denote (Pos(A)t,u)(t,u)∈∆ (resp. (Neg(A)t,u)(t,u)∈∆), which, for
any (s, η) ∈ R+×Ω, has Pos(As,η) (resp. Neg(As,η))) as cadlag version under
Ps,η.

Proof. This can be proved similarly as forProposition 4.14 in [5], replacing pa-
rameter (s, x) with (s, η).

Corollary 4.12. Let V be a continuous non-decreasing function. Let M and N
be two square integrable path-dependent MAFs and let Ms,η (respectively Ns,η)
be the cadlag version of M (respectively N) under a fixed Ps,η. Assume that
〈N〉 is absolutely continuous with respect to dV . There exists an Fo-progressively
measurable process k such that for any (s, η) ∈ R+×Ω, 〈Ms,η, Ns,η〉 =

∫ ·∨s
s

krdVr.

Proof. The proof follows the same lines as the one of Proposition 4.17 in [5]
replacing parameter (s, x) by (s, η) and Borel functions of (t,Xt) with Fo-
progressively measurable processes. We make use of Corollary 4.9, Propositions
4.11 and 4.10, respectively in substitution of Corollary 4.11 an Propositions 4.14
and 4.13.

Corollary 4.13. Let V be a continuous non-decreasing function. Let M (resp.
N) be an Fo-adapted process such that for all (s, η), M (resp. N) is on [s,+∞[
a (Ps,η,Fo) square integrable martingale. For any (s, η), let Ms,η (resp. Ns,η)
denote its Ps,η-cadlag version. Assume that for all (s, η), d〈Ns,η〉 � dV .
Then there exists an Fo-progressively measurable process k such that for any
(s, η) ∈ R+ × Ω, 〈Ms,η, Ns,η〉 =

∫ ·∨s
s

krdVr.

Proof. The mentioned cadlag versions exist because of Lemma 4.4. The state-
ment follows by the same Lemma 4.4 and Corollary 4.12.

5 Path-dependent Martingale problems

5.1 Abstract Martingale Problems
In this section we show that, whenever a (path-dependent) martingale problem
is well-posed, then its solution is a path-dependent canonical class verifying
Hypothesis 3.5. This relies on the same mathematical tools than those used by
D.S Stroock and S.R.S Varadhan in the context of Markovian diffusions in [20].
Indeed it was already known that the ideas of [20] could be used in any type of
Markovian setup and not just for martingale problems associated to diffusions,
see [15] for example. One of the interests of the following lines is to show that
their scope goes beyond the Markovian framework. First we prove that η 7→ Ps,η
is measurable, using well-posedness arguments and the celebrated Kuratowsky
Theorem. Then we show in Proposition 5.12 that the solution of the martingale
problem verifies (3.2), which is the analogous formulation of Markov property,
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through the theory of regular conditional expectations and again the fact that
the martingale problem is well-posed.

Notation 5.1. For every t ∈ R+, Ωt := {ω ∈ Ω : ω = ωt} will denote the set
of constant paths after time t. We also denote Λ := {(s, η) ∈ R+×Ω : η ∈ Ωs}.

Proposition 5.2.

1. Λ is a closed subspace of R+×Ω, hence a Polish space when equipped with
the induced topology.

2. For any t ∈ R+, Ωt is also a closed subspace of Ω.

Proof. We will only show the first statement since the proof of the second one
is similar but simpler. Let (sn, ηn)n be a sequence in Λ. Let (s, η) ∈ R+ × Ω
and assume that sn → s and that ηn tends to η for the Skorokhod topology.
Then ηn tends to η Lebesgue a.e. Let ε > 0. There is a subsequence (snk) such
that |snk − s| ≤ ε, implying that for all k, ηnk is constantly equal to ηnk(snk)
on [s + ε,+∞[. Since ηn tends to η Lebesgue a.e., then necessarily, ηnk(snk)
tends to some c ∈ E and η takes value c a.e. on [s + ε,+∞[. This holds for
every ε, and η is cadlag, so η is constantly equal to c on [s,+∞[, implying that
(s, η) ∈ Λ.

From now on, Λ, introduced in Notation 5.1, is equipped with the trace
topology.

Proposition 5.3. The Borel σ-field B(Λ) is equal to the trace σ-field Λ∩Proo.
For any t ∈ R+, the Borel σ-field B(Ωt) is equal to the trace σ-field Ωt ∩ Fot .

Proof. Again we only show the first statement since the proof of the second
one is similar. By definition of the topology on Λ, it is clear that B(Λ) =
Λ ∩ B(R+ × Ω) = Λ ∩ (B(R+) ⊗ F) contains Λ ∩ Proo. We show the converse
inclusion. The sets Λ ∩ ([s, u] × {ω(r) ∈ A}) for s, u, r ∈ R+ with s ≤ u,
A ∈ B(E) generate Λ ∩ (B(R+) ⊗ F) so it is enough to show that these sets
belong to Λ ∩ Proo.

We fix s ≤ u and r in R+, and A ∈ B(E). We have

Λ
⋂

([s, u]× {ω(r) ∈ A}) =

(t, ω) :

 t ∈ [s, u]
ω = ωt

ω(r) ∈ A


=

(t, ω) :

 t ∈ [s, u]
ω = ωt

ω(r ∧ t) ∈ A


= Λ

⋂{
(t, ω) :

{
t ∈ [s, u]
ω(r ∧ t) ∈ A.

}
. (5.1)

We are left to show that
{

(t, ω) :

{
t ∈ [s, u]
ω(r ∧ t) ∈ A

}
∈ Proo, or equivalently

that
t 7→ 1[s,u](t)1A(Xr∧t) is Fo − progressively measurable. (5.2)
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Now t 7→ Xr∧t is right-continuous and Fo-adapted so it is an E-valued Fo-
progressively measurable process, see Theorem 15 in [10] Chapter IV. By com-
position with a Borel function, t 7→ 1A(Xr∧t) is a real-valued Fo-progressively
measurable process; (5.2) follows since t 7→ 1[s,u](t) is Fo-progressively measur-
able and the product of the two Fo-progressively measurable processes remains
Fo-progressively measurable.

Definition 5.4. Let (s, η) ∈ Λ and χ be a set of Fo-adapted processes. We say
that a probability measure P on (Ω,F) solves the martingale problem with
respect to χ starting in (s, η) if

• P(ωs = ηs) = 1,

• all elements of χ are on [s,+∞[ (P,Fo)-martingales.

Remark 5.5. We insist on the following important fact. If M ∈ χ is cadlag
and P solves the martingale problem associated to χ, then by Theorem 3 in [11]
Chapter VI, M is also on [s,+∞[ a (P,F)-martingale.

Notation 5.6. For fixed (s, η) ∈ Λ and χ, the set of probability measures solv-
ing the martingale problem with respect to χ starting in (s, η) will be denoted
MP s,η(χ).

Definition 5.7. Let us consider a set χ of processes. If for every (s, η) ∈ Λ,
MP s,η(χ) is reduced to a single element Ps,η, we will say that the martingale
problem associated to χ is well-posed. In this case we will always extend the
mapping

(s, η) 7−→ Ps,η

Λ −→ P(Ω)
(5.3)

to R+ × Ω by setting for all (s, η) ∈ R+ × Ω, Ps,η := Ps,η
s

.

Notation 5.8. We fix a dense sequence (xn)n≥0 of elements of E.
For any s ∈ R+, we will denote by Πs the set of elements of Fos of type {ω(t1) ∈
B(xi1 , r1), · · · , ω(tN ) ∈ B(xiN , rN )} where N ∈ N, t1, · · · , tN ∈ [0, s] ∩ Q,
i1, · · · , iN ∈ N, r1, · · · , rN ∈ Q+ and where B(x, r) denotes the open ball cen-
tered in x and of radius r.

It is easy to show that for any s ∈ R+, Πs is a countable π-system generating
Fos , see [1] Definition 4.9 for the notions of π-system and λ-system.

Below we consider the set As of probability measures P on (Ω,F) for which
there exists η ∈ Ω such that P solves the martingale problem with respect to χ
starting at (s, η).

Proposition 5.9. We fix a countable set χ of cadlag Fo-adapted processes which
are uniformly bounded on each interval [0, T ], and some s ∈ R+. Let As :=⋃
η∈Ω

MP s,η(χ). Then As is a Borel set of P(Ω).

For the proof of this proposition we need a technical lemma.
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Lemma 5.10. We fix s ∈ R+. An element P of P(Ω) belongs to As if and
only if it verifies the following conditions:

1. P(F ) ∈ {0, 1} for all F ∈ Πs;

2. EP[(Mu −Mt)1F ] = 0 for all M ∈ χ, t, u ∈ [s,+∞[∩Q such that t ≤ u,
F ∈ Πt.

Proof. By definition of As, an element P of P(Ω) belongs to As iff

a) there exists η ∈ Ω such that P(ωs = ηs) = 1;

b) for all M ∈ χ, (Mt)t∈[s,+∞[ is a (P,Fo)-martingale.

Item a) above is equivalent to saying that Fos is P-trivial which is equivalent
to item 1. of the Lemma’s statement by Dynkin’s Lemma (see 4.11 in [1]),
since Πs is a π-system generating Fos and since the sets F ∈ Fos such that
P(F ) ∈ {0, 1} form a λ-system.
On the other hand, it is clear that item b) above implies item 2. in the statement
of the Lemma. Conversely, assume thatM ∈ χ satisfies item 2. of the statement.
We fix s ≤ t ≤ u. Let (tn)n, (un)n be two sequences of rational numbers which
converge to respectively to t, u strictly from the right and such that tn ≤ un for
all n. For every fixed n, we have EP[(Mun −Mtn)1G] = 0 for all G ∈ Πt. We
then pass to the limit in n using the fact that M is right-continuous at fixed
ω, and the dominated convergence theorem and taking into account the fact
that M is bounded on compact intervals; this yields EP[(Mu −Mt)1G] = 0 for
all G ∈ Πt. Since sets G ∈ Fot verifying this property form a λ-system and
since Πt is a π-system generating Fot , then by Dynkin’s lemma (see 4.11 in [1]),
EP[(Mu − Mt)1G] = 0 for all G ∈ Fot . This implies that (Mt)t∈[s,+∞[ is a
(P,Fo)-martingale which concludes the proof of Lemma 5.10.

Proof of Proposition 5.9.
We fix s ∈ R+. We recall that for any bounded random variable φ, P 7→ EP[φ]
is Borel. In particular for all F ∈ Πs, P 7−→ P(F ) and for all M ∈ χ, t, u ∈
[s,+∞[∩Q, F ∈ Πt, P 7−→ EP[(Mu − Mt)1F ] are Borel maps. The result
follows by Lemma 5.10, taking into account the fact Πt is countable for any t,
and χ and the rational number set Q are also countable. Indeed since {0} and
{0, 1} are Borel sets, As is Borel being a countable intersection of preimages of
Borel sets by Borel functions.

Proposition 5.11. Let χ be a countable set of cadlag Fo-adapted processes
which are uniformly bounded on each interval [0, T ]. We assume that the martin-
gale problem associated to χ is well-posed, see Definition 5.7. Let s ∈ R+. Then

Φs :

(
η 7−→ Ps,η

Ωs −→ P(Ω)

)
is Borel. Moreover,

(
(s, η) 7−→ Ps,η

R+ × Ω −→ P(Ω)

)
is

Fo-adapted.

Proof. We fix s ∈ R+ and set

Φs :
η 7−→ Ps,η

Ωs −→ As,
(5.4)
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where As is defined as in Proposition 5.9. Φs is surjective by construction. It is
also injective. Indeed, if η1, η2 ∈ Ωs are different, there exists t ∈ [0, s] such that
η1(t) 6= η2(t) and we have Ps,η1(ω(t) = η1(t)) = 1 and Ps,η2(ω(t) = η2(t)) = 1
so clearly Ps,η1 6= Ps,η2 .

We can therefore introduce the reciprocal mapping

Φ−1
s :

Ps,η 7−→ η
As −→ Ωs,

(5.5)

which is a bijection. We wish to show that it is Borel. Since the Borel σ-algebra
of Ωs is generated by the sets of type {ω(r∧s) ∈ A} where r ∈ R+ and A ∈ B(E),
it is enough to show that Φs({ω(r ∧ s) ∈ A}) is for any r,A a Borel subset of
P(Ω). We then have Φs({ω(r∧s) ∈ A}) = As∩{P : P(ω(r∧s) ∈ A) = 1} which
is Borel being the intersection of As which is Borel by Lemma 5.10, and of the
preimage of {1} by the Borel function P 7→ P(F ) with F = {ω(r ∧ s) ∈ A}. So
Φ−1
s is a Borel bijection which maps the Borel set As of the Polish space P(Ω)

into the Polish space Ωs. By Kuratowsky theorem (see Corollary 3.3 in [19]),

Φs :
η 7−→ Ps,η

Ωs −→ P(Ω)
is Borel.

Let us justify the second part of the statement. Since by Proposition 5.3,

B(Ωs) = Ωs ∩ Fos for all s, it is clear that
(

η 7−→ ηs

Ω −→ Ωs

)
is (Fos ,B(Ωs))-

measurable and therefore that
(

η 7−→ Ps,η

Ω −→ P(Ω)

)
is Fos -measurable.

Proposition 5.12. Let χ be a countable set of cadlag Fo-adapted processes
which are uniformly bounded on each interval [0, T ], and assume that the martin-
gale problem associated to χ is well-posed, see Definition 5.7. Then (Ps,η)(s,η)∈R+×Ω

is a path-dependent canonical class verifying Hypothesis 3.5 .

Proof. The first two items of Definition 3.4 are directly implied by Proposition
5.11 and the fact that Ps,η ∈ MP s,η(χ) hence Ps,η(ωs = ηs) for all (s, η). It
remains to show the validity of Hypothesis 3.5.

We fix (s, η) ∈ R+ × Ω and t ≥ s. Since Ω is Polish and Ft is a sub σ-field
of its Borel σ-field, there exists a regular conditional expectation of Ps,η by Ft
(see Theorem 1.1.6 in [20]), meaning a set of probability measures (Qt,ζ)ζ∈Ω on
(Ω,F) such that

1. for any F ∈ F , ζ 7→ Qt,ζ(F ) is Ft-measurable;

2. for any F ∈ F , Ps,η(F |Ft)(ζ) = Qt,ζ(F ) Ps,η a.s.

We will now show that for Ps,η almost all ζ, we have

Qt,ζ = Pt,ζ , (5.6)

so that item 2. above will imply Hypothesis 3.5. In order to show that equality,
we will show that for Ps,η almost all ζ, Qt,ζ solves the Martingale problem
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associated to χ starting in (t, ζ) and conclude (5.6) since MP t,ζ is a singleton,
taking into account the fact the corresponding martingale problem is well-posed.

For any F ∈ Fot , by item 2. above we have Qt,ζ(F ) = 1F (ζ) Ps,η a.s. Since
Πt is countable, there exists a Ps,η-null set N1 such that for all ζ ∈ N c

1 we
have Qt,ζ(F ) = 1F (ζ) for all F ∈ Πt. Then since Πt is a π-system generating
Fot and since sets verifying the previous relation define a λ-system, we have
by Dynkin’s lemma (see 4.11 in [1]) that for all ζ ∈ N c

1 , Qt,ζ(F ) = 1F (ζ) for
all F ∈ Fot . Now for every fixed ζ ∈ N c

1 , since {ω : ωt = ζt} ∈ Fot , we have
Qt,ζ(ωt = ζt) = 1{ω:ωt=ζt}(ζ) = 1, which is the first item of Definition 5.4
related to MP t,ζ(χ).

We then show that for Ps,η-almost all ζ, the elements of χ are (Qt,ζ ,Fo)-
martingales, which constitutes the second item of Definition 5.4.
For any t1 ≤ t2 in [t,+∞[, M ∈ χ and F ∈ Fot1 , we have

EQ
t,ζ

[(Mt2 −Mt1)1F ] = Es,η[(Mt2 −Mt1)1F |Ft](ζ)
= Es,η[Es,η[(Mt2 −Mt1)1F |Ft1 ]|Ft](ζ)
= Es,η[Es,η[(Mt2 −Mt1)|Ft1 ]1F |Ft](ζ)
= 0,

(5.7)

for Ps,η almost all ζ by Remark 5.5 sinceM is a (Ps,η,F)-martingale on[s,+∞[
and F ∈ Fot1 ⊂ Ft1 . Since χ and the set of rational numbers are countable and
taking into account the fact that for any r ≥ 0, For is countably generated, there
exists a Ps,η-null set N2 such that for any ζ ∈ N c

2 , we have for any t1 ≤ t2 in
[t,+∞[∩Q, M ∈ χ, F ∈ Fot1 , that E

Qt,ζ [(Mt2 −Mt1)1F ] = 0.
Let ζ ∈ N c

2 . We will now show that this still holds for any t1 ≤ t2 in [t,+∞[,
M ∈ χ, F ∈ Fot1 . We consider rational valued sequences (tn1 )n (resp. (tn2 )n)
which converge to t1 (resp. to t2) strictly from the right and such that tn1 ≤ tn2
for all n. For all n, EQ

t,ζ

[(Mtn2
−Mtn1

)1F ] = 0; since M is right-continuous
and bounded on finite intervals, by dominated convergence, we can pass to the
limit in n and we obtain EQ

t,ζ

[(Mt2 −Mt1)1F ] = 0. Therefore if ζ /∈ N1

⋃
N2

which is Ps,η-negligible, then Qt,ζ(ωt = ζt) = 1 and all the elements of χ are
(Qt,ζ ,Fo)-martingales. This means that Qt,ζ = Pt,ζ by well-posedness and
concludes the proof of Proposition 5.12.

5.2 Martingale problem associated to an operator and
weak generators

This section links the notion of martingale problem with respect to a natural
notion of (weak) generator. In this section Notation 3.1 will be again in force.
Let (Ps,η)(s,η)∈R+×Ω be a path-dependent canonical class and the corresponding
path-dependent system of projectors (Ps)s∈R+ , see Definition 3.12. Let V :
R+ 7−→ R+ be a non-decreasing cadlag function.

In the sequel of this section, we are given a couple (D(A), A) verifying the
following.

Hypothesis 5.13.
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1. D(A) is a linear subspace of the space of Fo-progressively measurable pro-
cesses;

2. A is a linear mapping from D(A) into the space of Fo-progressively mea-
surable processes;

3. for all Φ ∈ D(A), ω ∈ Ω, t ≥ 0,
∫ t

0
|AΦr(ω)|dVr < +∞;

4. for all Φ ∈ D(A), (s, η) ∈ R+×Ω and t ∈ [s,+∞[, we have Es,η
[∫ t
s
|A(Φ)r|dVr

]
<

+∞ and Es,η[|Φt|] < +∞.

Inspired from the classical literature (see 13.28 in [17]) we introduce a notion
of weak generator.

Definition 5.14. We say that (D(A), A) is a weak generator of a path-
dependent system of projectors (Ps)s∈R+

if for all Φ ∈ D(A), (s, η) ∈ R+ × Ω
and t ∈ [s,+∞[, we have

Ps[Φt](η) = Φs(η) +

∫ t

s

Ps[A(Φ)r](η)dVr. (5.8)

Definition 5.15. We will call martingale problem associated to (D(A), A)
the martingale problem (in the sense of Definition 5.4) associated to the set of
processes χ constituted by the processes Φ−

∫ ·
0
A(Φ)rdVr, Φ ∈ D(A). It will be

said to be well-posed if it is well-posed in the sense of Definition 5.7.

Proposition 5.16. (D(A), A) is a weak generator of (Ps)s∈R+
iff (Ps,η)(s,η)∈R+×Ω

solves the martingale problem associated to (D(A), A).
Moreover, if (Ps,η)(s,η)∈R+×Ω solves the well-posed martingale problem as-

sociated to (D(A), A) then (Ps)s∈R+
is the unique path-dependent system of

projectors for which (D(A), A) is a weak generator.

Proof. We start assuming that (D(A), A) is a weak generator of (Ps)s∈R+ . Let
Φ ∈ D(A), s ≤ t ≤ u. Ps,η a.s. we have

Es,η[Φu − Φt −
∫ u
t
A(Φ)rdVr|Fot ](ω)

= Et,ω[Φu − Φt −
∫ u
t
A(Φ)rdVr]

= Pt[Φu](ω)− Φt(ω)−
∫ u
t
Pt[A(Φr)](ω)dVr

= 0,

(5.9)

where the first equality holds by Remark 3.6, the second one by Fubini’s the-
orem and the third one because (D(A), A) is assumed to be a weak gener-
ator of (Ps)s∈R+ . By definition of path-dependent canonical class, we have
Ps,η(ωs = ηs) = 1. By (5.9), for all Φ ∈ D(A), Φ−

∫ ·
s
A(Φ)rdVr is a (Ps,η,Fo)-

martingale, and therefore Ps,η solves the martingale problem associated to
(D(A), A) starting in (s, η).

Conversely, let us assume that (Ps,η)(s,η)∈R+×Ω solves the martingale prob-
lem associated to (D(A), A). Let Φ ∈ D(A) and (s, η) ∈ R+ × Ω be fixed. By
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Definitions 5.15 and 5.7, M [Φ] := Φ −
∫ ·

0
A(Φ)rdVr, is a (Ps,η,Fo)-martingale

on [s,+∞[. Moreover, since Ps,η(ωs = ηs) = 1 and being Φs Fos -measurable, we
obtain Φs = Φs(η) Ps,η a.s. Therefore, for any t ≥ s, Φt−Φs(η)−

∫ t
s
A(Φ)rdVr =

M [Φ]t −M [Φ]s a.s.; so taking the Ps,η expectation, by Fubini’s Theorem and
Definition 3.12 it yields

Ps[Φt](η)− Φs(η)−
∫ t
s
Ps[A(Φ)r](η)dVr

= Es,η
[
Φt − Φs(η)−

∫ t
s
A(Φ)rdVr

]
= Es,η [M [Φ]t −M [Φ]s]
= 0,

(5.10)

hence that (D(A), A) is a weak generator of (Ps)s∈R+
.

Finally assume moreover that the martingale problem is well-posed and that
(D(A), A) is a weak generator of another path-dependent system of projec-
tors (Qs)s∈R+

with associated path-dependent canonical class (Qs,η)(s,η)∈R+×Ω.
Then by the first statement of the present proposition, (Qs,η)(s,η)∈R+×Ω solves
the martingale problem associated to (D(A), A). Since that martingale problem
is well-posed we have (Qs,η)(s,η)∈R+×Ω = (Ps,η)(s,η)∈R+×Ω and by Proposition
3.11, (Qs)s∈R+

= (Ps)s∈R+
.

Remark 5.17. When the conditions of previous proposition are verified, one
can therefore associate analytically to (D(A), A) a unique path-dependent system
of projectors (Ps)s∈R+

through Definition 5.14.

Combining Proposition 5.16 and Lemma 4.4 yields the following.

Corollary 5.18. Assume that (Ps,η)(s,η)∈R+×Ω is progressive and fulfills Hy-
pothesis 3.5. Suppose that (D(A), A) is a weak generator of (Ps)s∈R+

. Let
Φ ∈ D(A), and fix (s, η). Then Φ −

∫ ·
0
A(Φ)rdVr admits on [s,+∞[ a Ps,η

version M [Φ]s,η which is a (Ps,η,Fs,η)-cadlag martingale. In particular, the
random field defined by M [Φ]t,u(ω) := Φu(ω) − Φt(ω) −

∫ u
t
AΦr(ω)dVr defines

a MAF with cadlag version M [Φ]s,η under Ps,η.

We insist on the fact that in previous corollary, Φ is not necessarily cadlag.
That result will be crucial in the companion paper [3].

6 Weak solutions of path-dependent SDEs
We will now focus on a more specific type of martingale problem which will be
associated to a path-dependent Stochastic Differential Equation with jumps. In
this section we will refer to notions of [17] Chapters II, III, VI and [16] Chapter
XIV.5.

We fix m ∈ N∗, E = Rm, the associated canonical space, see Definition 3.1,
and a finite positive measure F on B(Rm) not charging 0.

Definition 6.1. (Ω̃, F̃ , F̃, P̃,W, p) will be called a space of driving pro-
cesses if (Ω̃, F̃ , F̃, P̃) is a stochastic basis fulfilling the usual conditions, W
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is an m-dimensional Brownian motion and p is a Poisson measure of intensity
q(dt, dx) := dt⊗ F (dx), and W,p are optional for the underlying filtration.

We now fix the following objects defined on the canonical space.

• β, an Rm-valued Fo-predictable process;

• σ, a Mm(R)-valued Fo-predictable process;

• w, an Rm-valued Preo ⊗ B(Rm)-measurable function on R+ × Ω×Rm,

where Mm(R) denotes the set of real-valued square matrices of size m.

Definition 6.2. Let (s, η) ∈ R+ × Ω. We call a weak solution of the SDE
with coefficients β, σ, w and starting in (s, η) any probability measure Ps,η
on (Ω,F) such that there exists a space of driving processes (Ω̃, F̃ , F̃, P̃,W, p),
on it an m-dimensional F̃-adapted cadlag process X̃ such that Ps,η = P̃ ◦ X̃−1

and such that the following holds.
Let β̃ := β·(X̃(·)), σ̃ := σ·(X̃(·)) and w̃ := w(·, X̃(·), ·). We have the follow-

ing.

• for all t ∈ [0, s], X̃t = η(t) P̃ a.s.;

•
∫ ·
s

(
‖β̃r‖+ ‖σ̃r‖2 +

∫
Rm

(‖w̃(r, ·, y)‖+ ‖w̃(r, ·, y)‖2)F (dy)
)
dr takes finite

values P̃ a.s.;

• X̃i
t = ηi(s) +

∫ t
s
β̃irdr+

∑
j≤m

∫ t
s
σ̃i,jr dW j

r + w̃i ? (p− q)t P̃ a.s. for all t ≥ s,

i ≤ m,

where ? is the integration against random measures, see [17] Chapter II.2.d for
instance.

Remark 6.3. Previous Definition 6.2 corresponds to Definition 14.73 in [16].
However, in the second item we have required that∫ ·

s

∫
Rm

(‖w̃(r, ·, y)‖+ ‖w̃(r, ·, y)‖2)F (dy)dr

takes finite values a.s. so that w̃ ? (p− q) is a well-defined purely discontinuous
locally square integrable martingale with angle bracket the Mm(R)-valued pro-
cess

∫ ·∨s
s

∫
Rm

w̃w̃ᵀ(r, ·, y)F (dy)dr, (see Definition 1.27, Proposition 1.28 and
Theorem 1.33 in [16] chapter II) and we will not need to use any truncation
function.

With this definition, if Ps,η is a weak solution of the SDE starting at some
(s, η), then under Ps,η, (Xt)t≥s is a special semimartingale.

Definition 6.4. Let s ∈ R+ and (Yt)t≥s be a cadlag special semimartingale de-
fined on the canonical space with (unique) decomposition Y = Ys+B+M c+Md

where B is predictable with bounded variation,M c a continuous local martingale,
Md a purely discontinuous local martingale, all three vanishing at the initial time
t = s. We will call characteristics of Y the triplet (B,C, ν) where C = 〈M c〉
and ν is the predictable compensator of the measure of the jumps of Y .
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There are several known equivalent characterizations of weak solutions of
path-dependent SDEs with jumps which we will now state in our setup.

Notation 6.5. For every f ∈ C2
b (Rm) and t ≥ 0, we denote by Atf the r.v.

βt·∇f(Xt)+
1

2
Tr(σtσ

ᵀ
t∇2f(Xt))+

∫
Rm

(f(Xt+w(t, ·, y))−f(Xt)−∇f(Xt)·w(t, ·, y))F (dy).

(6.1)

Proposition 6.6. Let (s, η) ∈ R+ × Ω be fixed and let P ∈ P(Ω). There is
equivalence between the following properties.

1. P is a weak solution of the SDE with coefficients β, σ, w;

2. P(ωs = ηs) = 1 and (Xt)t≥s is under P a special semimartingale with
characteristics

• B =
∫ ·
s
βrdr;

• C =
∫ ·
s
(σσᵀ)rdr;

• ν : (ω,G) 7→
∫ +∞
s

∫
E
1G(r, w(ω, r, y))1{w(ω,r,y) 6=0}F (dy)dr;

3. P solves MP s,η(χ) where χ is constituted of processes f(X·) −
∫ ·

0
Arfdr

for all f ∈ C2
b (Rm).

4. P solves MP s,η(χ′) where χ′ is constituted of processes f(X·)−
∫ ·

0
Arfdr

for all functions f : x 7→ cos(θ · x) and f : x 7→ sin(θ · x) with θ ∈ Qm.

Proof. Equivalence between items 1. and 2. is a consequence of Theorem 14.80
in [16]. The equivalence between items 2., 3. and 4. if θ was ranging in Rm is
shown in Theorem 2.42 of [17] chapter II. Observe that 4. is stated for θ ∈ Rm;
however the proof of the implication (4. =⇒ 2.) in Theorem 2.42 of [17] chapter
II only uses the values of θ in Qm.

Theorem 6.7. Assume that for any (s, η) ∈ R+ × Ω, the SDE with coeffi-
cients β, σ, w and starting in (s, η) admits a unique weak solution Ps,η. Then
(Ps,η)(s,η)∈R+×Ω is a path-dependent canonical class verifying Hypothesis 3.5.

Proof. By Proposition 6.6, Ps,η is for each (s, η) the unique solution ofMP s,η(χ)
where χ is constituted of the processes f(X·) −

∫ ·
s
Arfdr for all functions f :

x 7→ cos(θ · x) or f : x 7→ sin(θ · x) with θ ∈ Qm. Since χ is a countable set of
cadlag Fo-adapted processes which are bounded on bounded intervals, we can
conclude by Proposition 5.12.

We recall two classical examples of conditions on the coefficients for which
it is known that there is existence and uniqueness of a weak solution for the
path-dependent SDE, hence for which the above theorem applies, see Theorem
14.95 and Corollary 14.82 in [16].
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Example 6.8. We suppose β, σ, w to be bounded. Moreover we suppose that for
all n ∈ N∗ there exist Kn

2 ∈ L1
loc(R+) and a Borel function Kn

3 : Rm×R+ → R
such that

∫
Rm

Kn
3 (·, y)F (dy) ∈ L1

loc(R+) verifying the following.
For all x ∈ Rm, t ≥ 0 and ω, ω′ ∈ Ω such that sup

r≤t
‖ω(r)‖ ≤ n and

sup
r≤t
‖ω′(r)‖ ≤ n, we have

• ‖σt(ω)− σt(ω′)‖ ≤ Kn
2 (t)sup

r≤t
‖ω(r)− ω′(r)‖2;

• ‖w(t, ω, x)− w(t, ω′, x)‖ ≤ Kn
3 (t, x)sup

r≤t
‖ω(r)− ω′(r)‖2.

Finally we suppose that one of the two following hypotheses is fulfilled.

1. There exists Kn
1 ∈ L1

loc(R+) such that for all t ≥ 0 and ω ∈ Ω, ‖βt(ω) −
βt(ω

′)‖ ≤ Kn
1 (t)sup

r≤t
‖ω(r)− ω′(r)‖;

2. there exists c > 0 such that for all x ∈ Rm, t ≥ 0 and ω ∈ Ω, xᵀσt(ω)σt(ω)ᵀx ≥
c‖x‖2;

If the assumptions of Theorem 6.7 are fulfilled and β, σ (resp. w) are bounded
and continuous in ω for fixed t (resp. fixed t, y), then (s, η) 7−→ Ps,η is continu-
ous for the topology of weak convergence, and in particular, the path-dependent
canonical class is progressive hence all results of Section 4 can be applied with
respect to (Ps,η)(s,η)∈R+×Ω.

Proposition 6.9. Assume that that β, σ, w are bounded. Let (sn, ηn)n be a
sequence in Λ which converges to some (s, η). For every n ∈ N, let Pn be a
weak solution starting in (sn, ηn) of the SDE with coefficients β, σ, w. Then
(Pn)n≥0 is tight.

We recall some notations from [17] Chapter VI which we will use in the proof
of Proposition 6.9.

Notation 6.10. For any ω ∈ Ω and interval I of R+, we denote W (ω, I) :=
sup
s,t∈I
‖ω(t)− ω(s)‖. For any ω ∈ Ω, N ∈ N? and θ > 0, we write

WN (ω, θ) := sup
0≤t≤t+θ≤N

W (ω, [t, t+ θ]) = sup
s,t∈[0,N ]: |t−s|≤θ

‖ω(t)− ω(s)‖.

For any ω ∈ Ω, N ∈ N? and θ > 0, we denote

W ′N (ω, θ) := inf
{
max
i≤r

W (ω, [ti−1, ti[) : 0 = t0 < · · · < tr = N ; ∀1 ≤ i ≤ r : ti − ti−1 ≥ θ
}
.

We will also recall the classical general tightness criterion in P(Ω) which one
can find for example in Theorem 3.21 of [17] Chapter VI.

Theorem 6.11. Let (Pn)n≥0 be a sequence of elements of P(Ω), then it is tight
iff it verifies the two following conditions. ∀N ∈ N∗ ∀ε > 0 ∃K > 0 ∀n ∈ N : Pn

(
sup
t≤N
‖ω(t)‖ > K

)
≤ ε

∀N ∈ N∗ ∀ε > 0 ∀α > 0 ∃θ ∀n ∈ N : Pn(W ′N (ω, θ) < α) ≥ 1− ε.
(6.2)
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Finally we will also need to introduce a definition.

Definition 6.12. A sequence of probability measures on (Ω,F) is called C-tight
if it is tight and if each of its limiting points has all its support in C(R+,R

m).

Proof of Proposition 6.9.
We fix a converging sequence (sn, ηn) −→

n
(s, η) in Λ, and for every n, a weak

solution Pn of the SDE with coefficients β, σ, w starting in (sn, ηn). In order to
show that (Pn)n≥0 is tight, we will use Theorem 6.11. The main idea consists
in combining the fact that the canonical process X under Pn is deterministic
on [0, sn], where it coincides with ηn with the fact that on [sn,+∞[ it is a
semimartingale with known characteristics. So we will split the study of the
modulus of continuity of path ω on these two intervals [0, sn] and [sn,+∞[.

Since ηn tends to η, the set {ηn : n ≥ 0} is relatively compact in Ω so by
Theorem 1.14.b in [17] Chapter VI we have{

∀N ∈ N∗ ∃K1 > 0 ∀n ∈ N : sup
t∈[0,N ]

‖ηn(t)‖ ≤ K1

∀N ∈ N∗ ∀α > 0 ∃θ1 > 0 ∀n ∈ N : W ′N (ηn, θ1) < α.
(6.3)

For fixed n ∈ N, we now introduce the process
Xn : ω 7−→ ηn(sn)1[0,sn[ +ω1[sn,+∞[, we denote by Qn := Pn ◦ (Xn)−1 ∈ P(Ω)
its law under Pn and we now show that (Qn)n≥0 is tight.

By Proposition 6.6, underPn , (Xt)t∈[sn,+∞[ is a special semimartingale with
initial value ηn(sn) and characteristics (see Definition 6.4)

∫ ·
sn
βrdr,

∫ ·
sn

(σσᵀ)rdr

and (ω,A) 7→
∫ +∞
sn

∫
Rm

1A(r, w(r, ω, y))1{w(r,ω,y)6=0}F (dy)dr. Therefore, since
Xn is constant on [0, sn[ and since on [sn,+∞[ its law under Pn coincides with
the one ofX, we can say thatQn is the law of a special semi-martingale (starting
at time t = 0) with initial value ηn(sn), and characteristics

∫ ·
0
1[sn,+∞[(r)βrdr,∫ ·

0
1[sn,+∞[(r)(σσ

ᵀ)rdr and
(ω,G) 7→

∫ +∞
0

1[sn,+∞[(r)
∫
Rm

1G(r, w(r, ω, y))1{w(r,ω,y)6=0}F (dy)dr.
Theorem 4.18 in [17] chapter VI implies that (Qn)n≥0 is tight if and only if the
properties below hold true.

1. (Qn ◦X−1
0 )n≥0 is tight;

2. the following sequences are C-tight (under (Qn)n≥0):

(a) (Bn :=
∫ ·

0
1[sn,+∞[(r)βrdr)n≥0;

(b)
(
C̃n :=

∫ ·
0
1[sn,+∞[(r)

(
(σσᵀ)r +

∫
Rm

(wwᵀ)(r, ·, y)F (dy)
)
dr
)
n≥0

;

(c)
(
Gnp :=

∫ ·
0
1[sn,+∞[(r)

∫
Rm

1{w(r,ω,y)6=0}((p‖w(r, ·, y)‖ − 1)+) ∧ 1F (dy)dr
)
n≥0

for all p ∈ N;

3. for all N > 0, ε > 0,

lim
a→∞

sup
n
Qn

(∫ N

sn

∫
Rm

1{‖w(r,·,y)‖>a}F (dy)dr > ε

)
= 0. (6.4)
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Item 3. trivially holds since w is bounded. At this point ηn(sn) is a bounded
sequence according to the first line of (6.3) and the fact that the sequence
(sn)n≥0 is bounded, so (Qn ◦ X−1

0 )n≥0 = (δηn(sn))n≥0 is obviously tight. We
are left to show item 2. By Proposition 3.36 in [17] chapter VI, items 2. (a) and
2. (b) hold if (V ar(Bn))n≥0 = (

∫ ·
0
1[sn,+∞[(r)‖βr‖dr)n≥0 and

(Tr(C̃n))n≥0 =
(∫ ·

0
1[sn,+∞[(r)

(
Tr(σσᵀ

r ) +
∫
Rm

Tr(wwᵀ(r, ·, y))F (dy)
)
dr
)
n≥0

are C-tight. Finally, β, σ, w, F being bounded, there exists some strictly positive
constant K such that all the processes given below are increasing:

• t 7→ Kt− V ar(Bn)t, n ≥ 0;

• t 7→ Kt− Tr(C̃nt ), n ≥ 0;

• t 7→ Kt− (Gnp )t, n, p ≥ 0.

In the terminology of [17] chapter VI, this means that the increasing processes
V ar(Bn), n ≥ 0, Tr(C̃n), n ≥ 0, Gnp n, p ≥ 0 are strongly dominated
by the increasing function t 7→ Kt. The singleton t 7→ Kt being trivially C-
tight, Proposition 3.35 in [17] chapter VI implies that the dominated sequences
of processes (V ar(Bn))n≥0, (Tr(C̃n))n≥0 and (Gnp )n≥0 for all p are C-tight.
Finally (Qn)n≥0 is tight.

Now by Theorem 6.11 this implies that ∀N ∈ N∗ ∀ε > 0 ∃K2 > 0 ∀n ∈ N : Qn

(
sup
t≤N
‖ω(t)‖ > K2

)
≤ ε

∀N ∈ N∗ ∀ε > 0 ∀α > 0 ∃θ2 ∀n ∈ N : Qn(W ′N (ω, θ2) < α) ≥ 1− ε.
(6.5)

Combining the first line of (6.3) and the first line of (6.5) and by construction
of Qn, taking K = K1 +K2 for instance, we have

∀N ∈ N∗ ∀ε > 0 ∃K > 0 ∀n ∈ N : Pn
(
sup
t≤N
‖ω(t)‖ > K

)
≤ ε. (6.6)

Our aim is now to show that

∀N ∈ N∗ ∀ε > 0 ∀α > 0 ∃θ ∀n ∈ N : Pn(W ′N (ω, θ) < α) ≥ 1−ε; (6.7)

this combined with (6.6) will imply by Theorem 6.11 that (Pn)n≥0 is tight.
In what follows, if η, ω ∈ Ω and s ∈ R+, η ⊗s ω will denote the path

η1[0,s[ + ω1[s,+∞[, which still belongs to Ω.
By construction of Qn, for every n, Pn is the law of ηn ⊗sn ω under Qn.

Therefore, (6.7) is equivalent to

∀N ∈ N∗ ∀ε > 0 ∀α > 0 ∃θ ∀n ∈ N : Qn(W ′N (ηn⊗snω, θ) < α) ≥ 1−ε,
(6.8)

and this is what we will now show to conclude the proof of Proposition 6.9. So
we prove (6.8).
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We fix some N ∈ N∗, α > 0 and ε > 0. Combining the second lines of (6.3)
and of (6.5), there exists θ > 0 such that for all n ≥ 0,{

W ′N (ηn, θ) <
α
4

Qn(W ′N (ω, θ) < α
4 ) ≥ 1− ε. (6.9)

We show below that, for every n

{ω|W ′N (ω, θ) <
α

4
} ⊂ {ω|W ′N (ηn ⊗sn ω, θ) < α}. (6.10)

This together with (6.9) will imply that for all n,

Qn(W ′N (ηn ⊗sn ω, θ) < α) ≥ Qn(W ′N (ω, θ) <
α

4
) ≥ 1− ε,

hence that (6.8) is verified.
We fix n. To establish (6.10) let ω such thatW ′N (ω, θ) < α

4 ; we need to show
that

W ′N (ηn ⊗sn ω, θ) < α. (6.11)

By the first line of (6.9) and the definition of W ′N (see Notation 6.10), there
exist two subdivisons of [0, N ] 0 = t10 < · · · < t1r1 = N , 0 = t20 < · · · < t2r2 = N

with increments tji − t
j
i−1 ≥ θ for all 1 ≤ i ≤ rj and j = 1, 2, such that{

W (ηn, [t
1
i−1, t

1
i [) ≤ α

4 for all 1 ≤ i ≤ r1

W (ω, [t2i−1, t
2
i [) ≤ α

4 for all 1 ≤ i ≤ r2.
(6.12)

We set i∗j := max {i : tji ≤ sn} for j = 1, 2 and introduce the third subdivision

(t30, · · · , t3r3) := (t10, · · · , t1i∗1−1, t
2
i∗2+1, · · · , t2r2), (6.13)

which we represent in the following graphic.

As for the other two, the subdivision of [0, N ] above verifies t3i − t3i−1 ≥ θ for all
i. Indeed, t3i − t3i−1 is either equal to t1i − t1i−1 ≥ θ, or to t2j − t2j−1 ≥ θ for some
j, or to t2i∗2+1 − t1i∗1−1 ≥ t1i∗1 − t

1
i∗1−1 ≥ θ where the first inequality follows by the

fact that t1i∗1−1 ≤ t1i∗1 ≤ sn < t2i∗2+1.
Now by definition of W ′N (ηn ⊗sn ω, θ), in order to show (6.11) and conclude

this proof, it is enough to show that

W (ηn ⊗sn ω, [t3i−1, t
3
i [) < α, (6.14)

for all 1 ≤ i ≤ r3.
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If i ≤ i∗1−1, then [t3i−1, t
3
i [= [t1i−1, t

1
i [⊂ [0, sn[ where ηn⊗snω coincides with ηn

so W (ηn ⊗sn ω, [t3i−1, t
3
i [) = W (ηn, [t

1
i−1, t

1
i [) ≤ α

4 < α by the first line of (6.12).
Similarly, if i ≥ i∗1 + 1, then [t3i−1, t

3
i [= [t2i−i∗1+i∗2

, t2i−i∗1+i∗2+1[⊂ [sn,+∞[ where
ηn⊗snω coincides with ω soW (ηn⊗snω, [t3i−1, t

3
i [) = W (ω, [t2i−i∗1+i∗2

, t2i−i∗1+i∗2+1[) ≤
α
4 < α by the second line of (6.12). Finally, we consider the specific case i = i∗1
meaning that [t3i−1, t

3
i [= [t1i∗1−1, t

2
i∗2+1[ contains sn. We have

W (ηn ⊗sn ω, [t1i∗1−1, t
2
i∗2+1[) ≤ W (ηn ⊗sn ω, [t1i∗1−1, t

1
i∗1

[)

+ W (ηn ⊗sn ω, [t1i∗1 , sn[) +W (ηn ⊗sn ω, [sn, t2i∗2+1[)

≤ W (ηn, [t
1
i∗1−1, t

1
i∗1

[) +W (ηn, [t
1
i∗1
, sn[) +W (ω, [sn, t

2
i∗2+1[)

≤ W (ηn, [t
1
i∗1−1, t

1
i∗1

[) +W (ηn, [t
1
i∗1
, t1i∗1+1[)

+ W (ω, [t2i∗2 , t
2
i∗2+1[)

≤ α
4 + α

4 + α
4

< α,
(6.15)

by (6.12). So (6.14) is verified for all i and the proof is complete.

Proposition 6.13. Assume that β, σ (resp. w) are bounded and that for
Lebesgue almost all t (resp. dt ⊗ dF almost all (t, y)), β(t, ·), σ(t, ·) (resp.
w(t, ·, y)) are continuous. Assume that for any (s, η) ∈ R+ × Ω there exists
a unique weak solution Ps,η of the SDE of coefficients β, σ, w starting in (s, η).

Then (s, η) 7−→ Ps,η

Λ −→ P(Ω)
is continuous. Moreover the path-dependent canon-

ical class (Ps,η)(s,η)∈R+×Ω is progressive.

Remark 6.14. Taking Theorem 6.7 into account, the family of probabilities
(Ps,η)(s,η)∈R+×Ω of Proposition 6.13 constitutes a progressive path-dependent
canonical class verifying Hypothesis 3.5. It therefore verifies Hypothesis 4.1 and
all results of Section 4 apply.

Proof. of Proposition 6.13.
We consider a convergent sequence (sn, ηn) −→

n
(s, η) in Λ. Since β, σ are

bounded, by Proposition 6.9 (Psn,ηn)n∈N is tight, hence relatively compact by
Prokhorov’s theorem. We consider a subsequence Psnk ,ηnk −→

k
Q and we show

below that Q is a weak solution of the SDE with coefficients β, σ, w, starting at
(s, η). Since that problem has a unique solution, we will have Q = Ps,η. This
will imply that Psn,ηn −→

n
Ps,η, hence the announced continuity.

We will indeed verify item 3. of Proposition 6.6. For the convenience of the
reader, we will omit the extraction of the subsequence in the notations.

We start by showing
Q(ωs = ηs) = 1. (6.16)

The set

D := {t ∈ R+ : Q(Xt 6= Xt−) > 0} ∪
{
t ∈ [0, s] : η(t) 6= η(t−)

}
, (6.17)
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is countable because first η is a cadlag function and second because of Propo-
sition 3.12 in [17] Chapter VI which states that, for every probability Q on
(Ω,F), the set D0 := {t ∈ R+ : Q(Xt 6= Xt−) > 0} is countable. If t /∈ D0 then

Psn,ηn ◦X−1
t =⇒

n
Q ◦X−1

t , (6.18)

by Proposition 3.14 ibidem. Since ηn converges to η in the Skorohod topology,
if t /∈ D (t is a continuity point of η), then it follows that ηn(t) −→

n
η(t), see

Proposition 2.3 of [17] Chapter VI.

Let ε > 0, t ∈ [0, s − ε] ∩Dc be fixed. Since sn tends to s, we can suppose
without loss of generality that sn ≥ s−ε for all n, so that Psn,ηn ◦X−1

t = δηn(t).
By (6.18) this sequence converges to Q ◦ X−1

t which is therefore necessarily
equal to δη(t) since ηn(t) tends to η(t) being t /∈ D. This means that

Q(ω(t) = η(t)) = 1, (6.19)

for all t ∈ [0, s−ε]∩Dc. Since ε > 0 is arbitrary, (6.19) holds for all t ∈ [0, s[∩Dc;
and since ω is right-continuous and D is countable, (6.19) holds for all t ∈ [0, s[.
We will now show that (6.19) also holds for t = s. We first note that

ηn(sn) −→
n

η(s). (6.20)

Indeed, without restriction of generality we can consider that sn ≤ s+1, so since
(sn, ηn(sn)) ∈ Λ, ηn is constantly equal to ηn(sn) on [sn,+∞[ which contains
[s+ 1,+∞[. On the other hand η is constantly equal to η(s) on [s,+∞[ which
also contains [s+ 1,+∞[, and ηn tends to η almost everywhere on that interval,
because it converges in the Skorokhod sense. So necessarily (6.20) holds.
We fix now some f ∈ C∞c (Rm). For all n, since Psn,ηn is a weak solution of
the SDE starting at (sn, ηn) and by Proposition 6.6, it follows that f(ω(·)) −
f(ηn(sn))−

∫ ·
sn
Arf(ω)dr (see Notation 6.5) is a martingale on [sn,+∞[ under

Psn,ηn vanishing in sn. We consider a sequence (tp)p∈N in Dc converging to t
strictly from the right. For all n, p we have

Esn,ηn [f(ω(tp))] = f(ηn(sn)) +Esn,ηn
[∫ tp
sn
Arf(ω)dr

]
= f(ηn(sn)) +Esn,ηn

[∫ tp
s
Arf(ω)dr

]
+
∫ s
sn
Esn,ηn [Arf(ω)]dr,

(6.21)
where the second equality holds by Fubini’s theorem since Arf(ω) is uniformly
bounded for r varying on bounded intervals. We now pass to the limit in n.
Since tp /∈ D, taking into account (6.18), we have Psn,ηn ◦X−1

tp =⇒
n
Q ◦X−1

tp ;
moreover f is bounded and continuous, so

Esn,ηn [f(ω(tp))] −→
n
EQ[f(ω(tp))]. (6.22)

Since β, σ, w are bounded and β(r, ·), σ(r, ·) (resp. w(r, ·, y)) are continuous for
Lebesgue almost all r (resp. dt ⊗ dF almost all (r, y)) and since f ∈ C∞c , then
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Φ : ω 7−→
∫ tp
s
Arf(ω)dr is a bounded continuous functional for the Skorokhod

topology, so

Esn,ηn
[∫ tp

s

Arf(ω)dr

]
−→
n
EQ

[∫ tp

s

Arf(ω)dr

]
. (6.23)

Finally since sn tends to s and Arf is uniformly bounded for r varying on
bounded intervals, we have∫ s

sn

Esn,ηn [Arf(ω)]dr −→
n

0. (6.24)

Combining relations (6.21), (6.20), (6.22), (6.23), (6.24), for all p, we get

EQ[f(ω(tp))] = f(η(s)) +EQ
[∫ tp

s

Arf(ω)dr

]
. (6.25)

We now pass to the limit in p. Since tp tends to s from the right and ω is right-
continuous, the left-hand side of (6.25) tends to EQ[f(ω(s))]. By dominated
convergence, the second term in the right-hand side of (6.25) tends to 0. This
yields EQ[f(ω(s))] = f(η(s)) and this holds for all f ∈ C∞c (Rm), which implies
that Q ◦X−1

s = δη(s). So we have shown that (6.19) for t = s and finally (6.16)
since ω and η are cadlag.

We will proceed showing that Q solves weakly the SDE with respect to
β, σ, w starting in (s, η). By Proposition 6.6 this holds iff for any f ∈ C2

b (Rm),
f(X·)−

∫ ·
s
Arfdr is a (Q, (Ft)t∈[s,+∞[)-martingale. We fix such an f , some t ≤ u

in ]s,+∞[∩Dc, N ∈ N∗, t1 ≤ · · · ≤ tN ∈ [s, t]∩Dc and φ1, · · · , φN ∈ Cb(Rm,R).
Taking into account Proposition 6.6, since s < t, for n large enough, we can
suppose that f(X·)−

∫ ·
t
Arfdr is under every Psn,ηn a martingale on the interval

[t,+∞[. Therefore, for all n, we have

Esn,ηn
[(
f(ω(u))− f(ω(t))−

∫ u

t

Arf(ω)dr

)
Π

1≤i≤N
φi(ω(ti))

]
= 0. (6.26)

We wish to pass to the limit in n. By Theorem 12.5 in [6], for any r ∈ R+,
the mapping Xr is continuous on the set Cr := {ω ∈ Ω : ω(r) = ω(r−)}. By
construction of D and since t, u, t1, · · · , tN /∈ D, then Ct, Cu, Ct1 , · · · , CtN are
of full Q-measure hence that Φ := (X,Xu, Xt, Xt1 , · · · , XtN ) is continuous on a
set of full Q-measure. By the mapping theorem (see Theorem 2.7 in [6] for in-
stance), since Psn,ηn =⇒

n
Q and Φ is continuous on a set of fullQ-measure, then

Psn,ηn ◦ Φ−1 =⇒
n
Q ◦ Φ−1, meaning Psn,ηn ◦ (X,Xu, Xt, Xt1 , · · · , XtN )−1 =⇒

n

Q ◦ (X,Xu, Xt, Xt1 , · · · , XtN )−1. Since ω 7→
∫ u
t
Arf(ω)dr, f, φ1, · · · , φN are

bounded continuous functions, the previous convergence in law allows to pass
to the limit in n in (6.26) so that for any t ≤ u ∈]s,+∞[∩Dc and t1, · · · , tN ∈
[s, t] ∩Dc

EQ
[(
f(ω(u))− f(ω(t))−

∫ u

t

Arf(ω)dr

)
Π

1≤i≤N
φi(ω(ti))

]
= 0. (6.27)
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Equality (6.27) still holds if t = s and if some of the values t, u, t1, · · · , tN belong
to D. Indeed to show this statement we approximate from the right such values
by sequences of times not belonging to D and strictly greater than s and we
then use the right-continuity of ω and the dominated convergence theorem.

By use of the functional monotone class theorem (see Theorem 21 in [10]
Chapter I), we have

EQ
[(
f(ω(u))− f(ω(t))−

∫ u

t

Arf(ω)dr

)
1G

]
= 0, (6.28)

for any s ≤ t ≤ u and G ∈ σ(Xr|r ∈ [s, t]). Since Q(ωs = ηs) = 1 then Fos
is Q-trivial, so equality (6.28) holds for all G = Gs ∩ Gst where Gs ∈ Fos and
Gst ∈ σ(Xr|r ∈ [s, t]). Events of such type form a π-system generating Fot so by
Dynkin’s Lemma, (6.28) holds for all G ∈ Fot . For all s ≤ t ≤ u, then we have

EQ
[(
f(ω(u))− f(ω(t))−

∫ u

t

Arf(ω)rdr

)∣∣∣∣Fot ] = 0. (6.29)

So f(X)−
∫ ·
s
Arfrdr is a (Q, (Fot )t∈[s,+∞[)-martingale hence a (Q, (Ft)t∈[s,+∞[)-

martingale by Theorem 3 in [11] Chapter VI, that process being right-continuous.
This implies that Q is a weak solution of the SDE with coefficients β, σ, w start-
ing in (s, η). As anticipated, since the SDE is well-posed for every (s, η), we
have Q = Ps,η and the proof of the first statement is complete.
The second statement follows from the fact that a continuous function is Borel
and that B(Λ) = Λ ∩ Proo, see Proposition 5.3.

Appendices
A Proofs of Section 4
Proof of Proposition 4.6.
In the whole proof t < u will be fixed. We consider a sequence of subdivisions
of [t, u]: t = tk1 < tk2 < · · · < tkk = u such that min

i<k
(tki+1 − tki ) −→

k→∞
0. Let

(s, η) ∈ [0, t] × Ω with corresponding probability Ps,η. For any k, we have∑
i<k

(
Mtki ,t

k
i+1

)2

=
∑
i<k

(Ms,η

tki+1

−Ms,η

tki
)2 Ps,η a.s., so by definition of quadratic

variation we know that
∑
i<k

(
Mtki ,t

k
i+1

)2
Ps,η−→
k→∞

[Ms,η]u − [Ms,η]t. In the sequel

we will construct an Fou-measurable random variable [M ]t,u such that for any

(s, η) ∈ [0, t] × Ω,
∑
i<k

(
Mtki ,t

k
i+1

)2
Ps,η−→
k→∞

[M ]t,u. In that case [M ]t,u will then

be Ps,η a.s. equal to [Ms,η]u − [Ms,η]t.
Let η ∈ Ω. [M t,η] is Ft,η-adapted, so [M t,η]u−[M t,η]t is F t,ηu -measurable and

by Corollary 3.21, there is an Fou-measurable variable which depends on (t, u, η),
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that we denote ω 7→ at,u(η, ω) such that at,u(η, ω) = [M t,η]u − [M t,η]t,Pt,η a.s.
We will show below that there is a jointly Fot ⊗ Fou -measurable version of
(η, ω) 7→ at,u(η, ω).

For every integer n ≥ 0, we set ant,u(η, ω) := n ∧ at,u(η, ω) which is in

particular limit in probability of n∧
∑
i≤k

(
Mtki ,t

k
i+1

)2

under Pt,η. For any integers

k, n and any η ∈ Ω, we define the finite positive measures Qk,n,η, Qn,η and Qη

on (Ω,Fou) by

1. Qk,n,η(F ) := Et,η
[
1F

(
n ∧

∑
i<k

(
Mtki ,t

k
i+1

)2
)]

;

2. Qn,η(F ) := Et,η[1F
(
ant,u(η, ω)

)
];

3. Qη(F ) := Et,η[1F (at,u(η, ω))].

When k and n are fixed integers and F is a fixed event, by Remark 3.6,

η 7−→ Et,η
[
F

(
n ∧

∑
i<k

(
Mtki ,t

k
i+1

)2
)]

, is Fot -measurable.

Then n ∧
∑
i<k

(
Mtki ,t

k
i+1

)2
Pt,η−→
k→∞

ant,u(η, ω), and this sequence is uniformly

bounded by the constant n, so the convergence takes place in L1, therefore
η 7−→ Qn,η(F ) is also Fot -measurable as the pointwise limit in k of the functions

η 7−→ Qk,n,η(F ). Similarly, ant,u(η, ω)
Pt,η−a.s.−→
n→∞

at(η, ω) and is non-decreasing, so
by monotone convergence theorem, the function η 7−→ Qη(F ) is Fot -measurable
being a pointwise limit in n of the functions η 7−→ Qn,η(F ).

We make then use of Theorem 58 Chapter V in [11]: the property above, the
separability of F and the fact that for any η, Qη � Pt,η by item 3. above, imply
the existence of a jointly measurable (for Fot ⊗Fou) version of (η, ω) 7→ at,u(η, ω).
That version will still be denoted by the same symbol. We recall that for any
η, at,u(η, ·) is the Radon-Nykodim density of Qη with respect to Pt,η.

We can now set [M ]t,u(ω) := at,u(ω, ω), which is a well-defined Fou-measurable
random variable. Since at,u is Fot -measurable in the first variable and for any η
Pt,η(ωt = ηt) = 1 we have the equalities

[M ]t,u(ω) = at,u(ω, ω) = at,u(η, ω) = [M t,η]u(ω)− [M t,η]t(ω) Pt,ηa.s. (A.1)

We can then show that

[M ]t,u = [Ms,η]u − [Ms,η]t P
s,η a.s., (A.2)

holds for every (s, η) ∈ [0, t]×Ω, and not just in the case s = t that we have just
established in (A.1). This can be done reasoning as in the proof of Proposition
4.4 in [5], replacing the use of the Markov property with item 3. of Definition
3.4.

So we have built an Fou-measurable variable [M ]t,u such that under any Ps,η
with s ≤ t, [Ms,η]u − [Ms,η]t = [M ]t,u a.s. and this concludes the proof.
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Proof of Proposition 4.7.
We start defining At,t = 0 for every t ≥ 0. We then recall a property of the
predictable dual projection which we will have to extend slightly. Let us fix (s, η)
and the corresponding stochastic basis (Ω,Fs,η,Fs,η,Ps,η). For any F ∈ Fs,η,
let Ns,η,F be the cadlag version of the martingale r 7−→ Es,η[1F |Fr]. Then
for any 0 ≤ t ≤ u, the predictable projection of the process r 7→ 1F1[t,u[(r) is
r 7→ Ns,η,F

r− 1[t,u[(r), see the proof of Theorem 43 Chapter VI in [11]. Therefore
by definition of the dual predictable projection (see Definition 73 Chapter VI
in [11]), for any 0 ≤ t ≤ u and F ∈ Fs,η we have Es,η

[
1F (As,ηu− −A

s,η
t )
]

=

Es,η
[∫ u−
t

Ns,η,F
r− dBs,ηr

]
. Then, at fixed t, u, F , since for every ε > 0 we have

Es,η
[
1F (As,η(u+ε)− −A

s,η
t )
]

= Es,η
[∫ (u+ε)−

t
Ns,η,F
r− dBs,ηr

]
, letting ε tend to zero

we obtain by dominated convergence theorem that

Es,η [1F (As,ηu −A
s,η
t )] = Es,η

[∫ u

t

Ns,η,F
r− dBs,ηr

]
, (A.3)

taking into account the right-continuity of As,η, Bs,η and the fact that they are
both non-decreasing processes with L1 -terminal value.

For any F ∈ F , we introduce the process NF : (t, ω) 7−→ Pt,ω(F ). NF takes
values in [0, 1] for every (t, ω), and by Definition 3.4, it is an Fo-progressively
measurable process such that for any (s, η) ∈ R+ × Ω, Ns,η,F is a Ps,η cadlag
version of NF on [s,+∞[.

For the rest of the proof, 0 ≤ t < u are fixed. Following the same proof
than that of Lemma 4.9 in [5] but with parameter (s, x) replaced with (s, η), we
obtain the following.

Lemma A.1. Let F ∈ F . There exists an Fu-measurable random variable
which we will call

∫ u
t
NF
r−dBr such that for any (s, η) ∈ [0, t]× Ω,∫ u

t
NF
r−dBr =

∫ u
t
Ns,η,F
r− dBs,ηr Ps,η a.s.

Remark A.2. By definition, the r.v.
∫ u
t
NF
r−dBr will not depend on (s, η).

We continue now the proof of Proposition 4.7 by showing that for given 0 ≤
t < u there is an Fou-measurable r.v. At,u such that for every (s, η) ∈ [0, t]×Ω,
(As,ηu −A

s,η
t ) = At,u Ps,η a.s.

Similarly to what we did with the quadratic variation in Proposition 4.6, we
start noticing that for any η ∈ Ω, being (At,ηu − A

t,η
t ) F t,ηu -measurable, there

exists by Corollary 3.21 an Fou-measurable r.v. ω 7→ at,u(η, ω) such that

at,u(η, ω) = At,ηu (ω)−At,ηt (ω) Pt,η a.s. (A.4)

As in the proof of Proposition 4.6, we show below the existence of a jointly-
measurable version of (η, ω) 7→ at,u(η, ω).

For every η ∈ Ω we define on Fou the positive measure

Qη : F 7−→ Et,η [1Fat,u(η, ω)] = Et,η
[
1F (At,ηu −A

t,η
t )
]
. (A.5)
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By Lemma A.1 and (A.3), for every F ∈ Fou we have

Qη(F ) = Et,η
[∫ u

t

NF
r−dBr

]
, (A.6)

where we recall that
∫ u
t
NF
r−dBr does not depend on η. So by Remark 3.6, η 7−→

Qη(F ) is Fot -measurable for any F . Moreover, by (A.5) for any η, Qη � Pt,η.
Again by Theorem 58 Chapter V in [11], there exists a version (η, ω) 7→ at,u(η, ω)
-measurable for Fot ⊗Fou of the related Radon-Nikodym densities.

We can now set At,u(ω) := at,u(ω, ω) which is then an Fou-measurable r.v.
It yields for any η ∈ Ω

At,u(ω) = at,u(ω, ω) = at,u(η, ω) = At,ηu (ω)−At,ηt (ω) Pt,η a.s. (A.7)

Indeed the second equality holds given that at,u is Fot -measurable with respect
to the first variable, taking into account that Pt,η(ωt = ηt) = 1; the third
equality follows by (A.4).

We now set s < t and η ∈ Ω. We want to show that we still have
At,u = As,ηu −A

s,η
t Ps,η a.s. So we consider F ∈ Fou; we compute

Es,η [1F (As,ηu −A
s,η
t )] = Es,η

[∫ u
t
NF
r−dBr

]
= Es,η

[
Es,η

[∫ u
t
NF
r−dBr|Ft

]]
= Es,η

[
Et,ω

[∫ u
t
NF
r−dBr

]]
= Es,η [Et,ω [1FAt,u]] = Es,η [Es,η [1FAt,u|Ft]]
= Es,η [1FAt,u] .

(A.8)

Indeed, the first equality comes from (A.3) and Lemma A.1; concerning the
fourth equality we recall that, by (A.5), (A.6) and (A.7), we haveEt,ω

[∫ u
t
NF
r−dBr

]
=

Et,ω [1FAt,u] for all ω. The third and fifth equalities come from Remark 3.6.
Since adding Ps,η-null sets does not change the validity of (A.8), by Propo-

sition 3.20 for any F ∈ Fs,ηu we have Es,η [1F (As,ηu −A
s,η
t )] = Es,η [1FAt,u].

Finally, since both As,ηu −A
s,η
t and At,u are Fs,ηu -measurable, we can conclude

that As,ηu −A
s,η
t = At,u P

s,η a.s.
We emphasize that this holds for any t ≤ u and (s, η) ∈ [0, t]× Ω, (At,u)(t,u)∈∆

is the desired path-dependent AF, which ends the proof of Proposition 4.7.

Proof of Proposition 4.10.
We set

Ct,u = At,u + (Vu − Vt) + (u− t), (A.9)

which is a path-dependent AF with cadlag versions Cs,ηt = As,ηt +Vt + t and we
start by showing the statement for A and C instead of A and V .
The reason of the introduction of the intermediary function C is that for any
u > t we have As,ηu −A

s,η
t

Cs,ηu −Cs,ηt
∈ [0, 1]; that property will be used extensively in

connections with the application of dominated convergence theorem.
Since As,η is non-decreasing for any (s, η) ∈ R+ × Ω, A can be taken positive
(in the sense that At,u(ω) ≥ 0 for any (t, u) ∈ ∆ and ω ∈ Ω) by considering A+
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(defined by (A+)t,u(ω) := At,u(ω)+) instead of A. On R+ we set

Kt = liminf
n→∞

At,t+ 1
n

At,t+ 1
n

+ 1
n + (Vt+ 1

n
− Vt)

(A.10)

= lim
n→∞

lim
m→∞

min
n≤p≤m

At,t+ 1
p

At,t+ 1
p

+ 1
p + (Vt+ 1

p
− Vt)

.

This liminf always exists and belongs to [0, 1] since the sequence belongs to [0, 1].
For any (s, η) ∈ R+ × Ω, since for all t ≥ s and n ≥ 0,

At,t+ 1
n

= As,η
t+ 1

n

−As,ηt Ps,η a.s., then Ks,η defined by Ks,η
t := liminf

n→∞

As,η
t+ 1
n

−As,ηt
Cs,η
t+ 1
n

−Cs,ηt

is a Ps,η-version of K, for t ∈ [s,+∞[.
By Lebesgue Differentiation theorem (see Theorem 12 Chapter XV in [12] for a
version of the theorem with a general atomless measure), for any (s, η), for Ps,η-
almost all ω, since dCs,η(ω) is absolutely continuous with respect to dAs,η(ω),
Ks,η(ω) is a density of dAs,η(ω) with respect to dCs,η(ω).
For any t ≥ 0, Kt is measurable with respect to

⋂
n≥0

Fo
t+ 1

n

= Ft, by definition of

the canonical filtration. For any (t, ω) ∈ R+ × Ω, we now set

kt(ω) := Et,ω[Kt]. (A.11)

Remark 3.6 implies that k is an Fo-adapted process. The path-dependent
canonical class verifies Hypothesis 3.5, and Kt is Ft-measurable then for any
(s, η) ∈ [t,+∞[×Ω, Kt(ω) = Es,η[Kt|Ft](ω) = Et,ω[Kt] = kt(ω) Ps,η-a.s.:
hence k is on [s,+∞[ a Ps,η-version of K, and therefore of Ks,η.

The next main object of this proof is to show that k is an Fo-progressively
measurable process. For any integers (n,m), we define

kn,m : (t, η) 7→ Et,η
[

min
n≤p≤m

At,t+ 1
p

At,t+ 1
p

+ 1
p + (Vt+ 1

p
− Vt)

]
,

and for all n,

kn : (t, η) 7→ Et,η
[
inf
p≥n

At,t+ 1
p

At,t+ 1
p

+ 1
p + (Vt+ 1

p
− Vt)

]
. (A.12)

We start showing that

k̃n,m :
((s, η), t) 7−→ Es,η

[
min
n≤p≤m

A
t,t+ 1

p

A
t,t+ 1

p
+ 1
p+(V

t+ 1
p
−Vt)

]
1s≤t,

(R+ × Ω)×R+ −→ [0, 1],
(A.13)

is measurable with respect to Proo⊗B(R+). In order to do so, we will show that
it is measurable in the first variable (s, η), and right-continuous in the second

34



variable t, and conclude with Lemma 4.12 in [5].
We fix t ∈ R+. Since the path-dependent canonical class is progressive, by
Remark 3.6, the map

(s, η) 7−→ Es,η

[
min
n≤p≤m

At,t+ 1
p

At,t+ 1
p

+ 1
p + (Vt+ 1

p
− Vt)

]
(A.14)

R+ × Ω −→ [0, 1],

is measurable with respect to Proo. The map (s, η) 7−→ 1[t,+∞[(s) is also
trivially measurable with respect to Proo; therefore the product of the latter
map and (A.14), that we denote by k̃(·, ·, t) is also measurable with respect to
Proo. Moreover, if we fix (s, η) ∈ R+ × Ω, reasoning exactly as in the proof of
Proposition 4.13 in [5] we see that t 7→ k̃n,m(s, η, t) is right-continuous, which
by Lemma 4.12 in [5] implies the joint measurability of k̃n,m.

Since kn,m(t, η) = k̃n,m(t, t, η), and since (t, η) 7→ (t, η, t) is obviously
(Proo,Proo⊗B(R+))-measurable, then by composition we can deduce that for
any n,m, kn,m is an Fo-progressively measurable process. By the dominated
convergence theorem, kn,m tends pointwise to kn when m goes to infinity, so
kn also is an Fo-progressively measurable process for every n. Finally, since

Kt = lim
n→∞

inf
p≥n

A
t,t+ 1

p

A
t,t+ 1

p
+ 1
p+(V

t+ 1
p
−Vt)

, taking the expectation and again by the

dominated convergence theorem, kn (defined in (A.12)) tends pointwise to k
(defined in (A.11)), when n goes to infinity, so k is an Fo-progressively mea-
surable process. Considering that (t, u, ω) 7→ Vu − Vt also trivially defines a
non-negative non-decreasing path-dependent AF absolutely continuous with re-
spect to C, defined in (A.9), we proceed similarly as at the beginning of the
proof, replacing the path-dependent AF A with V .

Let the process K ′ be defined by K ′t = liminf
n→∞

V
t+ 1
n
−Vt

A
t,t+ 1

n
+ 1
n+(V

t+ 1
n
−Vt)

, and for

any (s, η), letK ′s,η be defined on [s,+∞[ byK ′s,ηt = liminf
n→∞

V
t+ 1
n
−Vt

As,η
t+ 1
n

−As,ηt + 1
n+(V

t+ 1
n
−Vt)

.

Then, for any (s, η), K ′s,η on [s,+∞[ is a Ps,η-version of K ′, and it constitutes
a density of dV with respect to dCs,η(ω) on [s,+∞[, for almost all ω. One
shows then the existence of an Fo-progressively measurable process k′ such that
for any (s, η), k′ is a Ps,η-version of K ′ and of K ′s,η on [s,+∞[.

By the considerations after (A.10), for any (s, η), under Ps,η, we can write{
As,η =

∫ ·∨s
s

Ks,η
r dCs,ηr

V·∨s − Vs =
∫ ·∨s
s

K ′s,ηr dCs,ηr .
Now since dAs,η � dV , we have for Ps,η

almost all ω that the set {r ∈ [s,+∞[: |K ′s,ηr (ω) = 0} is negligible with respect
to dV so also for dAs,η(ω) and therefore we can write

As,η =
∫ ·∨s
s

Ks,η
r dCs,ηr

=
∫ ·∨s
s

Ks,η
r

K′s,ηr
1{K′s,ηr 6=0}K

′s,η
r dCs,ηr +

∫ ·∨s
s

1{K′s,ηr =0}dA
s,η
r

=
∫ ·∨s
s

Ks,η
r

K′s,ηr
1{K′s,ηr 6=0}dVr,
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where we use the convention that for any two functions φ, ψ then φ
ψ1ψ 6=0 is

defined by φ
ψ1{ψ 6=0}(x) =

{
φ(x)
ψ(x) if ψ(x) 6= 0

0 if ψ(x) = 0.

We now set h := k
k′1{k′r 6=0} which is an Fo-progressively measurable process,

and clearly for any (s, η), h is a Ps,η-version of Hs,η := Ks,η

K′s,η 1{K′s,η 6=0} on
[s,+∞[. So by Lemma 5.12 in [2], Hs,η = h dV ⊗ dPs,η a.e. on [s,+∞[ and
finally we have shown that under any Ps,η, As,η =

∫ ·∨s
s

hrdVr.
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