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Relational to RDF Data Exchange in Presence of a
Shape Expression Schema

Iovka Boneva, Jose Lozano, Sławek Staworko

University of Lille & INRIA, France

Abstract. We study the relational to RDF data exchange problem, where the tar-
get constraints are specified using Shape Expression schema (ShEx). We investi-
gate two fundamental problems: 1) consistency which is checking for a given data
exchange setting whether there always exists a solution for any source instance,
and 2) constructing a universal solution which is a solution that represents the
space of all solutions. We propose to use typed IRI constructors in source-to-
target tuple generating dependencies to create the IRIs of the RDF graph from
the values in the relational instance, and we translate ShEx into a set of target
dependencies. We also identify data exchange settings that are key covered, a
property that is decidable and guarantees consistency. Furthermore, we show that
this property is a sufficient and necessary condition for the existence of universal
solutions for a practical subclass of weakly-recursive ShEx.

1 Introduction
Data exchange can be seen as a process of transforming an instance of one schema,
called the source schema, to an instance of another schema, called the target schema,
according to a set of rules, called source-to-target tuple generating dependencies (st-
tgds). But more generally, for a given source schema, any instance of the target schema
that satisfies the dependencies is a solution to the data exchange problem. Naturally,
there might be no solution, and then we say that the setting is inconsistent. Conversely,
there might be a possibly infinite number of solutions, and a considerable amount of
work has been focused on finding a universal solution, which is an instance (potentially
with incomplete information) that represents the entire space of solutions. Another fun-
damental and well-studied problem is checking consistency of a data exchange setting
i.e., given the source and target schemas and the st-tgds, does a solution exist for any
source instance. For relational databases the consistency problem is in general known
to be undecidable [6, 13] but a number of decidable and even tractable cases has been
identified, for instance when a set of weakly-acyclic dependencies is used [10].

Resource Description Framework (RDF) [2] is a well-established format for pub-
lishing linked data on the Web, where triples of the form (subject , predicate, object) al-
low to represent an edge-labeled graph. While originally RDF was introduced schema-
free to promote its adoption and wide-spread use, the use of RDF for storing and ex-
changing data among web applications has prompted the development of schema lan-
guages for RDF [3,17,19]. One such schema language, under continuous development,
is Shape Expressions Schemas (ShEx) [8, 20], which allows to define structural con-
straints on nodes and their immediate neighborhoods in a declarative fashion.



In the present paper, we study the problem of data exchange where the source is
a relational database and the target is an RDF graph constrained with a ShEx schema.
Although an RDF graph can be seen as a relational database with a single ternary re-
lation Triple , RDF graphs require using Internationalized Resource Identifiers (IRIs)
as global identifiers for entities. Consequently, the framework for data exchange for
relational databases cannot be directly applied as is and we adapt it with the help of
IRI constructors, functions that assign IRIs to identifiers from a relational database in-
stance. Their precise implementation is out of the scope of this paper and belongs to the
vast domain of entity matching [14].

Example 1. Consider the relational database of bug reports in Figure 1, where the rela-
tion Bug stores a list of bugs with their description and ID of the user who reported the
bug, the name of each user is stored in the relation User and her email in the relation
Email. Additionally, the relation Rel identifies related bug reports for any bug report.

Bug bid descr uid
1 Boom! 1
2 Kaboom! 2
3 Kabang! 1
4 Bang! 3

User uid name
1 Jose
2 Edith
3 Steve89

Email uid email
1 j@ex.com
2 e@o.fr

Rel bid rid
1 3
1 4
2 4

Fig. 1: Relational database (source)

Now, suppose that we wish to share the above data with a partner that has an already
existing infrastructure for consuming bug reports in the form of RDF whose structure
is described with the following ShEx schema (where : is some default prefix):

TBug→ {:descr :: Lit1,:rep :: TUser1,:related :: TBug*}
TUser→ {:name :: Lit1,:email :: Lit1,:phone :: Lit?}

The above schema defines two types of (non-literal) nodes: TBug for describing bugs
and TUser for describing users. Every bug has a description, a user who reported it,
and a number of related bugs. Every user has a name, an email, and an optional phone
number. The reserved symbol Lit indicates that the corresponding value is a literal.

The mapping of the contents of the relational database to RDF is defined with the
following logical rules (the free variables are implicitly universally quantified).

Bug(b, d, u)⇒ Triple(bug2iri(b),:descr, d) ∧ TBug(bug2iri(b)) ∧
Triple(bug2iri(b),:rep, pers2iri(u))

Rel(b1, b2)⇒ Triple(bug2iri(b1),:related, bug2iri(b2))

User(u, n)⇒ Triple(pers2iri(u),:name, n) ∧ TUser(pers2iri(u))

User(u, n) ∧ Email(u, e)⇒ Triple(pers2iri(u),:email, e) ∧ Lit(e)

On the left-hand-side of each rule we employ queries over the source relational database,
while on the right-hand-side we make corresponding assertions about the triples in the
target RDF graph and the types of the nodes connected by the triples. The atomic values



used in relational tables need to be carefully converted to IRIs with the help of IRI con-
structors pers2iri and bug2iri. The constructors can be typed i.e., the IRI they introduce
are assigned a unique type in the same st-tgd.

We point out that in general, IRI constructors may use external data sources to prop-
erly assign to the identifiers from the relational database unique IRIs that identify the
object in the RDF domain. For instance, the user Jose is our employee and is assigned
the corresponding IRI emp:jose, the user Edith is not an employee but a registered user
of our bug reporting tool and consequently is assigned the IRI user:edith, and finally,
the user Steve89 is an anonymous user and is assigned a special IRI indicating it anon:3.

Figure 2 presents an RDF instance that is a solution to the problem at hand. We
point out that the instance uses a (labeled) null literal ⊥1 for the email of Steve89 that
is required by the ShEx schema but is missing in our database. ut
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Fig. 2: Target RDF graph (solution)

The presence of target schema raises the question of consistency. On the one hand, we
can prove that for any instance of the relational database in Example 1 there exists a
target solution that satisfies the schema and the set of source-to-target tuple generating
dependencies. On the other hand, suppose we allow a user to have multiple email ad-
dresses, by changing the key of Email to both uid and email ). Then, the setting would
not be consistent as one could construct an instance of the relational database, with
multiple email addresses for a single user, for which there would be no solution.

Our investigation provides a preliminary analysis of the consistency problem for
relational to RDF data exchange with target ShEx schema. Our contribution can be
summarized as follows:

– a formalization of relational to RDF data exchange with target ShEx schema and
typed IRI constructors.

– a decidable characterization of a fully-typed key-covered data exchange setting that
is a sufficient and necessary condition for consistency.

– an additional restriction of weak-recursion on ShEx schemas that ensures the exis-
tence of universal solution.

Related Work. Relational Data Exchange, Consistency. The theoretical foundations of
data exchange for relational databases are laid in [4,10]. Source-to-target dependencies



with Skolem functions were introduced by nested dependencies [11] in order to improve
the quality of the data exchange solution. General existentially quantified functions are
possible in second order tgds [5]. Consistency in the case of relational data exchange
is undecidable, and decidable classes usually rely on chase termination ensured by re-
strictions such as acyclicity, or guarded dependencies, or restrictions on the structure of
source instances. The consistency criterion that we identify in this paper is orthogonal
and is particular to the kind of target constraints imposed by ShEx schemas. In [15],
static analysis is used to test whether a target dependency is implied by a data exchange
setting, these however rely on chase termination. Consistency is an important problem
in XML data exchange [4] but the techniques developed for XML do not apply here.

Value Invention, Relational to RDF Data Exchange. Value invention is used in the
purely relational setting for generating null values. Tools such as Clio [9] and ++Spicy
[16] implement Skolem functions as concatenation of their arguments. IRI value inven-
tion is considered by R2RML [1], a W3C standard for writing customizable relational to
RDF mappings. The principle is similar to what we propose here. A R2RML mapping
allows to specify logical tables (i.e. very similar to left-hand-sides of source-to-target
dependencies), and then how each row of a logical table is used to produce one or sev-
eral triples of the resulting RDF graph. Generating IRI values in the resulting graph is
done using templates that specify how a fixed IRI part is to be concatenated with the
values of some of the columns of the logical table. R2RML does not allow to specify
structural constraints on the resulting graph, therefore the problem of consistency is ir-
relevant there. In [18], a direct mapping that is a default automatic way for translating
a relational database to RDF is presented. The main difference with our proposal and
with R2RML is that the structure of the resulting RDF graph is not customizable. In [7]
we studied relational to graph data exchange in which the target instance is an edge
labelled graph and source-to-target and target dependencies are conjunctions of nested
regular expressions. Such a framework raises a different kind of issues, among which is
the materialization of a solution, as a universal solution is not necessarily a graph itself,
but a graph pattern in which some edges carry regular expressions. On the other hand,
IRI value invention is not relevant in such framework.

Organization. In Section 2 we present basic notions. In Section 3 we show how ShEx
schemas can be encoded using target dependencies. In Section 4 we formalize relational
to RDF data exchange. In Section 5 we study the problem of consistency. And finally, in
Section 6 we investigate the existence of universal solutions. Conclusions and directions
of future work are in Section 7. The missing proofs can be found in the full version [?].

2 Preliminaries
First-order logic. A relational signatureR (resp. functional signatureF) is a finite set
of relational symbols (resp. functional symbols), each with fixed arity. A type symbol
is a relational symbol with arity one. A signature is a set of functional and relational
symbols. In the sequel we useR, resp. F , resp. T for sets of relational, resp. functional,
resp. type symbols.

We fix an infinite and enumerable domain Dom partitioned into three infinite
subsets Dom = Iri ∪ Lit ∪ Blank of IRIs, literals, and blank nodes respectively.
Also, we assume an infinite subset NullLit ⊆ Lit of null literals. In general, by



null values we understand both null literals and blank nodes and we denote them by
Null = NullLit ∪Blank.

Given a signatureW = R∪ F , a model (or a structure) ofW is a mapping M that
with any symbol S inW associates its interpretation SM s.t.:

– RM ⊆ Domn for any relational symbol R ∈ R of arity n;
– fM : Domn → Dom, which is a total function for any function symbol f ∈ F

of arity n.

We fix a countable set V of variables and reserve the symbols x, y, z for variables,
and the symbols x, y, z for vectors of variables. We assume that the reader is familiar
with the syntax of first-order logic with equality and here only recall some basic notions.
A term over F is either a variable in V , or a constant in Dom, or is of the form f(x)
where f ∈ F and the length of x is equal to the arity of f ; we remark that we do
not allow nesting of function symbols in terms. A dependency is a formula of the form
∀x.ϕ ⇒ ∃y.ψ and in the sequel, we often drop the universal quantifier, write simply
ϕ⇒ ∃y.ψ, and assume that implicitly all free variables are universally quantified.

The semantics of first-order logic formulas is captured with the entailment relation
M,ν |= φ defined in the standard fashion for a model M , a first-order logic formula
φ with free variables x and a valuation ν : x → Dom. The entailment relation is
extended to sets of formulas in the canonical fashion: M |= {ϕ1, . . . , ϕn} iff M |= ϕi
for every i ∈ {1, . . . , k}.

Relational Databases. We model relational databases using relational structures in
the standard fashion. For our purposes we are only concerned with functional depen-
dencies, which include key constraints. Other types of constraints, such as inclusion
dependencies and foreign key constraints, are omitted in our abstraction.

A relational schema is a pair R = (R, Σfd) where R is a relational signature and
Σfd is a set of functional dependencies (fds) of the form R : X → Y , where R ∈ R
is a relational symbol of arity n, and X,Y ⊆ {1, . . . , k}. An fd R : X → Y is a short
for the following formula ∀x,y. R(x) ∧ R(y) ∧

∧
i∈X(xi = yi) ⇒

∧
j∈Y (xj = yj).

An instance of R is a model I of R and we say that I is valid if I |= Σfd. The active
domain dom(I) of the instance I is the set of values from Dom that appear in RI for
some relational symbol R in R. Unless we state otherwise, in the sequel we consider
only instances that use only constants from Lit \NullLit.

RDF Graphs and Shape Expressions Schemas. Recall that an RDF graph, or graph
for short, is a set of triples in (Iri ∪Blank)× Iri× (Iri ∪Blank ∪ Lit). The set of
nodes of the graph G is the set of elements of Iri∪Blank∪Lit that appear on first or
third position of a triple in G.

We next define the fragment of shape expression schemas that we consider, and
that was called RBE0 in []. Essentially, a ShEx is a collection of shape names, and
each comes with a definition consisting of a set of triple constraints. A triple constraint
indicates a label of an outgoing edge, the shape of the nodes reachable with this label,
and a multiplicity indicating how many instances of this kind of edge are allowed. We
remark that the constraints expressible with this fragment of ShEx, if non-recursive, can
also be captured by a simple fragment of SHACL with AND operator only.



Formally, a multiplicity is an element of {1, ?, *, +}with the natural interpretation: 1
is exactly one occurrence, ? stands for none or one occurrence, * stands for an arbitrary
number of occurrences, and + stands for a positive number of occurrences. A triple
constraint over a finite set of shape names T is an element of Iri × (T ∪ {Lit}) ×
{1, ?, *, +}, where Lit is an additional symbol used to indicate that a node is to be a
literal. Typically, we shall write a triple constraint (p, T, µ) as p :: Tµ. Now, a shape
expressions schema, or ShEx schema for short, is a couple S = (T , δ) where T is a
finite set of shape names, and δ is shape definition function that maps every symbol
T ∈ T to a finite set of triple constraints over T such that for every shape name T and
for every IRI p, δ(T ) contains at most one triple constraint using p.

For a finite set T of shape names, a T -typed graph is a couple (G, typing) where G
is a graph and typing is a mapping from the nodes of G into 2T ∪{Lit} that with every
node ofG associates a (possibly empty) set of types. Let S = (T , δ) be a ShEx schema.
The T -typed graph (G, typing) is correctly typed w.r.t. S if it satisfies the constraints
defined by δ i.e., for any node n of G:

– if Lit ∈ typing(n), then n ∈ Lit;
– if T ∈ typing(n) then n ∈ Iri and for every p :: Sµ in δ(T ) we have that (1) for

any triple (n, p,m) in G, S belongs to typing(m), and (2) if K is the set of triples
in G whose first element is n and second element is p, then the cardinality of K is
bounded by µ i.e., |K| = 1 if µ = 1, |K| ≤ 1 if µ = ?, and |K| ≥ 1 if µ = +
(there is no constraint if µ = *).

For instance, a correct typing for the graph in Figure 2 assigns the type TBug to
the nodes bug:1, bug:2, bug:3, and bug:4; the type TUser to the nodes emp:jose,
user:edith, and anon:3; and Lit to every literal node.

3 ShEx Schemas as Sets of Dependencies

In this section we show how to express a ShEx schema S = (T , δ) using dependencies.
First, we observe that any T -typed graph can be easily converted to a relational

structure over the relational signature GT = {Triple} ∪ T ∪ {Lit}, where Triple is
a ternary relation symbol for encoding triples, and T ∪ {Lit} are monadic relation
symbols indicating node types (details in Appendix A). Consequently, in the sequel, we
may view a T -typed graph as the corresponding relational structure (or even a relational
database over the schema (GT , ∅)).

Next, we define auxiliary dependencies for any two T, S ∈ T and any p ∈ Iri

tc(T, S, p) := T (x) ∧ Triple(x, p, y)⇒ S(y)

mult≥1 (T, p) := T (x)⇒ ∃y.Triple(x, p, y)
mult≤1 (T, p) := T (x) ∧ Triple(x, p, y) ∧ Triple(x, p, z)⇒ y = z

We point out that in terms of the classical relational data exchange, tc and mult≥1 are
tuple generating dependencies (tgds), and mult≤1 is an equality generating dependency



(egd). We capture the ShEx schema S with the following set of dependencies:

ΣS = {tc(T, S, p) | T ∈ T , p :: Sµ ∈ δ(T )} ∪
{mult≥1 (T, p) | T ∈ T , p :: Sµ ∈ δ(T ), µ ∈ {1, +}} ∪
{mult≤1 (T, p) | T ∈ T , p :: Sµ ∈ δ(T ), µ ∈ {1, ?}}.

Lemma 1. For every ShEx schema S = (T , δ) and every T -typed RDF graph (G, typing),
(G, typing) is correctly typed w.r.t. S iff (G, typing) |= ΣS.

4 Relational to RDF Data Exchange
In this section, we present the main definitions for data exchange.

Definition 1 (Data exchange setting). A relational to RDF data exchange setting is a
tuple E = (R,S, Σst,F , Fint) where R = (R, Σfd) is a source relational schema, S =
(T , δ) is a target ShEx schema, F is a function signature, Fint as an interpretation for
F that with every function symbol f in F of arity n associates a function from Domn

to Iri, and Σst is a set of source-to-target tuple generating dependencies, clauses of
the form ∀x.ϕ ⇒ ψ, where ϕ is a conjunction of atomic formulas over the source
signatureR and ψ is a conjunction of atomic formulas over the target signature GT ∪F .
Furthermore, we assume that all functions in Fint have disjoint ranges i.e., for f1, f2 ∈
Fint if f1 6= f2, then ran(f1) ∩ ran(f2) = ∅.

Definition 2 (Solution). Take a data exchange setting E = (R,S, Σst,F , Fint), and
let I be a valid instance of R. Then, a solution for I w.r.t. E is any T -typed graph J
such that I ∪ J ∪ Fint |= Σst and J |= ΣS.

A homomorphism h : I1 → I2 between two relational structures I1, I2 of the same
relational signatureR is a mapping from dom(I1) to dom(I2) that 1) preserves the val-
ues of non-null elements i.e., h(a) = a whenever a ∈ dom(I1)\Null, and 2) for every
R ∈ R and every a ∈ RI1 we have h(a) ∈ RI2 , where h(a) = (h(a1), . . . , h(an)) and
n is the arity of R.

Definition 3 (Universal Solution). Given a data exchange setting E and a valid source
instance I , a solution J for I w.r.t. E is universal, if for any solution J ′ for I w.r.t. E
there exists a homomorphism h : J → J ′.

As usual, a solution is computed using the chase. We use a slight extension of the
standard chase (explained in [?]) in order to handle function terms, which in our case is
simple (compared to e.g. [5]) as the interpretation of function symbols is given.

5 Consistency
Definition 4 (Consistency). A data exchange setting E is consistent if every valid source
instance admits a solution.



We fix a relational to RDF data exchange setting E = (R,S, Σst,F , Fint) and let
S = (T , δ). We normalize source-to-target tuple generating dependencies so that their
right-hand-sides use exactly one Triple atom and at most two type assertions on the
subject and the object of the triple; such normalization is possible as our st-tgds do not
use existential quantification. In this paper, we restrict our investigation to completely
typed st-tgds having both type assertions, and therefore being of the following form

∀x. ϕ⇒ Triple(s, p, o) ∧ Ts(s) ∧ To(o),

where s is the subject term, Ts is the subject type, p ∈ Iri is the predicate, o is the
object term, and To is the object type. Because the subject of a triple cannot be a literal,
we assume that s = f(y) for f ∈ F and for y ⊆ x, and Ts ∈ T . As for the object,
we have two cases: 1) the object is an IRI and then o = g(z) for g ∈ F and for z ⊆ x,
and To ∈ T , or 2) the object is literal o = z for z ∈ x and To = Lit . Moreover,
we assume consistency with the target ShEx schema S i.e., for any st-tgd in Σst with
source type Ts, predicate p, and object type To we have p :: Tµo ∈ δ(Ts) for some
multiplicity µ. Finally, we assume that every IRI constructor in F is used with a unique
type in T . When all these assumptions are satisfied, we say that the source-to-target
tuple generating dependencies are fully-typed.

While the st-tgds in Example 1 are not fully-typed, an equivalent set of fully-typed
dependencies can be easily produced if additionally appropriate foreign keys are given.
For instance, assuming the foreign key constraint Bug[uid ] ⊆ User[uid ], the first rule
with Bug on the left-hand-side is equivalent to

Bug(b, d, u) ⇒ Triple(bug2iri(b),:descr, d) ∧ TBug(bug2iri(b)) ∧ Lit(d)

Bug(b, d, u) ⇒ Triple(bug2iri(b),:rep, pers2iri(u)) ∧ TBug(bug2iri(b)) ∧ TUser(pers2iri(u))

Now, two st-tgds are contentious if both use the same IRI constructor f for their
subjects and have the same predicate, hence the same subject type Ts and object type
To, and p :: Tµo ∈ δ(Ts) with µ = 1 or µ = ?. We do not want two contentious st-
tgds to produce two triples with the same subject and different objects. Formally, take
two contentious st-tgds σ1 and σ2 and assume they have the form (for i ∈ {1, 2}, and
assuming x1,x2,y1,y2 are pairwise disjoint)

σi = ∀xi,yi. ϕi(xi,yi)⇒ Triple(f(xi), p, oi) ∧ Ts(f(xi)) ∧ To(oi).

The st-tgds σ1 and σ2 are functionally overlapping if for every valid instance I of R

I ∪ Fint |= ∀x1,y1,x2,y2. ϕ1(x1,y1) ∧ ϕ2(x2,y2) ∧ x1 = x2 ⇒ o1 = o2.

Finally, a data-exchange setting is key-covered if every pair of its contentious st-tgds is
functionally overlapping. Note that any single st-tgd may be contentious with itself.

Theorem 1. A fully-typed data exchange setting is consistent if and only if it is key-
covered.

The sole reason for the non-existence of a solution for a source instance I is a violation
of some egd in ΣS. The key-covered property ensures that such egd would never be ap-
plicable. Intuitively, two egd-conflicting objects o1 and o2 are necessarily generated by
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Fig. 3: Dependency graph with dashed weak edges and plain strong edges

two contentious st-tgds. The functional-overlapping criterion guarantees that the terms
o1 and o2 are “guarded” by a primary key in the source schema, thus cannot be different.

Theorem 2. It is decidable whether a fully-typed data exchange setting is key-covered.

The proof uses a reduction to the problem of functional dependency propagation [12].

6 Universal Solution
In this section, we identify conditions that guarantee the existence of a universal solu-
tion. Our results rely on the existence of a universal solution for sets of weakly-acyclic
sets of dependencies for relational data exchange [10]. As the tgds and egds that we gen-
erate are driven by the schema (cf. Section 3), we introduce a restriction on the ShEx
schema that yields weakly-acyclic sets of dependencies, and consequently, guarantees
the existence of universal solution.

The dependency graph of a ShEx schema S = (T , δ) is the directed graph whose
set of nodes is T and has an edge (T, T ′) if T ′ appears in some triple constraint p :: T ′µ

of δ(T ). There are two kinds of edges: strong edge, when the multiplicity µ ∈ {1, +},
and weak edge, when µ ∈ {*, ?}. The schema S is strongly-recursive if its dependency
graph contains a cycle of strong edges only, and is weakly-recursive otherwise. Take for
instance the following extension of the ShEx schema from Example 1:

TUser→ {:name :: Lit1,:email :: Lit1,:phone :: Lit?}
TBug→ {:rep :: TUser1,:descr :: Lit1,:related :: TBug*,:repro :: TEmp?}
TEmp→ {:name :: Lit1,:prepare :: TTest+}
TTest→ {:covers :: TBug+}

The dependency graph of this schema, presented in Figure 3. contains two cycles but
neither of them is strong. Consequently, the schema is weakly-recursive (and naturally
so is the ShEx schema in Example 1).

As stated above, a weakly-recursive ShEx schema guarantees a weakly-acyclic set
of dependencies and using results from [10] we get

Proposition 1. Let E = (R,S, Σst,F , Fint) be a data exchange setting and I be a
valid instance of R. If S is weakly recursive, then every chase sequence of I with Σst ∪
ΣS is finite, and either every chase sequence of I with Σst fails, or every such chase
sequence computes a universal solution of I for E .

7 Conclusion and Future Work
We presented a preliminary study of the consistency problem for relational to RDF data
exchange in which the target schema is ShEx. Consistency is achieved by fully-typed



and key-covered syntactic restriction of st-tgds. An open problem that we plan to in-
vestigate is consistency when the fully-typed restriction is relaxed; we believe that it
is achievable if we extend the definition of contentious st-tgds. Another direction of
research is to consider a larger subset of ShEx. Finally, we plan to extend our frame-
work to typed literals which are not expected to bring fundamental difficulties but are
essential for practical applications.
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A ShEx Schemas as Sets of Dependencies

Lemma 2. For any T -typed graph (G, typing), let rdf -to-inst(G, typing) be defined
as below. For any I instance of (GT , ∅) satisfying TripleI ⊆ (Iri ∪ Blank) × Iri ×
(Iri ∪Blank ∪ Lit) and LitI ⊆ Lit and T I ⊆ Iri for all T ∈ T , let inst-to-rdf (I)
be defined as below.

rdf -to-inst(G, typing) ={Triple(s, p, o) | (s, p, o) ∈ G}
∪ {T (n) | n node of G,T ∈ typing(n)}

inst-to-rdf (I) =(G, typing) with G = {(s, p, o) | Triple(s, p, o) ∈ I}
and typing(n) = {T ∈ T ∪ {Lit} | T (n) ∈ I} for any n node of G

Then for any T -typed graph (G, typing) and any instance I of (GT , ∅) in the domain
of inst-to-rdf , the following hold:

1. rdf -to-inst(G, typing) is an instance of (GT , ∅);
2. inst-to-rdf (I) is a T -typed graph;
3. inst-to-rdf (rdf -to-inst(G, typing)) is defined and is equal to (G, typing).

Proof. 1. Immediately follows from the definition rdf -to-inst(G, typing).
2. Immediately follows from the definition of inst-to-rdf (I).
3. Let I = rdf -to-inst(G, typing). By definition, inst-to-rdf (I) is defined if (a)

TripleI ⊆ (Iri ∪Blank) × Iri × (Iri ∪Blank ∪ Lit) and (b) LitI ⊆ Lit and
(c) T I ⊆ Iri for all T ∈ T . Note that (a) follows from the definition of rdf -to-inst
and the fact that G is an RDF graph. Also, (b) and (c) follow from the definition of
rdf -to-inst and the fact that typing is a typing. Then it immediately follows from
the definitions that inst-to-rdf (rdf -to-inst(G, typing)) = (G, typing).

A.1 Proof of Lemma 1

Take a typed graph (G, typing) and ShEx schema S = (T , δ). For the ⇒ direction,
we will prove by contrapositive. Assume that (G, typing) 6|= ΣS. Our goal is to prove
(G, typing) is not correctly typed w.r.t. S. By definition of entailment, there is one
dependency σ ∈ ΣS that is not satisfied. The dependency σ can be of the following
forms:

– mult≥1 (Ts, p). By construction of ΣS, the dependency σ occurs when a triple con-
straint is of the form p :: Tµo where µ ∈ {1, +} and p some property. Since σ is not
satisfied, Ts ∈ typing(n) for some node n of G. Because the cardinalty of the set
of triples with node n and propery p is 0, the definition of correctly typed in the
typed graph (G, typing) w.r.t. S is violated.

– mult≤1 (Ts, p). By construction of ΣS, the dependency σ occurs when a triple con-
straint is of the form p ::Tµo where µ ∈ {1, ?}. Since σ is not satisfied, we have that
(s, p, o1) ∈ G and (s, p, o2) ∈ G and Ts ∈ typing(s), which violates the definition
of correctly typed in the typed graph (G, typing) w.r.t. S.



– tc(Ts, To, p). By construction of ΣS, the dependency σ occurs when a triple con-
straint is of the form p :: Tµo where µ ∈ {1, ?, *, +}. Since σ is not satisfied,
(s, p, o) ∈ G and Ts ∈ typing(s). Because the node o ∈ G, it must hold To ∈
typing(o). But this fact is not, then the typed graph (G, typing) w.r.t. S is not cor-
rectly typed.

For the⇐ direction, assume that (G, typing) |= ΣS. Our goal is to prove (G, typing)
is correctly typed w.r.t. S. We will prove by contradiction. Suppose that (G, typing) is
not correctly typed w.r.t. S. Then we have two cases when there is a node n ∈ G:

– Lit ∈ typing(n) and n 6∈ Lit. By definition of Lit , the node n is of type literal,
means n ∈ Lit. Contradiction.

– We have two sub-cases when T ∈ typing(n):
• n 6∈ Iri. By definition, all nodes ofG are in the set Lit∪Iri∪Blank. Because
T (n) is fact in (G, typing), then n ∈ Iri ∪ Blank. Because blank nodes are
potentially IRIs, then n ∈ Iri. Contradiction.

• There is a triple constraint p :: Sµ ∈ δ(T ) such that
∗ There is a triple (n, p,m) such that S 6∈ typing(m). Since T (n) and
Triple(n, p,m) are facts in (G, typing) and (G, typing) |= tc(T, S, p),
then S(m) is fact in (G, typing). Thus, S ∈ typing(m). Contradiction.
∗ Let K be the set of triples whose first element is n and second element is
p. The cardinality of K is not bounded by µ. Thus, we have the following
cases:
· When µ = 1 and |K| 6= 1. It follows that mult≤1 (T, S, p) ∈ ΣS

and mult≥1 (T, S, p) ∈ ΣS. Since (G, typing) |= ΣS, then |K| = 1.
Contradiction.
· When µ = ? and |K| > 1. It follows that mult≤1 (T, S, p) ∈ ΣS.

Since (G, typing) |= ΣS, then |K| ≤ 1. Contradiction.
· When µ = + and |K| < 1. It follows that mult≥1 (T, S, p) ∈ ΣS.

Since (G, typing) |= ΣS, then |K| ≥ 1. Contradiction.

B The chase

Let E = (R,S, Σst,F , Fint) be a data exchange setting with R = (R, Σfd) and S =
(T , δ), and let I be an instance of R ∪ GT . For a tgd or std σ = ∀x.φ → ψ and a
homomorphism h : φ → I , we say that σ is applicable to I with h if (1) either ψ is
without existential quantifier and I ∪ Fint, h 6|= ψ, or (2) ψ = ∃y.ψ′ and for all h′

extension of h on y, I ∪ Fint, h
′ 6|= ψ′. Then applying σ to I with h yields the instance

I ′ defined as follows. In the case (1), I ′ = hFint(ψ). In the case (2), I ′ = h′Fint(ψ′)
where h′ is an extension of h and for y ∈ y, h′(y) is a fresh null value that depends
on S. If δ(T ) contains a triple constraint p :: Litµ, then h′(y) ∈ NullLit \ dom(I). If
δ(T ) contains p :: T ′µ for some T ′ ∈ T , then h′(y) ∈ Blank \ dom(I). For an egd
σ = ∀x.φ → x = x′, if there exists a homomorphism h : φ → I s.t. h(x) 6= h(x′),
we say that σ is applicable to I with h and the result is (1) the instance I ′ obtained by
replacing h(x) by h(x′) (resp. h(x′) by h(x)) in all facts of I if h(x) (resp. h(x′)) is a
null value, and (2) the failure denoted ⊥ if both h(x) and h(x′) are non nulls. We write



I
σ,h−−→U if σ is applicable to I with h yielding U , where U is either another instance or
⊥, and I

σ,h−−→U is called a chase step.
Let Σ be a set of dependencies and I be an instance. A chase sequence of I with Σ

is a finite or infinite sequence of chase steps Ii
σi,hi−−−→Ii+1 for i = 0, 1, . . ., with I0 = I

and σi a dependency in Σ. The well-known result from [10] still holds in our setting: if
there exists a finite chase sequence then it constructs a universal solution.

C Proofs of Theorems 1 and 2

Before proving the theorems, we define a mapping hF that will be used to define the
notion of homomorphism from a formula into an instance. LetF be a function signature
and F be an interpretation of F . For a term t over F and a mapping h : V → Dom,
we define hF (t) as:

hF (t) =


h(x) if t = x ∈ V
a if t = a ∈ Dom

f(hF (t′)) if t = f(t′) is a function term.

The mapping hF is extended on atoms and conjunctions of atoms as expected: hF (R(t)) =
R(hF (t)) and hF (

∧
i∈1..k Ri(ti)) =

∧
i∈1..k h

F (Ri(ti)). Note that if the argument of
hF does not contain function terms, the interpretation F is irrelevant so we allow to
omit the F superscript and write e.g. h(t) instead of hF (t).

A homomorphism h : φ → M between the conjunction of atoms φ over signature
W = R∪F and the model M = I ∪F ofW is a mapping from fvars(φ) to Dom s.t.
for every atom R(t) in φ it holds that R(hF (t)) is a fact in I , where I , resp. F , is the
restriction of M toR, resp. to F .

Remark that if φ does not contain function terms, then F in the above definition is
irrelevant and we write h : φ→ I instead of h : φ→M and h(t) instead of hF (t).

C.1 Proof of Theorem 1

Take a data exchange setting E = (R,S, Σst,F , Fint) with S = (T , δ). Assume
first that E is consistent, and let I be a valid instance of R and J be a solution for
I by E . That is, I ∪ J |= Σst ∪ ΣS. Let Ts, To, p and µ ∈ {1, ?} be such that
p :: Tµo ∈ δ(Ts). Suppose by contradiction that, for i = 1, 2, σi = ∀x.φi(xi,yi) ⇒
Triple(f(xi), p, oi) ∧ Ts(f(xi)) ∧ To(oi) are two contentious stds in Σst and they are
not functionally overlapped that is I 6|= ∀x1,x2,y1,y2.φ1(x1,y1)∧φ2(x2,y2)∧x1 =
x2 ⇒ o1 = o2. That is, there is a homomorphism h : φ1 ∧ φ2 → I s.t. I, h |= φ1 ∧ φ2
but hFint(o1) 6= hFint(o2). Because J is a solution of E , we know that I∪J ∪Fint |= σi
for i = 1, 2 and deduce that J contains the facts (1) Triple(hFint(f(x1)), p, h

Fint(o1)),
Triple(hFint(f(x1)), p, h

Fint(o2)) and Ts(hFint(f(x1))). On the other hand, by defi-
nition mult≤1 (Ts, p) = ∀x, y, z. Ts(x) ∧ Triple(x, p, y) ∧ Triple(x, p, z) ⇒ y = z
is in ΣS and J |= mult≤1 (Ts, p). But mult≤1 (Ts, p) applies on the facts (1) with ho-
momorphism h′ s.t. h′(x) = hFint(f(x1)), h′(y) = hFint(o1) and h′(z) = hFint(o2),
therefore hFint(o1) = hFint(o2). Contradiction.



Assume now that E is key-covered, and let I be a valid instance of R. We con-
struct a solution for I by E . We first chase I with Σst until no more rules are appli-
cable, yielding an instance J . Because Σst contains only stds (that is tgds on differ-
ent source and target signatures), we know that J exists. We now show that no egd
from ΣS is applicable to J . By contradiction, let mult≤1 (Ts, p) = ∀x, y1, y2. Ts(x) ∧
Triple(x, p, y1) ∧ Triple(x, p, y2) ⇒ y1 = y2 be an egd that is applicable to J . That
is, there is a homomorphism h : Ts(x) ∧ Triple(x, p, y1) ∧ Triple(x, p, y2) → I s.t.
Triple(h(x), p, h(y1)), Triple(h(x), p, h(y2)) and Ts(h(x)) are facts in J and h(y1) 6=
h(y2). By construction of J as the result of chasing I with Σst and by the fact that
Σst is fully-typed, it follows that there are two (not necessarily distinct) stds σi =
∀x,yi.φi(x,yi)⇒ Triple(f(x), p, oi)∧Ts(f(x))∧To(oi) and there exist hi : φi → I
homomorphisms satisfying the following: (2) fFint(hi(x)) = h(x), and hi(zi) = h(yi)
if oi = zi are variables, and gFint(hi(zi)) = h(yi) if oi = g(zi) for some vectors of
variables zi and function symbol g, for i = 1, 2. Then h1 ∪ h2 : φ1 ∧ φ2 → I is a
homomorphism, and because E is key-covered we know that h1(o1) = h2(o2). This is
a contradiction with h(y1) 6= h(y2) using (2) and the fact that the functions fFint and
gFint are injective, and implies that no egd from ΣS is applicable to J .

Finally, we are going to add the facts J ′ to J so that J ∪ J ′ satisfies the tgds and
the egd’s in ΣS. Note that J does not satisfy ΣS because some of the mult≥1 (Ts, p)
might not be satisfied. For any mult≥1 (Ts, p) in ΣS, let bTs,p ∈ Blank be a blank
node distinct from other such blank nodes, that is, bTs,p 6= bTo,p

′
if Ts 6= To or p 6= p′.

Now, let J1 and J2 be the sets of facts defined by:

J1 =
{
T1(b

Ts,p) | p :: Tµ1 ∈ δ(Ts) for µ ∈ {1, +}
}

J2 =
{
Triple(bTs,p, q, bT1,q) | T1(bTs,p) ∈ J1 and q :: Tµ2 ∈ δ(T1) for µ ∈ {1, +}

}
Intuitively, J1 adds to the graph nodes bTs,p whenever the property p is required by type
Ts in S. A property is required if it appears in a triple constraint with multiplicity 1 or
+. Such node has type T1 as required by the corresponding triple constraint p :: Tµ1 in
δ(Ts). Then, J2 adds to the graph triples for the properties q that are required by the
nodes added by J1. Remark that J1 ∪ J2 is a correctly typed graph. We finally connect
J1 ∪ J2 to J . Let

J3 =
{
Triple(a, p, bTs,p) | Ts(a) ∈ J and 6 ∃Triple(a, p, b′) in J and p :: Tµo ∈ δ(Ts)

}
Then G = J ∪ J1 ∪ J2 ∪ J3 satisfies the tgds in ΣS. It remains to show that G also
satisfies the egd’s in ΣS. This is ensured by construction as J satisfies the egd’s and J2
and J3 add a unique triple Triple(b, p, b′) only to unsatisfied typing requirements Ts(b)
for types Ts, that is, for every Triple(b, p, b′) added by J2 or J3 there is no different
Triple(b, p, b′′) in J ∪ J2 ∪ J3.

This concludes the proof of Theorem 1.

C.2 Proof of Theorem 2

Let E = (R,S, Σst,F , Fint) with S = (T , δ) and R = (R, Σfd) be a fully-typed data
exchange setting.



The proof goes by reduction to the problem of functional dependency propagation.
We start by fixing some vocabulary and notions standard in databases. A view over a
relational signature R is a set of queries over R. Recall that a n-ary query is a logical
formula with n free variables. If V = {V1, . . . , Vn} is a view, we see V as a relational
signature, where the arity of the symbol Vi is the same as the arity of the query Vi, for
1 ≤ i ≤ n. Given a relational schema R = (R, Σfd), a view V , and an instance I of
R, by V(I) we denote the result of applying the query V to I . The latter is an instance
over the signature V .

Now, the problem of functional dependency propagation FDPROP(R,V, ΣVfd) is de-
fined as follows. Given a relational schema R = (R, Σfd), a view V overR, and a set of
functional dependencies ΣVfd over V , R = (R, Σfd) holds iff for any I valid instance of
R, V(I) |= ΣVfd. It is known by [12] that the problem FDPROP(R,V, ΣVfd) is decidable.

We will construct a view V and a set ΣVfd of functional dependencies over V s.t.
FDPROP(R,V, ΣVfd) iff E is key-covered.

Let σ1, σ2 be two contentious stds from Σst that are functionally overlapping as
those in the premise of the key-coverdness condition. That is, for some Ts, To, p, f , for
i = 1, 2, we have σi = ∀xi,yi.φi(xi,yi)⇒ Triple(f(xi), p, oi)∧Ts(f(xi))∧To(oi).
Recall that oi and oi and either both variables, or are both functional terms with the same
function symbol. Let z, resp. z′ be the vectors of variables is o1, resp. o2. That is, if e.g.
o1 is a variable then z is a vector of length one of this variable, and if o1 = g(z1, . . . , zn)
for some function symbol g, then z = z1, . . . , zn. Remark that z ⊆ x∪y1, and similarly
for z′.

Now, for any such couple σ1, σ2 of two (not necessarily distinct) stds, we define
the query Vσ1,σ2

as the union of two queries, and the functional dependency fdσ1,σ2
, as

follows.

Vσ1
(x, z) = ∃y−z1 .φ1(x,y1) (1)

Vσ2
(x, z′) = ∃y−z

′

2 .φ2(x,y2) (2)
Vσ1,σ2

= qσ1
∪ qσ2

(3)
fdσ1,σ2

= Vσ1,σ2
: {1, . . . ,m} → {m+ 1, . . . ,m+ n} (4)

where for any two vectors of variables y and z, y−z designates the set of variables y\z,
and m is the length of x, and n is the length of z and z′. Then

V = {Vσ1,σ2
| σ1, σ2 as in the premise of the condition for key-covered} (5)

ΣVfd =
{
fdσ1,σ2

| σ1, σ2 as in the premise of the condition for key-covered
}

(6)

The sequel is the proof that FDPROP(R,V, ΣVfd) iff E is key-covered, which by [12]
implies that key-coverdness is decidable.

For the ⇒ direction, suppose that FDPROP(R,V, ΣVfd). Let I a valid instance of
R and let J = V(I). We show that for any two contentious stds σ1, σ2 ∈ Σst that are
functionally overlapping as in the premise of the condition for key-covered, it holds that
I ∪ Fint |= ∀x1,x2,y1,y2.φ1(x1,y1) ∧ φ2(x2,y2) ∧ x1 = x2 ⇒ o1 = o2. Let ν be a
valuation of the variables x1∪y1∪y2 s.t. I∪Fint, ν |= φ1∧φ2. By definition of qσ1 and
qσ2 and x1 = x2 it is easy to see that Vσ1,σ2(ν(x1), ν(z)), and Vσ1,σ2(ν(x2), ν(z

′))



are facts in J Because J satisfies fdσ1,σ2
, we deduce that ν(z) = ν(z′), therefore

νFint(o1) = νFint(o2), which concludes the proof of the⇒ direction.
For the⇐ direction, suppose that E is key-covered. Let I a valid instance of R and

let J = V(I). Let σi = ∀xi,yi.φi(xi,yi)⇒ Triple(f(xi), p, oi)∧Ts(f(xi))∧To(oi)
for i = 1, 2 be two stds inΣst that satisfy the premise for key-covered. Let Vσ1,σ2

(a,b)
and Vσ1,σ2

(a,b′) be two facts in J . That is, by definition and x1 = x2 there exist val-
uations ν of the variables y−z1 and ν′ of the variables y−z

′

2 s.t. I, ν[x1/a, z/b] |=
φ1(x1,y1) and I, ν′[x2/a, z

′/b′] |= φ2(x2,y2). We now distinguish two cases, de-
pending on whether the two facts were generated by the same query Vσi

(for some
i ∈ 1..2), or one was generated by Vσ1

and the other one by Vσ2
.

– If (a,b) ∈ V Jσ1
and (a,b′) ∈ V Jσ2

, then I ∪ Fint, ν ∪ ν′ ∪ [x1/a, z/b, z
′/b′] |=

φ1(x1,y1)∧φ2(x2,y2), where x1 = x2. Thus, because E is key-covered we know
that [z/b]Fint(o1) = [z′/b′]Fint(o2), so b = b′. Therefore J |= fdσ2,σ2

.
– If (a,b), (a,b′) ∈ V Jσ1

, then by definition of the view V it is easy to see that
Vσ1,σ1

(a,b) and Vσ1,σ1
(a,b′) are also facts in J . Then the proof goes as in the

previous case.

This concludes the proof of Theorem 2.
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