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Path-dependent Martingale Problems and
Additive Functionals

Adrien BARRASSO * Francesco RUSSOf

April 19th 2018

Abstract. The paper introduces and investigates the natural extension
to the path-dependent setup of the usual concept of canonical Markov class
introduced by Dynkin and which is at the basis of the theory of Markov pro-
cesses. That extension, indexed by starting paths rather than starting points
will be called path-dependent canonical class. Associated with this is the gen-
eralization of the notions of semi-group and of additive functionals to the path-
dependent framework. A typical example of such family is constituted by the
laws (P*7) s ner, xq, Where for fixed time s and fixed path 7 defined on [0, 5],
P*" being the (unique) solution of a path-dependent martingale problem or
more specifically a weak solution of a path-dependent SDE with jumps, with
initial path n. In a companion paper we apply those results to study path-
dependent analysis problems associated with BSDEs.

MSC 2010 Classification. 60H30; 60H10; 35S05; 60J35; 60J75.

KEY WORDS AND PHRASES. Path-dependent martingale problems;
path-dependent additive functionals.

1 Introduction

In this paper we extend some aspects of the theory of Markov processes to the
(non-Markovian) path-dependent case. The crucial object of Markov canonical
class introduced by Dynkin is replaced with the one of path-dependent canonical
class. The associated notion of Markov semigroup is extended to the notion of
path-dependent system of projectors. The classical Markovian concept of (Mar-
tingale) Additive Functional is generalized to the one of path-dependent (Mar-
tingale) Additive Functional. We then study some general path-dependent mar-
tingale problems with applications to weak solutions of path-dependent SDEs
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(possibly) with jumps and show that, under well-posedness, the solution of the
martingale problem provides a path-dependent canonical class. The compan-
ion paper [3] will exploit these results to extend the links between BSDEs and
(possibly Integro) PDEs obtained in [4], to a path-dependent framework.

The theory of Additive Functionals associated to a Markov process was ini-
tiated during the early ’60s, see the historical papers [14], [18], [8] and see [12]
for a complete theory in the homogeneous setup. The strong links between
martingale problems and Markov processes were first observed for the study of
weak solutions of SDEs in [20], and more generally in [15] or [16] for example.
Weak solutions of path-dependent SDEs possibly with jumps were studied in
[16], where the author shows their equivalence to some path-dependent martin-
gale problems and proves existence and uniqueness of a solution under Lipschitz
conditions. More recent results concerning path-dependent martingale problems
may be found in [7]. However, at our knowledge, the structure of the set of so-
lutions for different starting paths was not yet studied.

The setup of this paper is the canonical space (2, F) where Q := D(R4, E)
is the Skorokhod space of cadlag functions from R into a Polish space E and
F is its Borel o-field. X = (X;);er, denotes the canonical process and the
initial filtration F° is defined by F¢ := o(X,|r € [0,¢]) for all ¢t > 0.

A path-dependent canonical class will be a set of probability measures
(P*")(s,mer,. xn defined on the canonical space and such that, for some fixed
(s,n), P*" models a forward (path-dependent) dynamics in law, with imposed
initial path 1 on the time interval [0, s]. As already mentioned, it constitutes
the natural adaptation to the path-dependent world of the notion of canoni-
cal Markov class (IP**) (s 2)er, x5, Where in general, P** models the law of
some Markov stochastic process, with imposed value x at time s. IF*7 is the
augmented initial filtration fulfilling the usual conditions.

In substitution of a Markov semigroup associated with a Markov canonical
class, we introduce a path-dependent system of projectors denoted (Ps)scr, and
a one-to-one connection between them and path-dependent canonical classes.
Each projector P acts on the space of bounded random variables. This brings
us to introduce the notion of weak generator (D(A), A) of (Ps)ser, which
will permit us in the companion paper [3] to define mild type solutions of path-
dependent PDEs of the form

DO + 1Tr(00™V2®) + BV + f(-,-,®,00TV®) = 0 on [0,T] x @)
&pr =€ on (), .

where D is the horizontal derivative and V the vertical gradient in the sense of
[13, 9] and S, o are progressively measurable path-dependent coefficients.

As mentioned earlier, given a path-dependent canonical class we also intro-
duce the notion of path-dependent Additive Functional (resp. path-dependent
square integrable Martingale Additive Functional), which is a real-valued random-
field M = (M} )o<t<u<+oo such that for any (s,7) € Ry X €, there exists a
real cadlag F*"-adapted process (resp. F*"-square integrable martingale) M "
called the cadlag version of M under P*", and verifying for all s < ¢ < w that



My, = M3" — M;"" P*" a.s. Under some reasonable measurability assump-
tions on the path-dependent canonical class, we extend to our path-dependent
setup some classical results of Markov processes theory concerning the quadratic
covariation and the angular bracket of square integrable MAFs. As in the Marko-
vian set-up, examples of path-dependent canonical classes arise from solutions
of a (this time path-dependent) martingale problem as we explain below. Let x
be a set of cadlag processes adapted to the initial filtration IF°. For some given
(s,m) € Ry x Q, we say that a probability measure P*" on (2, F) solves the
martingale problem with respect to x starting in (s,7n) if

o P =) = 1
e all elements of x are on [s, +oo[ (IP*", F°)-martingales.

We show that merely under some well-posedness assumptions, the set of so-
lutions for varying starting times and paths (P*") ,)er, xo defines a path-
dependent canonical class. This in particularly holds for weak solutions of
path-dependent SDEs possibly with jumps.

The paper is organized as follows. In Section 3, we introduce the notion of
path-dependent canonical class in Definition 3.4 and of path-dependent system
of projectors in Definition 3.8 and prove a one-to-one correspondence between
those two concepts in Corollary 3.11. In Section 4, we introduce the notion of
path-dependent Additive Functional, in short AF (resp. Martingale Additive
Functional, in short MAF). We state in Proposition 4.6 and Corollary 4.9 that
for a given square integrable path-dependent MAF (M ) (t,u)en, We can ex-
hibit two non-decreasing path-dependent AFs with £!'-terminal value, denoted
respectively by ([M].),uyea and ((M)¢w)t,u)ea, which will play respectively
the role of a quadratic variation and an angular bracket of it. Then in Corollary
4.12, we state that the Radon-Nikodym derivative of the mentioned angular
bracket of a square integrable path-dependent MAF with respect to a reference
function V, is a progressively measurable process which does not depend on
the probability. In Section 5, we introduce what we mean by path-dependent
martingale problem with respect to a set of processes y, to a time s and a
starting path 7, see Definition 5.4. Suppose that y is a countable set of cadlag
Fe-adapted processes which are uniformly bounded on each interval [0,77]; in
Proposition 5.12, we state that, whenever the martingale problem with respect
to x is well-posed, then the solution (P*"), ,er, xo defines a path-dependent
canonical class. In Subsection 5.2, Definition 5.14 introduces the notion of weak
generator of a path-dependent system of projectors, and Definition 5.15 that of
martingale problem associated to a path-dependent operator (D(A), A). Sup-
pose now that for any (s,7) the martingale problem associated with (D(A), A)
is well-posed, and let (Ps)ser, be the system of projectors associated to the
canonical class constituted by the solutions (IP*")(, ;)er, xq- Then (D(A), A)
is a weak generator of (Ps)scr. , and (Ps)ser, is the unique system of projectors
such that this holds. In other words, (Ps)scr, can be analytically associated to
(D(A), A) without ambiguity. Finally, in Section 6, we consider path-dependent
SDEs with jumps, whose coefficients are denoted by (3,0, w. If for any couple



(s,7n), the SDE has a unique weak solution, then Theorem 6.7 ensures that the
set of solutions (P*7)(, »er, xo defines a path-dependent canonical class. Un-
der the additional assumptions that 3,0, w are bounded and continuous in w
for fixed other variables, then Proposition 6.13 states that (s,n) — P*7 is
continuous for the topology of weak convergence.

2 Preliminaries

In the whole paper we will use the following notions, notations and vocabulary.

A topological space E will always be considered as a measurable space with
its Borel o-field which shall be denoted B(E) and if S is another topological space
equipped with its Borel o-field, B(E,S) will denote the set of Borel functions
from E to S. For some fixed d € N*, C>*(RR%) will denote the set of smooth
functions with compact support. For fixed d,k € N*, C*(R?), (resp. CF(R?))
will denote the set of functions k times differentiable with continuous (resp.
bounded continuous) derivatives.

Let (22, F), (E,€) be two measurable spaces. A measurable mapping from
(Q,F) to (E,&) shall often be called a random variable (with values in
E), or in short r.v. If T is indices set, a family (X;)teT of r.v. with val-
ues in E, will be called a random field (indexed by T with values in F).
In the particular case when T is a subinterval of Ry, (X¢)ieT will be called
a stochastic process (indexed by T with values in F). If the mapping

(t,w) — Xi(w)
(Tx,BMT)eF) — (E,E)
field) (Xi)te will be said to be measurable (indexed by T with values in E).

On a fixed probability space (2, F,IP), for any p > 1, LP will denote the
set of real-valued random variables with finite p-th moment. Two random fields
(or stochastic processes) (Xi)ieT, (Yi)ter indexed by the same set and with
values in the same space will be said to be modifications (or versions) of
each other if for every t € T, P(X; = Y;) = 1. A filtered probability space
(Q,}',]F = (]-'t)te]RJr,]P) will be called called stochastic basis and will be
said to fulfill the usual conditions if the filtration is right-continuous, if the
probability space is complete and if Fj contains all the IP-negligible sets. Let us
fix a stochastic basis (2, F,F,IP). If Y = (Y})ecr, is a stochastic process and 7
is a stopping time, we denote Y the process ¢ — Y;a, which we call stopped
process (by 7). If C is a set of processes, we will say that Y is locally in C
(resp. locally verifies some property) if there exist an a.s. increasing sequence
of stopping times (7,,)n>0 tending a.s. to infinity such that for every n, the
stopped process Y™ belongs to C (resp. verifies this property).

Given two martingales M, N, we denote by [M] (resp. [M, N]) the quadratic
variation of M (resp. covariation of M,N). If M, N are locally square
integrable martingales, (M, N) (or simply (M) if M = N) will denote their
(predictable) angular bracket. Two locally square integrable martingales van-
ishing at zero M, N will be said to be strongly orthogonal if (M, N) = 0.

If A is an adapted process with bounded variation then Var(A) (resp. Pos(4),

is measurable, then the process (or random



Neg(A)) will denote its total variation (resp. positive variation, negative vari-
ation), see Proposition 3.1, chap. 1 in [17]. In particular for almost all w € ,
t — Vary(A(w)) is the total variation function of the function ¢ — A;(w).

3 Path-dependent canonical classes

We will introduce here an abstract context which is relevant for the study of
path-dependent stochastic equations. The definitions and results which will be
presented here are inspired from the theory of Markov processes and of additive
functionals which one can find for example in [12].

The first definition refers to the canonical space that one can find in [16],
see paragraph 12.63.

Notation 3.1. In the whole section E will be a fized Polish space, i.e. a sepa-
rable complete metrizable topological space, that we call the state space.

Q will denote D(R4, E) the space of functions from Ry to E being right-
continuous with left limits (e.g. cadlag). For every t € Ry we denote the
coordinate mapping X : w — w(t) and we define on Q the o-field F := o(X,|r €
R.). On the measurable space (Q, F), we introduce initial filtration F° :=
(F?)ter, , where FY := o(X,|r € [0,t]), and the (right-continuous) canonical
filtration T := (F;)ier,, where Fy = (Fg. (Q,F,F) will be called the

s>t
canonical space (associated to E). On R4 x §, we will denote by Pro° (resp.

Pre°) the F°-progressive (resp. F°-predictable) o-field. Q will be equipped with
the Skorokhod topology which is Polish since E is Polish (see Theorem 5.6 in
chapter 8 of [15]), and for which the Borel o-field is F, see Proposition 7.1 in
chapter 8 of [15]. This in particular implies that F is separable, being the Borel
o-field of a separable metric space.

P(Q) will denote the set of probability measures on 2 and will be equipped
with the topology of weak convergence of measures which also makes it a Polish
space since Q is Polish (see Theorems 1.7 and 3.1 in [15] chapter 3). It will
also be equipped with the associated Borel o-field.

Notation 3.2. For any w € Q and t € Ry, the path w stopped at time t
r— w(r At) will be denoted w'.

Remark 3.3. In Sections 3,4 and Subsections 5.1, 5.2, all notions and results
can easily be adapted to different canonical spaces Q: for instance, C(Ry, E), the
space of continuous functions from Ry to E; C([0,T], E) (resp. D([0,T1], E)) the
space of continuous (resp. cadlag) functions from [0,T) to E, for some T > 0;
fizing x € E, C,(Ry, E) (resp. C4([0,T], E)) the space of continuous functions
from Ry (resp. [0,T]) to E starting at x .

Definition 3.4. A path-dependent canonical class will be a family (P*") s yer, x0
of probability measures defined on the canonical space (Q, F), which verifies the
three following items.

1. For every (s,n) € Ry x , P*"(w® =n®) =1;



2. for every s € Ry and F € F, the mapping
n — PI(F)

Q — [0,1] s F2-measurable;

3. for every (s,m) e Ry xQ, t > s and F € F,
P5"(F|F)(w) = P (F) for P*" almost all w. (3.1)

This implies in particular that for every (s,n) € Ry X Q and t > s, then
(P*)yeq is a reqular conditional expectation of P5" by F?, see the Definition
above Theorem 1.1.6 in [20] for instance.

A path-dependent canonical class (P*") (s n)er, xo will be said to be progres-
sive if for every F' € F, the mapping (t,w) — PH“(F) is F°-progressively
measurable.

In concrete examples, path-dependent canonical classes will always verify
the following important hypothesis which is a reinforcement of (3.1).

Hypothesis 3.5. For cvery (s,n) € Ry xQ, t > s and F € F,
P*"(F|F;)(w) = PY(F) for P*" almost all w. (3.2)

Remark 3.6. By approzimation through simple functions, one can easily show
the following. Let Z be a random variable.

o Let s > 0. The functional n — ES"[Z] is F2-measurable and for every
(s,m) € Ry x Q, t > s, E$"Z|F](w) = E[Z] for P*" almost all w,
provided previous expectations are finite;

e if the path-dependent canonical class is progressive, (t,w) — EH“[Z] is
F°-progressively measurable, provided previous expectations are finite.

Notation 3.7.

o By(Q) (resp. By (Q)) will denote the space of measurable (resp. mnon-
negative measurable) bounded r.v.

o Let s > 0. Bi(Q) will denote the space of F2-measurable bounded r.v.

Definition 3.8.

1. A linear map Q : By(Q) — By (Q) is said positivity preserving mono-
tonic if for every ¢ € By (Q) then Q[¢] € B, (Q) and for every increas-
ing converging (in the pointwise sense) sequence fp, — [ we have that

n

Qlfx] — Qlf] in the pointwise sense.

2. A family (Ps)ser, of positivity preserving monotonic linear operators on
By,(2) will be called o path-dependent system of projectors if it verifies
the three following properties.



e For all s € Ry, the restriction of Py to By (Q) coincides with the
identity;

o for all s € Ry, Ps maps By(Q2) into Bi(Q);
o for all s,t € Ry witht > s, Pso P, = P.

Proposition 3.9. Let (]]?5777)(5777)6R+X52 be a path-dependent canonical class.
For every s € Ry, we define Py : ¢ — (n +— E>"[¢]). Then (Ps)ser, defines
a path-dependent system of projectors.

Proof. For every s > 0 each map P; is linear, positivity preserving and mono-
tonic using the usual properties of the expectation under a given probability.
The rest follows taking into account Definitions 3.4, 3.8 and Remark 3.6.

O

Proposition 3.10. Let (Ps)scr, be a path-dependent system of projectors. For
any (s,m) € Ry x Q, we set

Then for all (s,n), P>" defines a probability measure and (P*") (s n)er, xq 18
a path-dependent canonical class.

Proof. We fix s and 7. Since 0, € F?, then by the first item of Definition 3.8,
P,[1y] = 1g and P,[lg] = 1, so P57() = 0 and P*"(Q) = 1. For any F € F,
since Py is positivity preserving and 1g < 1p < 1 then 1y < P[1r] < 1g so,
P#" takes values in [0,1]. If (F},), is a sequence of pairwise disjoint elements of
F then the increasing sequence ZkN:O]l F, converges pointwise to 1 p, . Since the
P; are linear and monotonic then ) P[] = Ps[1p,], hence ) P*"(F,) =

n
P <UFn> So for every (s,n), P®", is o-additive, positive, vanishing in ()
n

and takes value 1 in  hence is a probability measure.
Then, for any (s,7n) we have P*"(w® = n°) = Py[L{,s—p}](n) = Ljpemps1(n) =1
since {w® = n*} € F2, so item 1. of Definition 3.4 is satisfied. Concerning item
2., at fixed s € Ry and F € F, we have (n — P®"(F)) = P,[1p] which is
F2-measurable since P, has its range in B;(€2), see Definition 3.8.

It remains to show item 3. We now fix (s,7) € Ry x Q, ¢t > s and F € F
and show that (3.1) holds. Let G € F?. We need to show that E®"[1glp] =
E*"[1g(¢)E ¢ [15]]. We have

E*[lglp] = E*[E"[Lo(w)lrW)]
= ESE“[1g(C)1r(w)]

E*"[1e(Q)E"[Lr(w)]],

where the first equality comes from the fact that P; = Ps; o P, and the second
from the fact that G € F¢ and P*¢(w! = () =150 1g = 1(¢) P*¢ as. O



Corollary 3.11. The mapping
P (P (sperysxn = (Z+— (n = E*[Z])) g, » (34)

s a bijection between the set of path-dependent canonical classes and the set of
path-dependent system of projectors, whose reciprocal map is given by

71 (Py)semy — (F 0> Pi[Lp](m) (3.5)

s,m)ER4L XQ

Proof. ® is by Proposition 3.9 well-defined. Moreover it is injective since if
P! and P? are two probabilities such that respective expectations of all the
bounded r.v. are the same then P! = P2, Then given a path-dependent system
of projectors (Fs)ser,, by Proposition 3.10 (P*": F' = Py[1r](n)) (5 per, x0
is a path-dependent canonical class. It is then enough to show that the im-
age through @ of that path-dependent canonical class is indeed (P)scr, . Let
(Qs)ser, denote its image by ®, in order to conclude we are left to show that
Qs = P for all s.

We fix s. For every F' € F,n € Q we have Q4[1r](n) = P*"(F) = Ps[1r](n)
so Qs and Py coincide on the indicator functions, hence on the simple functions
by linearity, and everywhere by monotonicity and the fact that every bounded
Borel function is the limit of an increasing sequence of simple functions. O

Definition 3.12. From now on, two elements mapped by the previous bijection
will be said to be associated.

Remark 3.13. Path-dependent canonical classes naturally extend canonical
Markov classes (see Definition C.5 in [4] for instance) as follows.

Let (P*%)(s,z)er, xE be a canonical Markov class with state space E and let
(Ps,t)o<s<t denote its transition kernel, see Definition C.8 in [4].

For all (s,n) € Ry x Q, let P*7" be the unique probability measure on (2, F)
such that P5"(w® = 1°) and P> coincides on o(X,|r > s) with P*1). Then
(P*") (s,meRr . x0 5 a path-dependent canonical class. Let (Ps)scr, denote the
associated path-dependent system of projectors. Then for all bounded Borel
¢p:E—R,neQand 0 < s <t we have

Py[p o Xi] () = B*"[o(Xp)] = E¥"[6(X0)] = Peelgl(n(s).  (3.6)

Notation 3.14. For the rest of this section, we are given a path-dependent
canonical class (P*7) s nyer, xo and (Ps)ser, denotes the associated path-dependent
system of projectors.

Definition 3.15. Let P be a probability on (0, F). If G be a sub-o-field of F,
we call P-closure of G the o-field generated by G and the set of P-negligible
sets. We denote it G¥. In the particular case G = F, we call F¥ P-completion

of F.

Remark 3.16. Thanks to Remark 32.b) in Chapter II of [10], we have an
equivalent definition of the IP-closure of some sub-o-field G of F which can be



characterized by the following property: B € GT if and only if there exist F € G
such that 1g =1 IP a.s.

Moreover, P can be extended to a probability on G¥ by setting P(B) := P(F)
for such events.

Notation 3.17. For any (s,n) € R4 x Q we will consider the stochastic basis
(Q,}'S’”,]FS’” = (ff’n)t€R+,1PS’") where F* is the PS"-completion of F, P57
is extended to F*" and F;"" is the P*"-closure of F; for everyt € R.

We remark that, for any (s,n) € R4 x 2, (2, F*1, Fs" P57) is a stochastic
basis fulfilling the usual conditions, see 1.4 in [17] Chapter I.

A direct consequence of Remark 32.b) in Chapter II of [10] is the following.

Proposition 3.18. Let G be a sub-o-field of F, P a probability on (2, F) and
GT the P-closure of G. Let ZF be a real GF -measurable random variable. There
exists a G-measurable random variable Z such that Z = Z¥ P-a.s.

Proposition 3.18 yields the following.

Proposition 3.19. Let P be a probability measure on (2, F), let G := (G¢)ter.,
be a filtration and G¥ denote (Gf )iem, . Let Z be a positive or L'-random
variable and t € Ry. Then B[Z|Gi] = E[Z|GE] P a.s. In particular, (P, G)-
martingales are also (P, GF)-martingales.

According to Proposition 3.19 for IP = IP®" the related conditional expec-
tations with respect to F;"7 coincide with conditional expectations with respect
to F;. For that reason we will only use the notation IE®"[-|F;] omitting the
(s,m)-superscript over F;.

In the next proposition, F;*" will denote for any (s,n7) € Ry x Q and t > s
the IP*"-closure of F7.

Proposition 3.20. Assume that Hypothesis 3.5 holds. For any (s,n) € R4 x
and t > s, F,5" = F.

Proof. We fix s,n,t. Since inclusion F;"*" C F;”" is obvious, we show the con-
verse inclusion.

Let F*" € F;>7. By Remark 3.16, there exists F' € F;, such that Tpsn = 1p
P57 a.s. It is therefore sufficient to prove the existence of some F° € F? such
that 1po = 1 P*7 a.s. (and therefore 1po = 1 ps.n P57 a.s.) to conclude that
Fon ¢ Fpo.

t,w
We set 7 : g ': E 1}(F) . By (3.2) and the fact that F' € F;, we have
Z(w) =P"(F) = E*"lp|F](w) = 1p(w) P>"as. (3.7)

By Definition 3.4, Z is Ff-measurable, so F° := Z~1({1}) belongs to F¢, and
we will proceed showing that 1po = 1p P*" a.s.



By construction, 1po(w) = 1 iff P4 (F) = 1 and 1p.(w) = 0 iff P (F) € [0, 1].
So

[ Lpe() £ (@)}

= {w:lpo(w)=1and 1p(w) =0} J{w : 1po(w) =0 and 1p(w) =1}

= {w:P(F)=1and 1p(w) =0} J{w: P"(F) € [0,1] and 1p(w) =1}

C {wiP(F) £ Tr(w)), .
3.8

where the latter set is IP*"-negligible by (3.7). O
Combining Propositions 3.18 and 3.20, we have the following.

Corollary 3.21. Assume that Hypothesis 3.5 holds and let us fix (s,m) € R1xQ
and t > s. Given an F;'"-measurable r.v. Z%", there erists an F{-measurable
r.v. Z° such that Z°" = Z° P*" a.s.

Definition 3.22. If (Q, F,P) is a probability space and G is a sub-o-field of F,
we say that G is P-trivial if for any element G of G, then IP(G) € {0, 1}.

Corollary 3.23. Assume that Hypothesis 8.5 holds. For every (s,n) € R4 x €,
F¢ and Fy are IP%"-trivial.

S

Proof. We fix (s,1) € R4 x Q. We start by showing that F2 is P*7-trivial. For
every B € F? and w we have 1g(w) = 1p(w®), and since P*"(w® = n®) = 1, we
have 15(w®) = 15(n°) P*" a.s. So P*"(B) = E>"[1g(w)] = 15(n°) € {0,1}.
Then, it is clear that adding IP*-"-negligible sets does not change the fact of being
P#n-trivial, so F2*" (which by Proposition 3.20 is equal to F2'7) is P*"-trivial
and therefore so is F; C F3".

O

4 Path-dependent Additive Functionals

In this section, we introduce the notion of Path-dependent Additive Functionals
that we use in the paper. As already anticipated, this can be interpreted as a
path-dependent extension of the notion of non-homogeneous Additive Function-
als of a canonical Markov class developed in [5]. For that reason, several proofs
of this section are very similar to those of [5] and are inspired from [12] Chapter
XV, which treats the time-homogeneous case.

We keep on using Notation 3.1 and we fix a path-dependent canonical class

(IPS’W)(S,U)GR+XQ and assume the following for the whole section.

Hypothesis 4.1. (IPS777)(S,77)€R+X52 is progressive and verifies Hypothesis 3.5.
We will use the notation A := {(t,u) € R |t < u}.

Definition 4.2. On (2, F), a path-dependent Additive Functional (in
short path-dependent AF) will be a random-field A := (A¢u)tuyea with val-
ues in R verifying the two following conditions.
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1. For any (t,u) € A, Ay, is FQ-measurable;

2. for any (s,m) € Ry x Q, there exists a real cadlag F*"-adapted process
A®N (taken equal to zero on [0, s] by convention) such that for any n € Q
and s <t <wu,

Apy = AT — AP P57 as.

We denote by A the (F°-adapted) process u — Ay, indezed by [t,+oo[. For
any (s,n) € [0,t] x Q, A>T — A7" is a P5"-version of At on [t,+oo[. A% will
be called the cadlag version of A under P57,

A path-dependent Additive Functional will be called a path-dependent Mar-
tingale Additive Functional (in short path-dependent MAF) if under any
P57 4ts cadlag version is a martingale.

More generally, a path-dependent AF will be said to verify a certain prop-
erty (being non-decreasing, of bounded variation, square integrable, having L*-
terminal value) if under any P57 its cadlag version verifies it.

Finally, given two increasing path-dependent AFs A and B, A will be said
to be absolutely continuous with respect to B if for any (s,n) € Ry x Q,
dA®" <« dB*" in the sense of stochastic measures. This means that dA*"(w)
is absolutely continuous with respect to dB*"(w) for P*" almost all w.

Remark 4.3. The set of path-dependent AFs (resp. path-dependent AFs with
bounded variation, path-dependent AFs with L'-terminal value, path-dependent
MAFs, square integrable path-dependent MAFs) is a linear space.

Lemma 4.4. Let M be an F°-adapted process such that for all (s,n), on
[s, 400, M is a (P*", F°)-martingale.

Then, for all (s,n), M.ys— M admits a P*"-version which is a (P> ") cad-
lag martingale M*" vanishing in [0, s]. In particular My ,(w) == M, (w)—M(w)
defines a path-dependent MAF with cadlag version M*" under P,

Proof. By Propositions 3.19 and 3.20, M is also on [s,+oo[ a (P*7,F*7)-
martingale hence M.ys — My is on Ry a (P*7, F%")-martingale and vanishes
on [0,s]. Since F*7" satisfies the usual conditions, then M. s — M admits a
cadlag P*"-modification M*" which also is a (IP*", F*")-martingale vanishing
in [0, s]. It clearly verifies that M; ,, = M, — My = M2 — M;>" P"-a.s. for all
s<t<u. O

Example 4.5. Let Z be an F-measurable bounded r.v. A typical ezample of pro-
cess verifying the conditions of previous Lemma 4.4 is given by MZ : (t,w) —>
Eb“[Z], see Remark 3.6.

The following results state that, for a given square integrable path-dependent
MAF (My,y)t,uyea We can exhibit two non-decreasing path-dependent AFs with
L'-terminal value, denoted respectively by ([M]t,u) t,wyen and ((M)su)(tu)jens
which will play respectively the role of a quadratic variation and an angular
bracket of it. Moreover we will show that the Radon-Nikodym derivative of the
mentioned angular bracket of a square integrable path-dependent MAF with
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respect to a reference function V is a progressively measurable process which
does not depend on the probability.
The proof of the proposition below is postponed to the appendix.

Proposition 4.6. Let (M) tuyea be a square integrable path-dependent MAF,
and for any (s,m) € Ry x Q, [M*"] denote the quadratic variation of its cadlag
version M*" under P*". Then there exists a non-decreasing path-dependent
AF with L -terminal value which we will call ([M1t.w)(tuyen and which, for any
(s,m) € Ry x Q, has [M?®"] as cadlag version under P71,

The next result can be seen as an extension of Theorem 15 Chapter XV in
[12] to a path-dependent context and will be needed to show that the result
above also holds for the angular bracket. Its proof is also postponed to the
appendix.

Proposition 4.7. Let (Btﬂ.a)(t,u)eA be a non-decreasing path-dependent AF
with L~ terminal value. For any (s,n) € Ry x Q, let B*" be its cadlag
version under 5" and let A®" be the predictable dual projection of B*" in
(Q, F&n Fsn PM). Then there exists a non-decreasing path-dependent AF with
L -terminal value (At w)tuyea such that under any IP*", the cadlag version of
A is A%,

Remark 4.8.

1. About the notion of dual predictable projection (also called compensator)
related to some stochastic basis we refer to Theorem 8.17 in Chapter I of

[17].

2. We recall that, whenever M, N are two local martingales, the angle bracket
(M, N) is the dual predictable projection of [M, N], see Proposition 4.50
b) in Chapter I of [17].

Corollary 4.9. Let (M) @,uyen, (Niw)tuyea be two square integrable path-
dependent MAFs, let M*" (respectively N*") be the cadlag version of M (re-
spectively N ) under P*". Then there exists a bounded variation path-dependent
AF with L'-terminal value, denoted ({M, N)tw)tuyen, such that under any
P the cadlag version of (M,N) is (M*", N*"). If M = N the path-
dependent AF (M, N) will be denoted (M) and is non-decreasing.

Proof. This can be proved as for Corollary 4.11 in [5], replacing parameter (s, x)
with (s,7). O

The result below concerns the Radon-Nikodym derivative of a non-decreasing
continuous path-dependent AF with respect to some reference measure dV. Its
proof is postponed to the Appendix.

Proposition 4.10. Let V : Ry — R be a non-decreasing continuous function.
Let A be a non-negative, non-decreasing path-dependent AF absolutely continu-
ous with respect to V', and for any (s,n) € Ry xQ let A5 be the cadlag version
of A under P*. There exists an IF°-progressively measurable process h such that
for any (s,n) € Ry x Q, A5 = f;vs h,dV,., in the sense of indistinguishability.
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Proposition 4.11. Let (A¢w)(t,u)en be a path-dependent AF with bounded vari-
ation, taking L' -terminal value. Then there exists an increasing path-dependent
AF that we denote (Pos(A)tu)t,uea (resp. (Neg(A)iw)tuyea), which, for
any (s,m) € Ry x Q, has Pos(A®") (resp. Neg(A®"))) as cadlag version under
Psn,

Proof. This can be proved similarly as forProposition 4.14 in [5], replacing pa-
rameter (s,z) with (s,7). O

Corollary 4.12. Let V be a continuous non-decreasing function. Let M and N
be two square integrable path-dependent MAF's and let M*" (respectively N*")
be the cadlag version of M (respectively N ) under a fized P*". Assume that
(N) is absolutely continuous with respect to dV. There exists an IF°-progressively
measurable process k such that for any (s,n) € Ry xQ, (M1 Ny = fs'vs k.dV,.

Proof. The proof follows the same lines as the one of Proposition 4.17 in [5]
replacing parameter (s,z) by (s,n) and Borel functions of (¢, X;) with F°-
progressively measurable processes. We make use of Corollary 4.9, Propositions
4.11 and 4.10, respectively in substitution of Corollary 4.11 an Propositions 4.14
and 4.13. 0

Corollary 4.13. Let V be a continuous non-decreasing function. Let M (resp.
N ) be an F°-adapted process such that for all (s,n), M (resp. N ) is on [s, +o0[
a (P*7 %) square integrable martingale. For any (s,n), let M*" (resp. N*")
denote its P*"-cadlag version. Assume that for all (s,n), d(N*") < dV.

Then there exists an IF°-progressively measurable process k such that for any
(s,m) € Ry x Q, (M*" N7y = [* |V,

Proof. The mentioned cadlag versions exist because of Lemma 4.4. The state-
ment follows by the same Lemma 4.4 and Corollary 4.12.
O

5 Path-dependent Martingale problems

5.1 Abstract Martingale Problems

In this section we show that, whenever a (path-dependent) martingale problem
is well-posed, then its solution is a path-dependent canonical class verifying
Hypothesis 3.5. This relies on the same mathematical tools than those used by
D.S Stroock and S.R.S Varadhan in the context of Markovian diffusions in [20].
Indeed it was already known that the ideas of [20] could be used in any type of
Markovian setup and not just for martingale problems associated to diffusions,
see [15] for example. One of the interests of the following lines is to show that
their scope goes beyond the Markovian framework. First we prove that n +— IP*"
is measurable, using well-posedness arguments and the celebrated Kuratowsky
Theorem. Then we show in Proposition 5.12 that the solution of the martingale
problem verifies (3.2), which is the analogous formulation of Markov property,
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through the theory of regular conditional expectations and again the fact that
the martingale problem is well-posed.

Notation 5.1. For every t € Ry, Q' := {w € Q : w = w'} will denote the set
of constant paths after time t. We also denote A :={(s,n) € Ry xQ:n e Q°}.

Proposition 5.2.

1. A is a closed subspace of Ry x ), hence a Polish space when equipped with
the induced topology.

2. For anyt € Ry, Q is also a closed subspace of 2.

Proof. We will only show the first statement since the proof of the second one
is similar but simpler. Let (s,,n,), be a sequence in A. Let (s,n) € Ry x Q
and assume that s, — s and that 7, tends to n for the Skorokhod topology.
Then 7, tends to n Lebesgue a.e. Let € > 0. There is a subsequence (s, ) such
that |s,, — s| < e, implying that for all k, n,, is constantly equal to 7y, (Sn,)
on [s + €,+oo[. Since 7, tends to n Lebesgue a.e., then necessarily, 7y, (sn,)
tends to some ¢ € E and 7 takes value ¢ a.e. on [s + ¢,+oo[. This holds for
every €, and 7 is cadlag, so 7 is constantly equal to ¢ on [s, +00[, implying that
(s,m) € A. O

From now on, A, introduced in Notation 5.1, is equipped with the trace
topology.

Proposition 5.3. The Borel o-field B(A) is equal to the trace o-field ANPro°.
For any t € Ry, the Borel o-field B(Q!) is equal to the trace o-field Qf N F.

Proof. Again we only show the first statement since the proof of the second
one is similar. By definition of the topology on A, it is clear that B(A) =
ANBR: x Q) =AN(B(Ry) ® F) contains A N Pro°. We show the converse
inclusion. The sets A N ([s,u] x {w(r) € A}) for s,u,r € Ry with s < w,
A € B(E) generate AN (B(R4) ® F) so it is enough to show that these sets
belong to A N Pro°.

We fix s <wand 7 in R4, and A € B(E). We have

tes,ul
AN (s, u] x {w(r) € A}) = (tw): ¢ w=uw

w(r)e A
t € [s,ul

= < (tw) w=w (5-1)
w(rnt) e A
L tels,

- Aﬂ{(t,w) ' { w(rAt) € A. }

We are left to show that {(t,w) . { i(er[/s\’zg]e N

that

} € Pro°, or equivalently
t = 154 ()1 a(Xpa¢) is [ — progressively measurable. (5.2)
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Now t — X, ¢ is right-continuous and [F?-adapted so it is an E-valued IF°-
progressively measurable process, see Theorem 15 in [10] Chapter IV. By com-
position with a Borel function, t — 14(X, ;) is a real-valued F°-progressively
measurable process; (5.2) follows since ¢+ 1[4 (%) is F?-progressively measur-
able and the product of the two F°-progressively measurable processes remains
F°-progressively measurable. O

Definition 5.4. Let (s,n) € A and x be a set of F°-adapted processes. We say
that a probability measure P on (Q, F) solves the martingale problem with
respect to x starting in (s,n) if

e P(w®=1n%) =1,
e all elements of x are on [s,+oo[ (P,F°)-martingales.

Remark 5.5. We insist on the following important fact. If M € x is cadlag
and P solves the martingale problem associated to x, then by Theorem 3 in [11]
Chapter VI, M is also on [s,+00[ a (P, F)-martingale.

Notation 5.6. For fized (s,n) € A and x, the set of probability measures solv-
ing the martingale problem with respect to x starting in (s,n) will be denoted
MP=1(x).

Definition 5.7. Let us consider a set x of processes. If for every (s,m) € A,
MP*"(x) is reduced to a single element P*", we will say that the martingale
problem associated to x is well-posed. In this case we will always extend the
mapping

(s;m) —> =7

A PQ) (5:3)

to Ry x Q by setting for all (s,n) € Ry x Q, P71 := P,

Notation 5.8. We fix a dense sequence (xy,)n>0 of elements of E.

For any s € Ry, we will denote by I the set of elements of FC of type {w(t1) €
B(ziy,r1), - ,w(tn) € B(ziy,rn)} where N € N, t1,---,txy € [0,8] N Q,
i1, ,in €N, r,--- ,ry € Q+ and where B(x,r) denotes the open ball cen-
tered in x and of radius r.

It is easy to show that for any s € R, II; is a countable m-system generating
F?, see [1] Definition 4.9 for the notions of m-system and A-system.

Below we consider the set A; of probability measures IP on (9, F) for which
there exists n € £ such that P solves the martingale problem with respect to x
starting at (s, n).

Proposition 5.9. We fiz a countable set x of cadlag F°-adapted processes which
are uniformly bounded on each interval [0,T), and some s € Ry. Let Ag :=

U MP>7"(x). Then A is a Borel set of P(S).
neqQ

For the proof of this proposition we need a technical lemma.

15



Lemma 5.10. We fix s € Ry. An element P of P(Q) belongs to As if and
only if it verifies the following conditions:

1. P(F) € {0,1} for all F € Il;

2. E¥ (M, — M)1g] = 0 for all M € x, t,u € [s,+00[NQ such that t < u,
Fell,.

Proof. By definition of A, an element IP of P(2) belongs to A, iff
a) there exists n € Q such that P(w® =n°) = 1;
b) for all M € x, (M¢)ie[s 400 is @ (IP,F°)-martingale.

Item a) above is equivalent to saying that F? is IP-trivial which is equivalent
to item 1. of the Lemma’s statement by Dynkin’s Lemma (see 4.11 in [1]),
since Il is a m-system generating F¢ and since the sets F' € F?2 such that
P(F) € {0,1} form a A-system.
On the other hand, it is clear that item b) above implies item 2. in the statement
of the Lemma. Conversely, assume that M € y satisfies item 2. of the statement.
We fix s <t <wu. Let (tn)n, (un)n be two sequences of rational numbers which
converge to respectively to ¢, u strictly from the right and such that ¢,, < u,, for
all n. For every fixed n, we have EF[(M,, — M, )1g] =0 for all G € II,. We
then pass to the limit in n using the fact that M is right-continuous at fixed
w, and the dominated convergence theorem and taking into account the fact
that M is bounded on compact intervals; this yields EY [(M, — M;)1¢] = 0 for
all G € II,. Since sets G € F} verifying this property form a A-system and
since II; is a w-system generating F¢, then by Dynkin’s lemma (see 4.11 in [1]),
EP[(M, — My)1g] = 0 for all G € F7. This implies that (M;)se[s, oof i a
(P, F°)-martingale which concludes the proof of Lemma 5.10. O

Proof of Proposition 5.9.

We fix s € R,. We recall that for any bounded random variable ¢, P — EF[¢]
is Borel. In particular for all F' € II;, P — P(F) and for all M € x, t,u €
[s, +oo[NQ, F € TI;, P s EF[(M, — M;)1F] are Borel maps. The result
follows by Lemma 5.10, taking into account the fact II; is countable for any ¢,
and y and the rational number set Q are also countable. Indeed since {0} and
{0, 1} are Borel sets, Ay is Borel being a countable intersection of preimages of
Borel sets by Borel functions. O

Proposition 5.11. Let x be a countable set of cadlag IF°-adapted processes
which are uniformly bounded on each interval [0,T]. We assume that the martin-
gale problem associated to x is well-posed, see Definition 5.7. Let s € Ry. Then

) n — P . (s,m) +— DPsn .
o, - o — PO ) is Borel. Moreover, ( R, xQ — P(Q) 18
F°-adapted.

Proof. We fix s € R4 and set

n +— P71

s Q5 — A,
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where Aj; is defined as in Proposition 5.9. ®; is surjective by construction. It is
also injective. Indeed, if 71,72 € Q° are different, there exists t € [0, s] such that
71 (t) # n2(t) and we have P*™ (w(t) = n1(t)) = 1 and P2 (w(t) = na(t)) = 1
so clearly P £ Ps:m2,

We can therefore introduce the reciprocal mapping

-1 . P — n
ot s T T e (5.5)
which is a bijection. We wish to show that it is Borel. Since the Borel o-algebra
of Q* is generated by the sets of type {w(rAs) € A} wherer € Ry and A € B(E),
it is enough to show that ®,({w(r A's) € A}) is for any r, A a Borel subset of
P(£2). We then have ®;({w(rAs) € A}) = A;N{P : P(w(rAs) € A) = 1} which
is Borel being the intersection of A; which is Borel by Lemma 5.10, and of the
preimage of {1} by the Borel function IP — P(F) with F = {w(r A s) € A}. So
@1 is a Borel bijection which maps the Borel set A, of the Polish space P(Q)
into the Polish space 2°. By Kuratowsky theorem (see Corollary 3.3 in [19]),
.. N o Ppen

fTQF — P

Let us justify the second part of the statement. Since by Proposition 5.3,
B(2%) = QN F? for all s, it is clear that ( g ': ?25 ) is (F2,B(02%))-
n +— P71
Q — PEY)

is Borel.

measurable and therefore that ( ) is F¢-measurable.

O

Proposition 5.12. Let x be a countable set of cadlag IF°-adapted processes
which are uniformly bounded on each interval [0, T], and assume that the martin-
gale problem associated to x is well-posed, see Definition 5.7. Then (P*") (s ) eRr, x0
1s a path-dependent canonical class verifying Hypothesis 3.5 .

Proof. The first two items of Definition 3.4 are directly implied by Proposition
5.11 and the fact that P*7 € M P*"(x) hence P*"(w® = n®) for all (s,n). It
remains to show the validity of Hypothesis 3.5.

We fix (s,1) € Ry x Q and ¢ > s. Since 2 is Polish and F; is a sub o-field
of its Borel o-field, there exists a regular conditional expectation of P*" by F;
(see Theorem 1.1.6 in [20]), meaning a set of probability measures (Q")¢cq on
(Q, F) such that

1. for any F € F, ¢ — Qb¢(F) is Fy-measurable;
2. for any F € F, P*"(F|F)(¢) = Qb (F) P as.
We will now show that for IP*" almost all ¢, we have
QH¢ = P, (5.6)
so that item 2. above will imply Hypothesis 3.5. In order to show that equality,

we will show that for P almost all (, Q"¢ solves the Martingale problem

17



associated to x starting in (¢,¢) and conclude (5.6) since M P%¢ is a singleton,
taking into account the fact the corresponding martingale problem is well-posed.

For any F € F¢, by item 2. above we have Q%¢(F) = 1r(¢) P*" a.s. Since
IT; is countable, there exists a P®"-null set N; such that for all { € Ny we
have Q“¢(F) = 17(¢) for all F € II;. Then since II; is a 7-system generating
F¢ and since sets verifying the previous relation define a A-system, we have
by Dynkin’s lemma (see 4.11 in [1]) that for all ¢ € Nf, Q¥¢(F) = 1p(¢) for
all F € F?. Now for every fixed ¢ € NY, since {w : w' = ('} € F7, we have
QY (w' = (") = Lipuwr—cry(¢) = 1, which is the first item of Definition 5.4
related to M P%S ().

We then show that for IP*"-almost all ¢, the elements of x are (Q*¢,F°)-
martingales, which constitutes the second item of Definition 5.4.
For any t; <ty in [t,+oo[, M € x and F' € F{, we have

IEQtrc[(MtQ = My)lp] = E*"[(My, — M, )1r|F](C)
= ESTE*"[(My, — My, )1g|F, || F](€)
_ IOEs,n[Esm[(Mtz — M) | Fe, 1 r|F](C)

(5.7)

for P*" almost all ¢ by Remark 5.5 since M is a (IP*", F)-martingale on[s, +-00[
and I € FY C Fy,. Since x and the set of rational numbers are countable and
taking into account the fact that for any r > 0, F? is countably generated, there
exists a P*"-null set Ny such that for any ¢ € N§, we have for any ¢; < t3 in
[t,+00[N@Q, M € x, F € F7, that EQ"*[(M;, — M;,)15] = 0.

Let ¢ € N§. We will now show that this still holds for any t; < to in [t, +00],
M € x, F € F{,. We consider rational valued sequences (t7),, (resp. (t)n)
which converge to t1 (resp. to to) strictly from the right and such that ¢} < 5
for all n. For all n, IEQ“C[(MtS — My )1p] = 0; since M is right-continuous
and bounded on finite intervals, by dominated convergence, we can pass to the
limit in n and we obtain IEQt’C[(Mt,_, — My, )1p] = 0. Therefore if ¢ ¢ N1 |J N2
which is P*"-negligible, then Q"¢ (w! = ¢*) = 1 and all the elements of x are
(Q"¢,F°)-martingales. This means that Q"¢ = P*¢ by well-posedness and
concludes the proof of Proposition 5.12. O

5.2 Martingale problem associated to an operator and
weak generators

This section links the notion of martingale problem with respect to a natural
notion of (weak) generator. In this section Notation 3.1 will be again in force.
Let (IP*")(s,ner. xq be a path-dependent canonical class and the corresponding
path-dependent system of projectors (Ps)scr,, see Definition 3.12. Let V :
R+ — R4 be a non-decreasing cadlag function.

In the sequel of this section, we are given a couple (D(A), A) verifying the
following.

Hypothesis 5.13.
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1. D(A) is a linear subspace of the space of F°-progressively measurable pro-
cesses;

2. A is a linear mapping from D(A) into the space of F°-progressively mea-
surable processes;

3. for all® € D(A), weQ, t>0, fg |A®,.(w)|dV, < 4005

4. forall® € D(A), (s,m) € Ry xQ andt € [s, +o00[, we have ES" [f: |A(<I>)r|dV7«} <
+oo and E*|®,]] < 4o00.

Inspired from the classical literature (see 13.28 in [17]) we introduce a notion
of weak generator.

Definition 5.14. We say that (D(A), A) is a weak generator of a path-
dependent system of projectors (Ps)sew, if for all ® € D(A), (s,n) € Ry x Q
and t € [s,+o0[, we have

Pu@(n) = . (1) + / P[A(®),]()dV;. (5.8)

Definition 5.15. We will call martingale problem associated to (D(A), A)
the martingale problem (in the sense of Definition 5.4) associated to the set of
processes X constituted by the processes ® — [j A(®),dV,, ® € D(A). It will be
said to be well-posed if it is well-posed in the sense of Definition 5.7.

Proposition 5.16. (D(A), A) is a weak generator of (Ps)ser., iff (P*") (s mer, x
solves the martingale problem associated to (D(A), A).

Moreover, if (P*") (s nyer, xq solves the well-posed martingale problem as-
sociated to (D(A),A) then (Ps)ser, is the unique path-dependent system of
projectors for which (D(A), A) is a weak generator.

Proof. We start assuming that (D(A), A) is a weak generator of (Ps)ser, . Let
O cD(A), s <t<u. P> as. we have

BB, — B, — [, A dV|]-'O]( )
— EN[d, — O — fA (5.9
= OPt[(I’ () — @4 - Pt <I> rlw)dVe '

where the first equality holds by Remark 3.6, the second one by Fubini’s the-
orem and the third one because (D(A), A) is assumed to be a weak gener-
ator of (Ps)ser,. By definition of path-dependent canonical class, we have
P (w® =7n°) = 1. By (5.9), for all ® € D(A), ® — [, A(®),dV; is a (P>, F°)-
martingale, and therefore P*" solves the martingale problem associated to
(D(A), A) starting in (s, 7).

Conversely, let us assume that (P*"7) ,yer, xo solves the martingale prob-
lem associated to (D(A), A). Let ® € D(A) and (s,n) € Ry x £ be fixed. By
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Definitions 5.15 and 5.7, M[®] := ® — [/ A(®),dV,, is a (P*",F°)-martingale
on [s, +o00[. Moreover, since P*"(w® = n°) = 1 and being ®; .7-'0 measurable, we
obtain ®; = ®,(n) P a.s. Therefore, for any t > s, &;—® f A(®),.dV, =
M[®]); — M[®];s a.s.; so taking the P expectation, by Fub1n1 s Theorem and
Definition 3.12 it yields

P[@4)(n) — @u(n) — [1 PJA(®),](n)dV,
- Esn[cbt O, (n) — [T A(®),d ]
= IOES’” [M[®], — M[®]]

(5.10)

hence that (D(A), A) is a weak generator of (P;)scRr, -

Finally assume moreover that the martingale problem is well-posed and that
(D(A), A) is a weak generator of another path-dependent system of projec-
tors (Qs)ser, with associated path-dependent canonical class (Q*") (s, eRr . xQ-
Then by the first statement of the present proposition, (Q*") s ner, xo solves
the martingale problem associated to (D(A), A). Since that martingale problem
is well-posed we have (Q*")(sn)er, x0 = (P*7)(s.n)er. xo and by Proposition
3.11, (QS)SER+ = (PS)SER+- O

Remark 5.17. When the conditions of previous proposition are verified, one
can therefore associate analytically to (D(A), A) a unique path-dependent system
of projectors (Ps)ser.,. through Definition 5.14.

Combining Proposition 5.16 and Lemma 4.4 yields the following.

Corollary 5.18. Assume that (P*"7),, ER X is progressive and fulfills Hy-
pothesis 3.5. Suppose that (D(A),A) is a weak generator of (Ps)scr, . Let

® € D(A), and fix (s,n). Then ® — [ A(®).dV, admits on [s,+oo[ a P*"
version M[®]%" which is a (P71, F%7)- cadlag martmgale In particular, the
random field defined by M[®]; ,(w) := ®,(w) — ®(w) — [,* AP, (w)dV; defines

a MAF with cadlag version M[®]*" under P51,

We insist on the fact that in previous corollary, ® is not necessarily cadlag.
That result will be crucial in the companion paper [3].

6 Weak solutions of path-dependent SDEs

We will now focus on a more specific type of martingale problem which will be
associated to a path-dependent Stochastic Differential Equation with jumps. In
this section we will refer to notions of [17] Chapters II, III, VI and [16] Chapter
XIV.5.

We fix m € N*, E = IR™, the associated canonical space, see Definition 3.1,
and a finite positive measure F' on B(IR™) not charging 0.

F.F,P ,W,p) will be called a space of driving pro-
) is a stochastic basis fulfilling the usual conditions, W

Definition 6.1. (2,
cesses if (0, F,F,P
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18 an m-dimensional Brownian motion and p is a Poisson measure of intensity
q(dt,dx) := dt ® F(dz), and W,p are optional for the underlying filtration.

We now fix the following objects defined on the canonical space.

e 3, an R™-valued [F°-predictable process;

e 0, a M,,(R)-valued F°-predictable process;

e w, an R™-valued Pre® @ B(R™)-measurable function on Ry x Q x R™,

where M,,,(R) denotes the set of real-valued square matrices of size m.

Definition 6.2. Let (s,n) € Ry x Q. We call a weak solution of the SDE
with coefficients 3, o, w and starting in (s,n) any probability measure P*"
on (Q, F) such that there exists a space of driving processes (Q, F,F,P ,W,p),
on it an m-dimensional F-adapted cadlag process X such that P$" =P o X!
and such that the following holds.

Let B :=B.(X(-), 6 := 0.(X(")) and & := w(-, X(-),-). We have the follow-
ing.

o forallt €0,s], X; =n(t) P a.s.;

. /. (||6r|\+||ar||2+fm (r,59) | + 1 (r, - y)|P)F(dy) ) dr takes finite

values P a. S.;

o X! =n(s) —|—f: Bidr+ S fst GLIAWI + ' x (p—q) P a.s. for allt>s,

j<m

1< m,

where * is the integration against random measures, see [17] Chapter II.2.d for
imstance.

Remark 6.3. Previous Definition 6.2 corresponds to Definition 14.73 in [16].
However, in the second item we have required that

| [ )l + ot )P Fdyar

takes finite values a.s. so that W (p — q) is a well-defined purely discontinuous
locally square mtegmble martingale with angle bracket the M,,(R)-valued pro-
cess f me r, -, y)F(dy)dr, (see Definition 1.27, Proposition 1.28 and
Theorem 1.33 in [16/ chapter II) and we will not need to use any truncation
Sfunction.

With this definition, if P is a weak solution of the SDE starting at some
(s,m), then under P*", (X;);>s is a special semimartingale.

Definition 6.4. Let s € R4 and (Y3)i>s be a cadlag special semimartingale de-
fined on the canonical space with (unique) decomposition Y = Ys+ B+ M¢+ M¢
where B is predictable with bounded variation, M° a continuous local martingale,
M? a purely discontinuous local martingale, all three vanishing at the initial time
t =s. We will call characteristics of Y the triplet (B,C,v) where C = (M)
and v is the predictable compensator of the measure of the jumps of Y.
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There are several known equivalent characterizations of weak solutions of
path-dependent SDEs with jumps which we will now state in our setup.

Notation 6.5. For every f € C2(R™) and t > 0, we denote by A f the r.v.

BV I X+ 5 Trlowa] VR [ (F(Xitw(t ) ~F(X)= F(X)w(t, ) Fldy).
(6.1)

Proposition 6.6. Let (s,n) € Ry x Q be fixred and let P € P(Q). There is
equivalence between the following properties.

1. P is a weak solution of the SDE with coefficients 3,0, w;

2. P(w® = n®) =1 and (Xy)1>s is under P a special semimartingale with
characteristics

e B = fs Bdr;
o C= [ (o07).dr;

eV (wa G) = f;FOO fE ﬂG(va(wa T, y))]l{w(w,r,y)7é0}F(dy)dr;

3. P solves M P*"(x) where x is constituted of processes f(X.) — fo A, fdr
for all f € CZ(R™).

4. P solves MP>"(x") where X' is constituted of processes f(X.) — [, A, fdr
for all functions f : x — cos(0-x) and f: x> sin(f - ) with § € Q™.

Proof. Equivalence between items 1. and 2. is a consequence of Theorem 14.80
in [16]. The equivalence between items 2., 3. and 4. if § was ranging in R™ is
shown in Theorem 2.42 of [17] chapter II. Observe that 4. is stated for § € R™;
however the proof of the implication (4. = 2.) in Theorem 2.42 of [17] chapter
IT only uses the values of 8 in Q™. O

Theorem 6.7. Assume that for any (s,n) € Ry x Q, the SDE with coeffi-
cients B, o, w and starting in (s,n) admits a unique weak solution P*". Then
(P*7) (s,meRr . x0 5 a path-dependent canonical class verifying Hypothesis 3.5.

Proof. By Proposition 6.6, P*" is for each (s,n) the unique solution of M P*"(x)
where x is constituted of the processes f(X.) — [, A, fdr for all functions f :
x> cos(f-x)or f:ax— sin(0-x) with 8 € Q™. Since x is a countable set of
cadlag F°-adapted processes which are bounded on bounded intervals, we can
conclude by Proposition 5.12. O

We recall two classical examples of conditions on the coefficients for which
it is known that there is existence and uniqueness of a weak solution for the
path-dependent SDE, hence for which the above theorem applies, see Theorem
14.95 and Corollary 14.82 in [16].
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Example 6.8. We suppose 3,0, w to be bounded. Moreover we suppose that for
alln € N* there exist Ky € L. (Ry) and a Borel function K} : R™ xRy — R

loc

such that [g,. K§(-,y)F(dy) € L}, (Ry) verifying the following.

loc

For all z € R™, t > 0 and w,w’ € Q such that sup [|w(r)| < n and
r<t

sup ||’ ()] < n, we have
r<t

¢ [lot(w) —au (W)l < Kﬁ‘(t)srug lao(r) = ' (r)II%;

o [w(t,w,z) —w(t,w',2)| < Kg(t z)sup [lw(r) —w'(r)]*.
r<t

Finally we suppose that one of the two following hypotheses is fulfilled.
1. There exists K € L} (Ry) such that for allt > 0 and w € Q, ||Bi(w) —

loc

BN < Kib(t)srlg llw(r) = ' (r)]l;

2. there exists ¢ > 0 such that for allz €e R™, t > 0 andw € Q, 270 (w)op(w) Tz >

clll?;

If the assumptions of Theorem 6.7 are fulfilled and 3, o (resp. w) are bounded

and continuous in w for fixed ¢ (resp. fixed t,y), then (s,7) — P*" is continu-
ous for the topology of weak convergence, and in particular, the path-dependent
canonical class is progressive hence all results of Section 4 can be applied with
respect to (IPS’")(S’W)GRerg.
Proposition 6.9. Assume that that 8,0,w are bounded. Let ($p,Mn)n be a
sequence in A which converges to some (s,m). For every n € N, let P™ be a
weak solution starting in (sn,nm,) of the SDE with coefficients 5,0,w. Then
(IPn)nZO 8 tight.

We recall some notations from [17] Chapter VI which we will use in the proof
of Proposition 6.9.

Notation 6.10. For any w € Q and interval Z of Ry, we denote W(w,Z) :=
sup ||w(t) —w(s)||. For anyw € Q, N € N* and 6 > 0, we write

s,teZ

Wy(w,0):= sup W(w,[t,t+6]) = sup lw(®) — w(s)||-
0<t<t+6<N 5,t€[0,N]: [t—s|<0

For anyw € Q, N € N* and 8 > 0, we denote

Wi (w, ) := inf {m‘gx W(w,[ti—1,ti): O0=tog<---<t,=N; VI<i<r:t;—t_1> 0}.
We will also recall the classical general tightness criterion in P(£2) which one
can find for example in Theorem 3.21 of [17] Chapter VI.

Theorem 6.11. Let (P™),>0 be a sequence of elements of P(§2), then it is tight
iff it verifies the two following conditions.

VN eN* Ve>0 3JK >0 VneN: 1P”<sup||w(t)||>K)<e
t<N

YVNeEN* Ve>0 Va>0 30 VneN: P (Wi(w.bh)<a)>1-—c
(6.2)
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Finally we will also need to introduce a definition.

Definition 6.12. A sequence of probability measures on (2, F) is called C-tight
if it is tight and if each of its limiting points has all its support in C(R,R™).

Proof of Proposition 6.9.
We fix a converging sequence (8,,7,) — (s,1) in A, and for every n, a weak
n

solution P™ of the SDE with coefficients (8, o, w starting in (s,,7,). In order to
show that (IP™),>¢ is tight, we will use Theorem 6.11. The main idea consists
in combining the fact that the canonical process X under P" is deterministic
on [0, sy], where it coincides with 7, with the fact that on [s,,+oo[ it is a
semimartingale with known characteristics. So we will split the study of the
modulus of continuity of path w on these two intervals [0, s,,] and [sy,, +00[.

Since 7, tends to 7, the set {n, : n > 0} is relatively compact in Q so by
Theorem 1.14.b in [17] Chapter VI we have

t€[0,N] (6.3)

VNeN* JK;>0 VneN: sup ||n.(t)] < K
YVNeN* Va>0 30, >0 YneN: Wi, bh) <.

For fixed n € N, we now introduce the process
X" wr— () L0,s,[ +wlis, 4o, we denote by Q" :=P" o (X™)~! € P(Q)
its law under IP"” and we now show that (Q"),>¢ is tight.

By Proposition 6.6, under P , (X¢)se[s,, +oo[ IS @ special semimartingale with
initial value 7, (s, ) and characteristics (see Definition 6.4) fs Brdr, fs (ooT),dr
and (w, A) — fstoo S La(r,w(r,w, y) L {w(rw,y) 20 F (dy)dr. Therefore, since
X™ is constant on [0, s, [ and since on [s,,, +oo[ its law under IP™ coincides with
the one of X, we can say that Q" is the law of a special semi-martingale (starting
at time ¢ = 0) with initial value n,(sy), and characteristics [; Ljs, 4oo((7)5rdr,

Jo Vs 400( (1) (00 T),dr and

—+o0
(w,G) — fo Lo, 4oof(T) me L (r, w(r,w, y)) L (rw,y) 20y F(dy)dr.
Theorem 4.18 in [17] chapter VI implies that (Q™),>¢ is tight if and only if the
properties below hold true.

L. (Q™ o Xy M)pso is tight;
2. the following sequences are C-tight (under (Q"),>0):
(a) (B™ := [, Lis, +oo[(T)Brdr)n>0;
() (€™ = fy Lor et (1) (00T + [ CwwT) ) Fldy) dr)

(C) (GZ = fo ﬂ[sn,-‘roo[(r) f]Rm 1{w(r,w,y)7ﬁ0}((p”w(ra K y)” - 1)+) A 1F(dy)d7‘)n20
for all p € N;

3. forall N >0, e>0,
N
le sup (Qn / / 11{‘|w(ry.,y)“>a}F(dy)dT >e] =0. (6.4)
a—00 g S Rm™
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Item 3. trivially holds since w is bounded. At this point 7, (s,) is a bounded
sequence according to the first line of (6.3) and the fact that the sequence
(Sn)n>0 is bounded, so (Q" o Xo_l)nzo = (5,]”(5”))”20 is obviously tight. We
are left to show item 2. By Proposition 3.36 in [17] chapter VI, items 2. (a) and
2. (b) hold if (Var(B™))n>0 = (Jo Lis,,,+o0( (1) | Brlldr)n>0 and

(Tr(C)uzo = (fy Lowtool (") (T(00T) + [ Tr(ww (-, y))F(dy)) dr), .,
are C-tight. Finally, 5, o, w, F' being bounded, there exists some strictly positive
constant K such that all the processes given below are increasing;:

o t— Kt —Var(B");, n>0;
ot Kt—Tr(C"), n>0;
o t— Kt—(Gp)i, n,p=>0.

In the terminology of [17] chapter VI, this means that the increasing processes
Var(B™), n >0, Tr(C"), n >0, G, n,p > 0 are strongly dominated
by the increasing function ¢ — Kt. The singleton ¢ — Kt being trivially C-
tight, Proposition 3.35 in [17] chapter VI implies that the dominated sequences
of processes (Var(B™))n>0, (Tr(é’"))nzo and (G})n>o0 for all p are C-tight.
Finally (Q™)n>0 is tight.

Now by Theorem 6.11 this implies that

YN eN* Ve>0 IKy;>0 VYneN: Q" (sup lw (@)l >K2> <e
t<N

VNeN* Ve>0 Va>0 30, VneN: Q*(Wi(w,by)<a)>1—e

(6.5)

Combining the first line of (6.3) and the first line of (6.5) and by construction
of Qm, taking K = K; 4+ K5 for instance, we have

VN eN* Ve>0 IK >0 VneN: P" <sup lw(@®)]] > K) <e (6.6)
t<N

Our aim is now to show that
VNeN" Ve>0 VYVa>0 30 VneN: P*"(Wy(w,0)<a)>1—¢ (6.7)

this combined with (6.6) will imply by Theorem 6.11 that (IP™),,>¢ is tight.

In what follows, if n,w € Q and s € R4, n ®s w will denote the path
nljo,s) + wWl[s 400[, Which still belongs to .

By construction of Q", for every n, P" is the law of 7, ®,, w under Q™.
Therefore, (6.7) is equivalent to

YNEN* Ve>0 Ya>0 30 VneN: QW1 ®s,w,0) <a)>1—¢,

(6.8)
and this is what we will now show to conclude the proof of Proposition 6.9. So
we prove (6.8).
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We fix some N € N*, a > 0 and € > 0. Combining the second lines of (6.3)
and of (6.5), there exists 6 > 0 such that for all n > 0,

Wi (777”0 < &
{ Q’]LV(W}v(w,G)4< H>1—e (6.9)

We show below that, for every n
{wlWh(w,6) < T} € {wlWh (1, @4, w,0) < a}. (6.10)
This together with (6.9) will imply that for all n,
Q" (Wi @, w,6) < @) 2 Q" (Wi(w,6) < ) 21 -¢

hence that (6.8) is verified.
We fix n. To establish (6.10) let w such that Wy (w,0) < §; we need to show
that
Wy (1, ®s, w,0) < a. (6.11)

By the first line of (6.9) and the definition of W}, (see Notation 6.10), there
exist two subdivisons of [0, N] 0 =1tj < --- <t} =N, 0=t <---<t2 =N
with increments ¢] —¢]_; >0 for all 1 <4 <r; and j = 1,2, such that

{ W (0, [t 1,1,])
W(w, [tzz—lv tzz D

forall1<i<nrm

*for all 1 <4 <. (6.12)

ININ
EN[oFNIs

We set i} := max {3 : t/ < s,} for j = 1,2 and introduce the third subdivision

(tga o at§3) = (tév . 7ti1’1*717t12;+17' o 7t$2)7 (613)

which we represent in the following graphic.
ot tha

th t tis tha t:
0 N
tg ti2;+1 ti2;+2 ti

& t, t., t

As for the other two, the subdivision of [0, N] above verifies t3 — ¢} | > 6 for all
i. Indeed, t? —t3 | is either equal to t} —tI | >0, or to t? — t?-_l > 6 for some
j, or to t% 41— t}ffl > t}; - t};71 > 0 where the first inequality follows by the
fact that t}. ; <t} <s, <t

Now by definition of W}, (0, ®s, w, ), in order to show (6.11) and conclude
this proof, it is enough to show that

W(nn ®Sn W, [tfflv t?D < Q, (614)

forall 1 <7 <rs.
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Ifi <ij—1,then [t} ;,t}[= [t}_;,t}[C [0, s,[ where 1, ®s, w coincides with ),
so W(n, ®s, w, [t2_1,t3]) = W(nn, [ti_1.t}]) <& < a by the first line of (6.12).
Similarly, if ¢ > i} + 1, then [t_;,t3[= [t?_.. +127t12 ir+i5+1C [Sn, +00[ where

nn®5nw coincides with w so W (n,®s, w, [t3_ 1,tf’[) W (w, [t2 s t? ) <

1711+227 177,1+1/2+1
$ < a by the second line of (6.12). Finally, we consider the specific case i = i}

meamng that [t2_,t3[= [t};fl, t%H[ contains s,,. We have

)

W (nn ®s,, w, [ it —1vtz;+1D < W ®s, w, [t 21 _1,1% D

+ W, ®s, w, [ sul) + W(Uﬂ ®s,, W; [Sn, tz*+1
< W, [ttl*—l’ z D + W (nn, [ SnD + W(w,[sn,
S W(n’ﬂ [tl* 1» z D +W(77n,[ z 7tz*+1[)
+ Wi(w,[th, i;+1[)
< g+5+%
< «,

(6.15)

by (6.12). So (6.14) is verified for all ¢ and the proof is complete.
O

Proposition 6.13. Assume that 8,0 (resp. w) are bounded and that for
Lebesgue almost all t (resp. dt @ dF almost all (t,y)), B(t,-),o(t, ) (resp.
w(t,-,y)) are continuous. Assume that for any (s,n) € Ry X Q there exists
a unique weak solution P> of the SDE of coefficients 5,0, w starting in (s,n).

(s,7) — PO
Then A PO
ical class (P*")(sm)er, xq 18 progressive.

is continuous. Moreover the path-dependent canon-

Remark 6.14. Taking Theorem 6.7 into account, the family of probabilities
(P*")(s,mer,.xq of Proposition 6.13 constitutes a progressive path-dependent
canonical class verifying Hypothesis 3.5. It therefore verifies Hypothesis 4.1 and
all results of Section 4 apply.

Proof. of Proposition 6.13.
We consider a convergent sequence (S,,n,) — (s,n7) in A. Since 8,0 are
n

bounded, by Proposition 6.9 (IPs»"), cn is tight, hence relatively compact by
Prokhorov’s theorem. We consider a subsequence P*7x "k T @Q and we show

below that @ is a weak solution of the SDE with coefficients 3, o, w, starting at
(s,m). Since that problem has a unique solution, we will have @ = IP#". This
will imply that P®»» — TP hence the announced continuity.

n
We will indeed verify item 3. of Proposition 6.6. For the convenience of the
reader, we will omit the extraction of the subsequence in the notations.
We start by showing

Qw®=7n") =1 (6.16)
The set

D:={teRy: QX; #X,-) >0 U{te[0,s]:n(t) #n(t)}, (6.17)
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is countable because first 1 is a cadlag function and second because of Propo-
sition 3.12 in [17] Chapter VI which states that, for every probability @ on
(Q, F), the set Dy := {t € Ry : Q(X: # X;—) > 0} is countable. If t ¢ Dy then

P o X, = Qo X, 1, (6.18)

by Proposition 3.14 ibidem. Since 7),, converges to 1 in the Skorohod topology,
if t ¢ D (¢t is a continuity point of ), then it follows that n,(t) — n(t), see
n

Proposition 2.3 of [17] Chapter VI.

Let € > 0, ¢t € [0,s — ¢] N D¢ be fixed. Since s, tends to s, we can suppose
without loss of generality that s, > s — ¢ for all n, so that P*n o X, * = O (t)-
By (6.18) this sequence converges to Q o X; ' which is therefore necessarily
equal to &, since 1, (t) tends to n(t) being t ¢ D. This means that

Q(w(t) =n(t) =1, (6.19)

for allt € [0,s—e]NDe. Since € > 0 is arbitrary, (6.19) holds for all ¢ € [0, s[ND*;
and since w is right-continuous and D is countable, (6.19) holds for all ¢ € [0, 5.
We will now show that (6.19) also holds for t = s. We first note that

a0) — 1(s). (6:20)

Indeed, without restriction of generality we can consider that s, < s+1, so since
(SnsMn(sn)) € A, 1y, is constantly equal to n,(s,) on [s,, +0o[ which contains
[s + 1,400[. On the other hand 7 is constantly equal to n(s) on [s, +oo[ which
also contains [s+ 1, +o0], and 7, tends to n almost everywhere on that interval,
because it converges in the Skorokhod sense. So necessarily (6.20) holds.

We fix now some f € C°(R™). For all n, since P*»"™ is a weak solution of
the SDE starting at (s,,n,) and by Proposition 6.6, it follows that f(w(:)) —
F(nn(sn)) — fs A, f(w)dr (see Notation 6.5) is a martingale on [s,,, +oo[ under
P#n»n vanishing in s,. We consider a sequence (¢,),en in D¢ converging to ¢
strictly from the right. For all n, p we have

B [f@(tp)] = falsn)) + B [ [ A, f(w)dr

= f(m(sn) + B | [ A, f(w)dr| + [ B [A, f(w)]dr,
(6.21)
where the second equality holds by Fubini’s theorem since A, f(w) is uniformly
bounded for r varying on bounded intervals. We now pass to the limit in n.
Since t, ¢ D, taking into account (6.18), we have P~ o X[pl = Qo thl;

moreover f is bounded and continuous, so

B £ w(ty)] —» 2L (w(ty) (6.22)

Since 3, 0, w are bounded and B(r,-),o(r,-) (resp. w(r,-,y)) are continuous for
Lebesgue almost all  (resp. dt ® dF almost all (r,y)) and since f € C2°, then
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D:wr— fst” A, f(w)dr is a bounded continuous functional for the Skorokhod
topology, so

o [ / "4 f(w)dr} — E® [ / "4 f(w)dr} . (6.23)

Finally since s, tends to s and A,f is uniformly bounded for r varying on
bounded intervals, we have

/ B4, f@)ldr — 0. (6.24)

Combining relations (6.21), (6.20), (6.22), (6.23), (6.24), for all p, we get

ER[f(w(ty))] = f(n(s)) + E® [ I Arf(w)dr] . (6.25)

We now pass to the limit in p. Since ¢, tends to s from the right and w is right-
continuous, the left-hand side of (6.25) tends to ER[f(w(s))]. By dominated
convergence, the second term in the right-hand side of (6.25) tends to 0. This
yields ER[f(w(s))] = f(n(s)) and this holds for all f € C>*(IR™), which implies
that Qo X' = §,(,). So we have shown that (6.19) for ¢ = s and finally (6.16)
since w and 7 are cadlag.

We will proceed showing that Q solves weakly the SDE with respect to
B,0,w starting in (s,n). By Proposition 6.6 this holds iff for any f € CZ(R™),
f(X)— [, Arfdrisa (Q, (Ft)ie[s,+o00)-martingale. We fix such an f, some ¢ < u
in]s, +oo[ND¢, N € N* t; < .-+ <ty € [s,t]jNDand ¢1,--- ,on € Cp(R™, R).
Taking into account Proposition 6.6, since s < t, for n large enough, we can
suppose that f(X.)— ft A, fdr is under every P*~"» a martingale on the interval
[t, +00[. Therefore, for all n, we have

B [ () - 1) - [ As@ar) | I o] =0 620
t IS

We wish to pass to the limit in n. By Theorem 12.5 in [6], for any r € R,
the mapping X, is continuous on the set C, := {w € Q : w(r) = w(r~)}. By
construction of D and since t,u,t1,--- ,ty ¢ D, then C;, Cy, Cy,,- -+ ,Ct, are
of full Q-measure hence that ® := (X, X,,, X3, X4, -+, X, ) is continuous on a
set of full Q-measure. By the mapping theorem (see Theorem 2.7 in [6] for in-
stance), since P = @Q and @ is continuous on a set of full Q-measure, then

P o 71 = Q o @71, meaning P o (X, X, X4, Xpy, -+, Xpy) L =
n n

Qo (X, Xu, X4, Xy, -+, Xeyy) ™ Since w = [ A, f(w)dr, f,¢1,--+ ,¢n are
bounded continuous functions, the previous convergence in law allows to pass
to the limit in n in (6.26) so that for any ¢ < u €]s, +oo[ND° and t1,--- ,ty €
[s,t] N D°

B2 | (o) - fw) - [ Af@ir) I o] <0, @2)
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Equality (6.27) still holds if ¢ = s and if some of the values t, u, t1,-- - ,ty belong
to D. Indeed to show this statement we approximate from the right such values
by sequences of times not belonging to D and strictly greater than s and we
then use the right-continuity of w and the dominated convergence theorem.

By use of the functional monotone class theorem (see Theorem 21 in [10]
Chapter I), we have

B9 |(fww) - fw) - [ As@ir)1e] =0 629
¢
for any s <t < wand G € o(X,|r € [s,t]). Since Q(w® = n®) = 1 then F?
is Q-trivial, so equality (6.28) holds for all G = G, N G§ where G, € F? and
G§ € o(X,|r € [s,1]). Events of such type form a m-system generating F7 so by
Dynkin’s Lemma, (6.28) holds for all G € F?. For all s < ¢ < u, then we have

B9 |(fw(w) - fw) - [ As)ar) ]f;’] —0. (629)

So f(X)— [, A, frdris a (Q, (F7)iels,+oo[)-martingale hence a (Q, (Ft)iefs, +oo[)-
martingale by Theorem 3 in [11] Chapter VI, that process being right-continuous.
This implies that @ is a weak solution of the SDE with coefficients 3, o, w start-
ing in (s,n). As anticipated, since the SDE is well-posed for every (s,n), we
have @@ = IP*" and the proof of the first statement is complete.

The second statement follows from the fact that a continuous function is Borel
and that B(A) = AN Pro°, see Proposition 5.3. O

Appendices

A Proofs of Section 4

Proof of Proposition 4.6.

In the whole proof ¢t < u will be fixed. We consider a sequence of subdivisions

of [t,u: t =th < th < --- < t§¥ = u such that miI’i (th, —th) . 0. Let
1< —00

(s,m) € [0,t] x Q with corresponding probability P*7. For any k, we have
2
> (Mt;_c " ) = Y (M3" — M3")? P*7 as., so by definition of quadratic
K i+1 2

10741

i<k i<k
2 pen
variation we know that ) (Mtl_c ik ) oy [M®7], — [M®>"],. In the sequel
i<k @271 k— oo

we will construct an F¢-measurable random variable [M],,, such that for any

2 o
(s,m) € [0,8] x Q, >, (Mt:; ok ) P [M];,. In that case [M];,, will then

otir1) pooo
be P a.s. equal to [M*"], — [M*"];.

Let n € Q. [M""] is F“"-adapted, so [M""],—[M""], is Fl-"-measurable and
by Corollary 3.21, there is an F2-measurable variable which depends on (¢, u, 1),
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that we denote w +— ay (1, w) such that a; . (n,w) = [M"7], — [M"7];, P47 a.s.
We will show below that there is a jointly 7Y ® F_ -measurable version of
(an) — at,u(n7w)'

For every integer n > 0, we set ai’,(n,w) = n A as(n,w) which is in

2
particular limit in probability of nA > (Mt;‘c t;_cﬂ) under P%7. For any integers
i<k o

k,n and any 1 € , we define the finite positive measures Q*™7, Q™" and Q"
on (2, F2) by

1. Qbnn(F) = B []lF (m S (Mg s )2>];

i<k e

2. QUN(F) :=E"1p (a{fu(n, w))];

3. QU(F) = BY1[1p (ar,u(,0))]
When k and n are fixed integers and F' is a fixed event, by Remark 3.6,
n— Bt [F (n A ;C (Mtf,tf+1)2):| , is F¢ -measurable.

Then n A % (Mti_c’t;cﬂ)Z k%o ai',(n,w), and this sequence is uniformly
bounded by ti1<e constant n, so the convergence takes place in L', therefore
n — Q™"(F) is also F7-measurable as the pointwise limit in & of the functions

t,n_
n +— Q&1 (F). Similarly, a?,, (7, w) Prizg.s. at(n, w) and is non-decreasing, so
’ n—oo

by monotone convergence theorem, the function n — Q"(F’) is F?-measurable
being a pointwise limit in n of the functions n — Q™"(F).

We make then use of Theorem 58 Chapter V in [11]: the property above, the
separability of F and the fact that for any 1, Q" < IP%7 by item 3. above, imply
the existence of a jointly measurable (for 7P ® F) version of (1,w) — a;.,(1, w).
That version will still be denoted by the same symbol. We recall that for any
n, at.(n, ) is the Radon-Nykodim density of Q" with respect to P%".

We can now set [M] ,(w) := a;(w, w), which is a well-defined F2-measurable
random variable. Since a;, is F{-measurable in the first variable and for any n
P (w! = nt) = 1 we have the equalities

M)t u(w) = apu(w,w) = agu(n,w) = [M57], (W) — [MP](w) PHas. (A1)
We can then show that
M)y = [M*7), — [M*7), P*7 as., (A:2)

holds for every (s,n) € [0,t] X 2, and not just in the case s = ¢ that we have just
established in (A.1). This can be done reasoning as in the proof of Proposition
4.4 in [5], replacing the use of the Markov property with item 3. of Definition
34.

So we have built an F¢-measurable variable [M]; ,, such that under any P*"
with s <t¢, [M*®"], — [M*®")], = [M];,, a.s. and this concludes the proof. O
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Proof of Proposition 4.7.

We start defining A;; = 0 for every t > 0. We then recall a property of the
predictable dual projection which we will have to extend slightly. Let us fix (s, n)
and the corresponding stochastic basis (Q, F*" F#7 P"). For any F € F*",
let N*"¥ be the cadlag version of the martingale r — E*"[1p|F,]. Then
for any 0 < ¢ < u, the predictable projection of the process r +— 1pl ,(r) is
T NTS’,"’FIl[t’u[(r), see the proof of Theorem 43 Chapter VI in [11|. Therefore
by definition of the dual predictable projection (see Definition 73 Chapter VI
in [11]), for any 0 < ¢ < w and F € F*" we have E*" [1p(A]" — A]")] =

Es" {f;f Nf’_"’Fdvan}. Then, at fixed t,u, F, since for every ¢ > 0 we have
Es" []lF(Af;ﬁH), — Af’")} =Es" [ﬁ(u+e)_ NfL"’FdBﬁ’"}, letting € tend to zero
we obtain by dominated convergence theorem that

u
B ey - A7) =B | [CNeran) s
t

taking into account the right-continuity of A*", B*" and the fact that they are
both non-decreasing processes with £! -terminal value.

For any F € F, we introduce the process N¥' : (t,w) — P (F). N¥ takes
values in [0, 1] for every (¢,w), and by Definition 3.4, it is an IF°-progressively
measurable process such that for any (s,n) € Ry x Q, NoF is a P*7 cadlag
version of N¥' on [s, +ocl.

For the rest of the proof, 0 < ¢ < u are fixed. Following the same proof
than that of Lemma 4.9 in [5] but with parameter (s, z) replaced with (s,7), we
obtain the following.

Lemma A.1. Let F € F. There exists an JF,-measurable random wvariable
which we will call [, NE.dB, such that for any (s,n) € [0,t] x ©Q,

[ NEdB, = [" N*"FdBs" P*" a.s.
Remark A.2. By definition, the r.v. ftu N dB, will not depend on (s,n).

We continue now the proof of Proposition 4.7 by showing that for given 0 <
t < u there is an FJ-measurable r.v. A, such that for every (s,n) € [0,t] x €,
(A1 — AP = Ay, P57 as.

Similarly to what we did with the quadratic variation in Proposition 4.6, we
start noticing that for any 1 € Q, being (A7 — AP} Fii-measurable, there
exists by Corollary 3.21 an Fg-measurable r.v. w — a; (7, w) such that

apu(n,w) = AL (w) — Ai’"(w) PH" a.s. (A4)

As in the proof of Proposition 4.6, we show below the existence of a jointly-
measurable version of (1, w) — a (1, w).
For every n € Q) we define on F{ the positive measure

Q" : F+— EM [1pag,(n,w)] = EM [1p(AL7 — APT)]. (A.5)
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By Lemma A.1 and (A.3), for every F € F° we have
Q"(F) =E"" [ / NE dBT} , (A.6)
t

where we recall that ftu N f, dB, does not depend on 7. So by Remark 3.6, n —
Q"(F) is FP-measurable for any F. Moreover, by (A.5) for any n, Q7 < P,
Again by Theorem 58 Chapter V in [11], there exists a version (1, w) — a4, (7, w)
-measurable for 7 ® F;, of the related Radon-Nikodym densities.

We can now set Ay, (w) := Gy, (w,w) which is then an Fg-measurable r.v.
It yields for any n € Q

Ay (W) = ap y(w,w) = ag(n,w) = Af;"(w) - Ai’n(w) PH7 a.s. (A7)

Indeed the second equality holds given that a; , is F{-measurable with respect
to the first variable, taking into account that P“7(w! = n!) = 1; the third
equality follows by (A.4).

We now set s <t and n € Q2. We want to show that we still have
Ay = AT — AP P as. So we consider F' € F2; we compute

E>7 [1p(Ay7 — AP E>" [ [ NEdB, ]|
= BV EM [ NEdB|F]] = B [E [N B
Es" [EH [1p At )] = ES"[EST [1pA | Fi]
= B [lpA.].

(A.8)

Indeed, the first equality comes from (A.3) and Lemma A.l; concerning the
fourth equality we recall that, by (A.5), (A.6) and (A.7), we have E* [ [ N dB,] =
E"“ [1pA;,] for all w. The third and fifth equalities come from Remark 3.6.
Since adding P*"-null sets does not change the validity of (A.8), by Propo-
sition 3.20 for any F' € F5" we have ES" [1p(AS" — A7) = ES [1p Ay
Finally, since both A%"7— A7 and A, ,, are F:"-measurable, we can conclude
that A5 — AP = Ay, P57 as.
We emphasize that this holds for any ¢t < wu and (s,1) € [0,t] x Q, (Atu)@uea
is the desired path-dependent AF, which ends the proof of Proposition 4.7. [

Proof of Proposition 4.10.
We set
Ct,u = At,u + (Vu - Vt) + (u - t)7 (Ag)

which is a path-dependent AF with cadlag versions C;*" = A} +V; +t and we
start by showing the statement for A and C instead of A and V.

The reason of the introduction of the intermediary function C' is that for any
u > t we have é:%éfn] € [0,1]; that property will be used extensively in
connections with the aptplication of dominated convergence theorem.

Since A®" is non-decreasing for any (s,n) € Ry x 2, A can be taken positive
(in the sense that A;,(w) > 0 for any (¢,u) € A and w € Q) by considering A
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(defined by (A1) (w) := A u(w)T) instead of A. On R4 we set

Ap i s

K; = liminf T
nooe Apya o+ (Vt-«-% -V

(A.10)
Apyin

= lim lim min — )
nﬁmm—)oongpgmAtﬂH_% + » + (‘/t_,'_% — V;g)

This liminf always exists and belongs to [0, 1] since the sequence belongs to [0, 1].
For any (s,n) € Ry x €, since for all ¢t > s and n > 0,
Appyr = AV — AP P as., then K*" defined by K} := liminf

t
n
1 Mo _ s
4o n—o00 Cf+i Ct
T

s,m s,m
A 1 _At

is a IP*"-version of K, for ¢ € [s, +oo].

By Lebesgue Differentiation theorem (see Theorem 12 Chapter XV in [12] for a
version of the theorem with a general atomless measure), for any (s, n), for P*"-
almost all w, since dC*"(w) is absolutely continuous with respect to dA*"(w),
K*"(w) is a density of dA*"(w) with respect to dC*"(w).

For any t > 0, K, is measurable with respect to [ ‘FtOJri = Fi, by definition of
n>0 (tw
the canonical filtration. For any (¢,w) € R4 x €2, we now set

ke(w) := EY[Ky). (A.11)

Remark 3.6 implies that k£ is an F°-adapted process. The path-dependent
canonical class verifies Hypothesis 3.5, and K; is F;-measurable then for any
(s,m) € [t,+o0o[xQ, Ki(w) = ESKy|F](w) = EVY[Ky] = ky(w) PS7-a.s.:
hence k is on [s, +oo[ a P*"-version of K, and therefore of K*".

The next main object of this proof is to show that k is an F°-progressively
measurable process. For any integers (n,m), we define

. At,t+§
min

kP (1) > BOT
"gpgmAt,H-% + % + (VH—% -V

b

and for all n,

At,t+l
k"™ : (t,n) — E7 |inf —
PZ"At,H% +,t (Vt+% - Vi)

. (A.12)

We start showing that

A

$,M 1 bty
() = B | iy s e
(Ry x Q) xR [0,1] ’ ’

+ X X + — s 4]y

]Z:n,m .

(A.13)
is measurable with respect to Pro°@B(R). In order to do so, we will show that
it is measurable in the first variable (s,7n), and right-continuous in the second
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variable ¢, and conclude with Lemma 4.12 in [5].
We fix t € R4. Since the path-dependent canonical class is progressive, by
Remark 3.6, the map

, . Ap el
(s,n) +— E*>7| min —
n<psm Ay 1+ o+ (Vg = W)

Ry xQ — 0,1],

(A.14)

is measurable with respect to Pro°. The map (s,7) = T 1oo[(s) is also
trivially measurable with respect to Pro°; therefore the product of the latter
map and (A.14), that we denote by I;(, -,t) is also measurable with respect to
Pro°. Moreover, if we fix (s,n) € Ry X ), reasoning exactly as in the proof of
Proposition 4.13 in [5] we see that ¢ — l;"m(s, n,t) is right-continuous, which
by Lemma 4.12 in [5] implies the joint measurability of k™™,

Since k™™ (t,n) = k™™ (t,t,m), and since (¢, n) — (t,n,t) is obviously
(Pro°, Pro° ® B(R4))-measurable, then by composition we can deduce that for
any n,m, k™™ is an IF°-progressively measurable process. By the dominated
convergence theorem, k™™ tends pointwise to k™ when m goes to infinity, so
k™ also is an IF°-progressively measurable process for every n. Finally, since
K; = lim inf

n—oop>n At,t+% +%+(Vt+% -Vi)’

1
t,t+
ity

taking the expectation and again by the

dominated convergence theorem, k™ (defined in (A.12)) tends pointwise to k
(defined in (A.11)), when n goes to infinity, so k is an IF°-progressively mea-
surable process. Considering that (¢,u,w) — V,, — V; also trivially defines a
non-negative non-decreasing path-dependent AF absolutely continuous with re-
spect to C, defined in (A.9), we proceed similarly as at the beginning of the
proof, replacing the path-dependent AF A with V.

Vi,1—W
/ /1 . t+;
Let the process K’ be defined by K| = hnrrilgof EYEEE = et and for
Vi1V

18,m 1SN 1ims o
any (s,7), let K'*" be defined on [s, 400 by K;”" = hnrrggof AT AT RV, 1 V)
Then, for any (s,n), K'®" on [s,+o00[ is a IP*"-version of K’, and it constitutes
a density of dV with respect to dC*"(w) on [s,+oo], for almost all w. One
shows then the existence of an IF°-progressively measurable process k' such that
for any (s,n), k' is a P%"-version of K’ and of K'*" on [s, +oo.
By the considerations after (A.10), for any (s,n), under IP*", we can write
Asn = [ REndC .
s T r Now since dA®*" <« dV, we have for P*"
{ Vs —Vs = [ KEndCn.
almost all w that the set {r € [s, +oo[: |K/*"(w) = 0} is negligible with respect
to dV so also for dA®"(w) and therefore we can write
AST fs'vs KsndCsn
Vs KM -V
= L N oy KA+ [T e gy d AL
o j“Vs K3n

7

s ' LikinzoydVe,
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where we use the convention that for any two functions ¢, then %]lwm is
{ o i ) £ 0

0if ¥(z) = 0.
We now set h := %]l{k;;éo} which is an F°-progressively measurable process,

and clearly for any (s,n), h is a P®"-version of H®" := %]].{K!S,U?QO} on

[s,+o0[. So by Lemma 5.12 in [2], H>" = h dV ® dP*" a.e. on [s,+oo| and
finally we have shown that under any P57, A%" = f;vs h,.dV,. O

defined by %Il{wgo} (x) =
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