
HAL Id: hal-01775190
https://hal.science/hal-01775190v1

Submitted on 24 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending Timbuk to Verify Functional Programs
Thomas Genet, Tristan Gillard, Timothée Haudebourg, Sébastien Lê Cong

To cite this version:
Thomas Genet, Tristan Gillard, Timothée Haudebourg, Sébastien Lê Cong. Extending Timbuk to
Verify Functional Programs. WRLA 2018 - 12th International Worshop on Rewriting Logic and its
Applications, Apr 2018, Thessalonique, Greece. pp.153-163, �10.1007/978-3-319-99840-4_9�. �hal-
01775190�

https://hal.science/hal-01775190v1
https://hal.archives-ouvertes.fr

Extending Timbuk to Verify Functional Programs

Thomas Genet, Tristan Gillard, Timothée Haudebourg, and Sébastien Lê Cong

Univ Rennes/Inria/CNRS/IRISA, Campus Beaulieu, 35042 Rennes Cedex, France

Abstract. Timbuk implements the Tree Automata Completion algo-
rithm whose purpose is to over-approximate sets of terms reachable by
a term rewriting system. Completion is parameterized by a set of equa-
tions defining which terms are equated in the approximation. In this
paper we present two extensions of Timbuk which permit us to automat-
ically verify safety properties on functional programs. The first extension
is a language, based on regular tree expressions, which eases the speci-
fication of the property to prove on the program. The second extension
automatically generates a set of equations adapted to the property to
prove on the program.

1 Motivations

Term Rewriting Systems (TRS for short) are a well known model of functional
programs. This model has been used for different kind of analysis ranging from
model-checking [4], to static analysis [16] and from termination analysis [13]
to complexity analysis [1]. In this paper we focus on static analysis of safety
properties on functional programs. Let us illustrate this on a simple example.
Assume that we want to analyze the following delete OCaml function:

let rec delete x l= match l with
| [] -> []
| h::t -> if h=x then (delete x t) else h::(delete x t);;

In Timbuk [9], this program will be translated in the following TRS, where ite
encodes the if-then-else construction and eq encodes a simple equality on two
arbitrary constant symbols A and B. The Ops section defines the symbols with
their arity, the Const section defines the constructor symbols (symbols that are
not associated with a function), the Vars section defines variables and the TRS
section associates the name of the TRS with its rules. In the following, we denote
by F the set of symbols defined in the Ops section and T (F) the set of ground
terms built on F . We denote by C the set of constructor symbols defined by
Const, and T (C) the set of ground terms defined on C.

Ops delete:2 cons:2 nil:0 A:0 B:0 ite:3 true:0 false:0 eq:2
Const A B nil cons true false
Vars X Y Z
TRS R

delete(X,nil)->nil

delete(X,cons(Y,Z))->ite(eq(X,Y),delete(X,Z),cons(Y,delete(X,Z)))
ite(true,X,Y)->X
ite(false,X,Y)->Y
eq(A,A)->true eq(A,B)->false eq(B,A)->false eq(B,B)->true

Let us denote by L the set of all possible lists of A’s and B’s. On this program,
we are interested in proving that for all l ∈ L, delete(A,l) can only result into
a list where A does not occur. This is equivalent to proving that for all l∈ L,
delete(A,l) never rewrites to a list containing an A. This can be done using
reachability analysis on rewriting with the above TRS R. We denote by I the
set of all initial terms, i.e., I = {delete(A, l) | l ∈ L} and let Bad be the set
of lists containing at least one A. We denote by R∗(I) the set of terms reachable
by rewriting terms of I with R, i.e., R∗(I) = {t | s ∈ I and s →R∗ t}, where
→R∗ is the reflexive and transitive closure of →R. If R∗(I) ∩ Bad = ∅ then
there is no way to rewrite a term of the form delete(A,l) with l∈ L into a list
containing an A and the property is also true on the functional program. Note
that the property proved on the TRS is stronger than the property proved on the
functional program. In particular, it is independent of the evaluation strategy:
it can be call-by-value as well as call-by-name. Thus, the property is true for
OCaml as well as for Haskell programs.1 This paper presents two extensions of
Timbuk making the above analysis possible and automatic.

– The first extension are simplified regular tree expressions which let the user
easily and intuitively define the set of initial terms I.

– The second extension automatically generates abstraction equations, using
algorithms described in [10] and [8]. This makes it possible to automatically
build a regular over-approximation App of R∗(I) such that App ∩Bad = ∅,
if it exists.

In Section 2, we define simplified regular expressions. In Section 3, we explain
why abstraction equations are necessary and we show how to generate them
in Section 4. In Section 5, we show how to interact with Timbuk in order to
carry out a complete analysis, as the one shown above. Finally, in Section 6, we
conclude and give further research directions.

2 Simplified regular tree expressions

We defined the TRS but we still need to define the set of initial terms I in Tim-
buk. Until now, it could only be defined using a tree automaton [5]. Defining I
with this formalism is possible but it is error-prone and lacks readability. As in
the case of word languages, there exists an alternative representation for regular
tree languages: regular tree expressions [5]. However, unlike classical regular ex-
pressions for words, regular tree expressions are difficult to read and to write. For
1 When the analysis depends on the evaluation strategy, completion can be extended
to take it into account [12].

instance, the regular tree expression defining terms of the form f(gn(a), hm(b))
with n,m ∈ N is f(g(�1)

∗,�1 .�1
a, h(�2)

∗,�2 .�2
b), where �1 and �2 are new con-

stants. In this expression, the sub-expression g(�1)
∗,�1 .�1

a represents the lan-
guage gn(a). The effect of ∗,�1 is to iteratively replace �1 by g(�1), and the effect
of .�1

a is to replace�1 by a. Regular tree expressions are expressive enough to de-
fine any regular tree language. To be complete w.r.t. regular tree languages, this
formalism needs named placeholders (like �1 and �2 above) because the effect of
the iteration symbol ∗ depends on the position where it occurs. However, named
placeholders make regular tree expressions difficult to read and to write, even if
they define simple languages. For instance, the set I = {delete(A, l) | l ∈ L}
defined above can be written delete(A, cons((A|B),�1)

∗,�1 .�1
nil) where �1 is

a new constant.
In this paper, we propose a new formalism for defining regular tree lan-

guages: simplified regular tree expression (SRegexp for short). Those expressions
are not complete w.r.t. regular languages but are easier to read and to write. For
instance, the set I is defined by the SRegexp delete(A,[cons((A|B),*|nil)]).
Those regular expressions are defined using only 3 operators: ’|’ to build the
union of two languages, ’*’ to iterate a pattern and the optional brackets ’[
...]’ to define the scope of the embedded *. The SRegexp cons((A|B),*|nil)
repeats the pattern cons(A, _) or cons(B,_) as long as possible and termi-
nates by nil. Thus, it defines the language {nil, cons(A,nil), cons(B,nil),
cons(A,cons(A,nil)), cons(A,cons(B,nil)),. . .}. The brackets define the scope
of the pattern to repeat with *. In the SRegexp delete(A,[cons((A|B),*|nil)]),
the iteration applies on cons(A, _) or cons(B,_) but not on delete(A,_). Thus,
this expression represents the language {delete(A, nil), delete(A,cons(A,nil)),
delete(A,cons(B,nil)), . . .}.2

We implemented SRegexp in Timbuk together with a translation to standard
regular tree expressions. We also implemented the translation from regular tree
expressions to tree automata defined in [18]. Thus, from a SRegexp I, Timbuk
can automatically generate a tree automaton A whose recognized language L(A)
is equal to I. We also implemented the converse operations: tree automata to reg-
ular expression using the algorithm [15] and regular tree expressions to SRegexp.
Note that, since SRegexp are incomplete w.r.t. regular tree languages, conversion
from regular tree expression to SRegexp may fail. Thus, the over-approximation
of reachable terms computed by Timbuk is presented as a SRegexp if it is possi-
ble, or as a tree automaton otherwise.

3 The need for abstraction equations

Starting from R and I = L(A), computing R∗(I) is not possible in general [14].
Nevertheless, ifR is a left-linear TRS thenR∗(I) can be over-approximated with
tree automata completion [6]. From A and R, completion builds a tree automa-
ton A∗ such that L(A∗) ⊇ R∗(I). If Bad is regular, to prove R∗(I) ∩ Bad = ∅,
2 See the page http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/
simplifiedRegexp.html for more examples.

http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/simplifiedRegexp.html
http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/simplifiedRegexp.html

it is enough to check that L(A∗) ∩ Bad = ∅, which can be done efficiently [5].
For this technique to succeed, the precision of the approximation A∗ is crucial.
For instance, L(A∗) = T (F) is a valid regular over-approximation but it can-
not be used to prove any safety property since it also contains Bad. In Timbuk,
approximations are defined using sets of abstraction equations, following [20]
and [11].

Example 1. Let L be the set of terms defined with the symbol s of arity 1
and the constant symbol 0. Let X be a variable. The effect of the equation
s(s(X)) = s(X) is to merge in the same equivalence class terms s(s(0)) and
s(0), s(s(s(0))) and s(s(0)), etc. Thus, with this single equation, L/=E

consists
of only two equivalence classes: a class containing only 0 and the class containing
all the other natural numbers {s(0), s(s(0)), . . .}. An equation s(X) = X would
define a single equivalence class containing all natural numbers. It would thus
define a rougher abstraction. An equation s(s(X)) = X defines two equivalence
classes: the class of even numbers {0, s(s(0)), . . .} and the class of odd numbers
{s(0), s(s(s(0))), . . .}.

For completion to terminate, the set T (F)/=E
(E-equivalence classes of T (F))

has to be finite [8]. When dealing with functional programs, this restriction can
be relaxed as follows. Functional programs manipulate sorted terms and the as-
sociated TRSs preserve sorts. Provided that equations also preserve sorts, having
a finite set T (F)S/=E

, where T (F)S is the set of well-sorted terms, is enough.
Besides, since well-sorted terms define a regular language, this information can
be provided to Timbuk using tree automata, regular expressions or SRegexp.

Example 2. Let us consider the set L of well-sorted lists of A and B. The set
L is the regular language associated with the SRegexp cons((A|B), ∗|nil). Let
X,Y, Z be variables. The set E = {cons(X, cons(Y,Z)) = cons(Y,Z)} defines a
set of E-equivalence classes L/=E

with three classes: one class only contains nil,
one class contains all lists ending with an A and the last class contains all lists
ending with a B.

Going back to the delete example that we want to analyze, with set E =
{cons(X, cons(Y, Z)) = cons(Y,Z)}, L/=E

is finite but T (F)S/=E
may not be.

For instance, terms delete(A,nil), delete(A, delete(A,nil)), etc. are all in sepa-
rate equivalence classes. Again, we can take advantage from the fact that delete
is a functional program and relax the termination condition of completion by
focusing it on the data manipulated by the program. Instead of asking for finite-
ness of T (F)S/=E

, we only require finiteness of T (C)S/=E
, where T (C)S is the

set of well-sorted constructor terms. Let us note Ec the above set of equations
{cons(X, cons(Y, Z)) = cons(Y,Z)}. As shown in Example 2, Ec defines a fi-
nite set of equivalence classes on T (C)S , i.e., lists of A’s and B’s.3 Provided that

3 In fact, in T (C)S there are also terms true and false but they cannot be embed-
ded in lists. Thus, each of them defines its own equivalence class. In the end, in
T (C)S/=Ec there are 5 equivalence classes.

delete is a terminating and complete functional program, it is possible to extend
Ec so that completion terminates. This has been shown for first-order functional
programs [7] and for higher-order functional programs [10]. The extension of Ec

consists in adding two sets of equations ER = {l = r | l → r ∈ R} and Er =
{f(X1, . . . , Xn) = f(X1, . . . , Xn) | f ∈ F , arity of f is n, and X1, . . . , Xn are
variables}. Since ER and Er are fixed by the program, the precision of the
approximation only depends on the equivalence classes defined by Ec. Thus, to
explore approximations, it is enough to explore all possible Ec.

4 Generating abstraction equations Ec

Additionally to the fact that (1) T (C)S/=Ec
has to be finite, the termination

theorems of [7,10] imposes additional constraints on Ec. Equations in Ec have
to be contracting, i.e., they are of the form u = u|p where (2) u|p is a strict
subterm of u and (3) u|p has the same sort as u.4 Conditions (2) and (3) makes
it possible to prune the search space of equations in Ec. For instance the following
equations do not need to be considered: cons(X,Y) = Z because of condition (2),
cons(X, cons(Y,Z)) = cons(X,Z) because of condition (2), cons(X,Y) = X
because of condition (3).

Timbuk implements two different algorithms to explore the space of possible
Ec. Those algorithms are parameterized by a natural number k ∈ N and, for a
given k, they generate a set EC(k) of possible Ec. By increasing k, we increase
the precision of equations sets Ec in EC(k). The first algorithm is based on
covering sets [17] and generates contracting equations with variables [10]. In this
algorithm k defines the depth of the covering set used to generate the equations.
From a covering set S, we generate all equations sets Ec = {u = u|p | u ∈ S}
satisfying conditions (1) to (3).

Example 3. Let X be a variable and T (C)S be the set of well-sorted constructor
terms defined with symbol s of arity 1 and the constant symbol 0. For k = 1, the
covering set is {s(X), 0} and EC(1) = {{s(X) = X}}. For k = 2, the covering set
is {s(s(X)), s(0), 0} and EC(2) = {{s(s(X)) = X}, {s(s(X)) = s(X)}, {s(0) =
0}, {s(0) = 0, s(s(X)) = X}, {s(0) = 0, s(s(X)) = s(X)}}.

The second algorithm generates ground contracting equations [8]. In this algo-
rithm k represents the number of equivalence classes expected in T (C)S/=Ec

.
Since equation sets have to be ground and meet conditions (2) and (3), we can
finitely enumerate all the possible equations sets Ec for a given k.

Example 4. Let T (C)S be the set of well-sorted constructor terms defined with
symbol s of arity 1 and the constant symbol 0. For k = 1 the set EC(1) =
{{s(0) = 0}}. For k = 2, the set EC(2) = {{s(s(0)) = 0}, {s(s(0)) = s(0)}.
4 Note that the sort information can be inferred from the tree automaton recognizing
well-sorted terms. For instance, the automaton associated to the SRegexp of Exam-
ple 2 recognizes A and B by into the same state, thus A and B will have the same
sort (see automaton TC in Section 5)

A systematic way to build ground EC(k), based on tree automata enumeration,
is given in [8]. Using the first or second algorithm to generate EC(k), to prove
that there exists a tree automaton A∗ over-approximating R∗(L(A)) and such
that L(A∗) ∩Bad = ∅, we run the following algorithm:

1. Start with k = 1
2. Build EC(k)
3. Pick one Ec in EC(k)
4. Complete A into A∗ using R and Ec ∪ ER ∪ Er

5. If L(A∗) ∩Bad = ∅ then verification is successful
Otherwise, if EC(k) not empty, pick a new Ec in EC(k) and go to 4.

6. When EC(k) is empty, increment k and go to 2.

It has been shown in [8] that the ground enumeration of EC(k) is complete w.r.t.
tree automata that are closed by R-rewriting. Thus, if there exists such a A∗,
the above iterative algorithm will find it. However, on properties that cannot be
shown using a regular approximation, such as [2], this algorithm may diverge.

5 Interacting with Timbuk

Download http://people.irisa.fr/Thomas.Genet/timbuk/timbuk3.2.tar.gz and
compile and install Timbuk 3.2. The online version of Timbuk does not integrate
all the features presented here. In Timbuk’s archive, the full specification of the
delete example can be found in the file FunExperiments/deleteBasic.txt.

Ops delete:2 cons:2 nil:0 A:0 B:0 ite:3 true:0 false:0 eq:2
Const A B nil cons true false
Vars X Y Z
TRS R

delete(X,nil)->nil
delete(X,cons(Y,Z))->ite(eq(X,Y),delete(X,Z),cons(Y,delete(X,Z)))
ite(true,X,Y)->X
ite(false,X,Y)->Y
eq(A,A)->true eq(A,B)->false eq(B,A)->false eq(B,B)->true

SRegexp A0
delete(A,[cons((A|B),*|nil)])

Automaton TC
States qe ql qb
Final States qe ql qb
Transitions

A->qe B->qe nil->ql cons(qe,ql)->ql true->qb false->qb
Patterns

cons(A,_)

This file contains the TRS, the SRegexp presented above and a tree automaton
named TC which defines well-sorted constructor terms as explained in Example 2.
This automaton is used to prune equation generation. Note that this automaton
could be inferred from the typing information of the functional program. Here,

http://people.irisa.fr/Thomas.Genet/timbuk/timbuk3.2.tar.gz

the automaton TC states that lists are built with cons and nil, that elements
of the list are either A or B, and that true and false are of the same type but
cannot appear in a list. Thus, ill-typed terms of the form cons(nil, true) are not
considered for equation generation. Finally, the Patterns section defines the set
Bad of terms that should not be reachable. Currently, the pattern section is lim-
ited to terms or patterns (terms with holes ’_’) and cannot handle SRegexp or
automata. In the present example, we only consider a subset of bad terms: terms
of the form cons(A,_), i.e., lists starting by A. Assuming that your working direc-
tory is FunExperiments, you can run Timbuk on this example by typing: timbuk
--fung 30 deleteBasic.txt. Where --fung is the option triggering ground equa-
tion generation (the second algorithm for generating EC(k)) and 30 is a maximal
number of completion steps. We get the following output:

Generated equations:

cons(A,cons(A,nil)) = cons(A,nil)
cons(B,cons(A,nil)) = cons(A,nil)
cons(B,nil) = nil
B = B
nil = nil
delete(X,Y) = delete(X,Y)
A = A
true = true
cons(X,Y) = cons(X,Y)
false = false
ite(X,Y,Z) = ite(X,Y,Z)
eq(X,Y) = eq(X,Y)
eq(A,A) = true

eq(A,B) = false
eq(B,A) = false
eq(B,B) = true
delete(X,nil) = nil
delete(X,cons(Y,Z)) =

ite(eq(X,Y),delete(X,Z),cons(Y,delete(X,Z)))
ite(true,X,Y) = X
ite(false,X,Y) = Y

Regular expression:

[cons(B, *|nil)]

Proof done!

Completion time: 0.006595 seconds

The three first generated equations belong to Ec, reflexive equations of the form
B = B, nil = nil, . . . belong to Er and the last eight equations belong to ER.
The set T (C)S/=Ec

has two equivalence classes: the class containing nil and all
lists containing only B’s and the class of lists containing at least one A. Thus,
the effect of Ec is to forget any B and preserve any A that appears in a list.
Using the --fun option instead of --fung while running Timbuk, triggers the
first algorithm for generating EC(k), i.e., Ec with variables. On this example,
the generated Ec part has two equations instead of three: cons(X,cons(A,Y)) =
cons(A,Y) and cons(B,X) = X. The effect of this set Ec is the same as the ground
Ec above. Indeed, this Ec splits lists into two equivalence classes: the class of
lists without A’s and the class of lists with at least one A.

Finally, in Timbuk’s output, Proof done! means that Timbuk manages to
build a regular approximation of R∗(I) that contains no term of the Patterns
section. Timbuk outputs the resulting simplified regular expression [cons(B,
*|nil)]. This proves that results are lists without any occurrence of A’s. Here,
one can read the outputted SRegexp to check that the property is true. How-

ever, this can be difficult when the outputted SRegexp is more complex. Thus,
on most examples, we use additional predicates to check properties like it is
commonly done with proof assistants. On our previous example, given a predi-
cate member (testing membership on lists), we can check that terms of the lan-
guage member(A,delete(A,cons((A|B),*|nil))) never rewrite to true. We can
also check the dual property expected on delete: deleting A’s should not delete
all B’s. We hope to check this property using initial terms member(B,delete(A,
[cons((A|B),*|nil)])) and a patterns section set to false. However, the prop-
erty is not true and, during completion, Timbuk finds a counterexample:

Found a counterexample:

Term member(B,delete(A,nil)) rewrites to a forbidden pattern

For the property to hold, lists in initial terms should contain at least one B:
member(B,delete(A,[cons((A|B),*|[cons(B,*|[cons((A|B),*|nil)])])]))

Using this initial set of terms, Timbuk succeeds to do the proof and produces a
slightly different Ec: cons(A,cons(B,nil)) = cons(B,nil), cons(B,cons(B,nil))
= cons(B,nil), cons(A,nil) = nil. This time, Ec forgets about A’s and preserves
B’s. More than 20 other examples (with ground/non-ground equations genera-
tion) can be found on the Timbuk page http://people.irisa.fr/Thomas.Genet/
timbuk/funExperiments/, including functions on lists, trees, sorting functions,
higher-order functions, etc.

6 Conclusion and further Research

We know that completion is terminating on higher-order functional programs
thanks to the recent result of [10]. Besides, we also know that ground equation
generation of Ec is complete w.r.t. tree automata that are closed by R [8].
In other words, if there exists a tree automaton A∗, closed by R and over-
approximating the set of reachable terms, then it will eventually be found by
generating ground equations. With the first algorithm where equations of Ec may
contain variables, we do not have a similar completeness result, yet. However,
generating equations with variables remains an interesting option because the
set Ec can be smaller. This is the case in the previous example where Ec with
variables defines the same set of equivalence classes but with fewer equations.

From a theoretical perspective, Tree Automata Completion can be seen as
an alternative to well-established higher-order model-checking techniques like
PMRS [21] or HORS [19] to verify higher-order functional programs. Timbuk
implements Tree Automata Completion but was missing several features for
those theoretical results to be usable in practice. First, stating the property to
prove using a tree automaton was error-prone and lacked readability. Using sim-
plified regular expressions significantly improves this step and makes property
definition closed to what is generally used in a proof assistant. Second, equa-
tions which are necessary to define the approximation, had to be given by the
user [7]. Now, Timbuk can automatically generate a set of equations adapted to

http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/
http://people.irisa.fr/Thomas.Genet/timbuk/funExperiments/

a given verification objective. Combining those two extensions makes Timbuk a
competitive alternative to higher-order model checking tools like [21] and [19].

In those model-checking tools and in Timbuk, the properties under concern
are “regular properties”, i.e. properties proven on regular languages. Those reg-
ular properties are stronger than what offers tests (they prove a property on an
infinite set of values) but weaker than what can be proven using induction in
a proof assistant. However, unlike proof assistants, Timbuk does not require to
write lemmas or proof scripts to prove a regular property. An interesting research
direction is to explore how to lift those regular properties to general properties. In
other words, how to build a proof that ∀ x l. not(member(x,delete(x,l))) from
the fact that all terms from member(A,delete(A,cons((A|B),*|nil))) rewrite to
false. We believe that this is possible by taking advantage of parametricity such
as in [22]. This is ongoing work.

In this paper, the verification is performed on a TRS representing the func-
tional program. To directly perform the verification on real functional programs
rather than on TRSs, we need a transformation. We could reuse the HOCA trans-
formation of [1]. However, it does not take the priorities of the pattern matching
rules of the functional program into account when producing the TRS. Further-
more, this translation needs to be certified, i.e., we need a formal proof that the
behavior of the outputted TRS R covers all the possible behaviors of the func-
tional program. With such a proof on R, if Timbuk can prove that no term of
member(A,delete(A,cons((A|B),*|nil))) can be rewritten to true with R, then
we have a similar property on the functional program.

The equation generation process does not cover all TRSs but only TRSs en-
coding terminating, complete, higher-order, functional programs. We currently
investigate how to generate equations without the termination and complete-
ness restrictions on the program. Another research direction is to extend this
verification principle to more general theorems. For the moment, theorems that
can be proved using Timbuk need to have a regular model. For instance, Tim-
buk is able to prove the theorem member(A,delete(A,l)) 6→R∗ true for all lists
l=cons((A|B),*|nil) because the language of terms reachable from the initial
language member(A,delete(A,cons((A|B),*|nil))) is, itself, regular. Assume that
we have a predicate eq encoding equality on lists. To prove a theorem of the
form eq(delete(A,l),l) 6→R∗ false for all list l=cons(B,*|nil), the language of
reachable terms is no longer regular. However, recent advances in completion-
based techniques for non-regular languages [3] should make such verification
goals reachable.

Acknowledgements

Many thanks to the anonymous referees for their valuable comments.

References

1. M. Avanzini, U. Dal Lago, and G. Moser. Analysing the complexity of functional
programs: higher-order meets first-order. In ICFP’15, pages 152–164. ACM, 2015.

2. Y. Boichut and P.-C. Héam. A theoretical limit for safety verification techniques
with regular fix-point computations. IPL, 108(1):1–2, 2008.

3. Yohan Boichut, Jacques Chabin, and Pierre Réty. Towards more precise rewriting
approximations. In LATA’15, volume 8977 of LNCS, pages 652–663. Springer,
2015.

4. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. L.
Talcott. All About Maude, A High-Performance Logical Framework, volume 4350
of Lecture Notes in Computer Science. Springer, 2007.

5. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding,
S. Tison, and M. Tommasi. Tree Automata Techniques and Applications.
http://tata.gforge.inria.fr, 2008.

6. T. Genet. Decidable Approximations of Sets of Descendants and Sets of Normal
Forms. In RTA’98, volume 1379 of LNCS, pages 151–165. Springer, 1998.

7. T. Genet. Termination Criteria for Tree Automata Completion. Journal of Logical
and Algebraic Methods in Programming, 85, Issue 1, Part 1:3–33, 2016.

8. T. Genet. Automata Completion and Regularity Preservation. Technical report,
INRIA, 2017. https://hal.inria.fr/hal-01501744.

9. T. Genet, Y. Boichut, B. Boyer, T. Gillard, T. Haudebourg, and S. Lê Cong.
Timbuk 3.2 – a Tree Automata Library. IRISA / Université de Rennes 1, 2017.
http://people.irisa.fr/Thomas.Genet/timbuk/.

10. T. Genet, T. Haudebourg, and T. Jensen. Verifying higher-order functions with
tree automata. In FoSSaCS’18, LNCS. Springer, 2018. To be published.

11. T. Genet and R. Rusu. Equational tree automata completion. Journal of Symbolic
Computation, 45:574–597, 2010.

12. T. Genet and Y. Salmon. Reachability Analysis of Innermost Rewriting. In
RTA’15, volume 36 of LIPIcs, Warshaw, 2015. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik.

13. J. Giesl. Termination Analysis for Functional Programs using Term Orderings. In
SAS’95, volume 983 of LNCS, pages 154–171. Springer, 1995.

14. R. Gilleron and S. Tison. Regular tree languages and rewrite systems. Fundamenta
Informaticae, 24:157–175, 1995.

15. Y. Guellouma, L. Mignot, H. Cherroun, and D. Ziadi. Construction of rational
expression from tree automata using a generalization of Arden’s lemma. CoRR,
abs/1501.07686, 2015.

16. N. D. Jones and N. Andersen. Flow analysis of lazy higher-order functional pro-
grams. Theoretical Computer Science, 375(1-3):120–136, 2007.

17. E. Kounalis. Testing for the Ground (Co-)Reducibility Property in Term-Rewriting
Systems. TCS, 106(1):87–117, 1992.

18. D. Kuske and I. Meinecke. Construction of tree automata from regular expressions.
RAIRO - Theor. Inf. and Applic., 45(3):347–370, 2011.

19. Y. Matsumoto, N. Kobayashi, and H. Unno. Automata-Based Abstraction for
Automated Verification of Higher-Order Tree-Processing Programs. In APLAS’15,
volume 9458 of LNCS, pages 295–312. Springer, 2015.

20. J. Meseguer, M. Palomino, and N. Martí-Oliet. Equational abstractions. TCS,
403(2-3):239–264, 2008.

21. L. Ong and S. Ramsay. Verifying higher-order functional programs with pattern-
matching algebraic data types. In POPL’11. ACM, 2011.

22. Philip Wadler. Theorems for free! In Proc. of FPCA’89, pages 347–359. ACM,
1989.

https://hal.inria.fr/hal-01501744
http://people.irisa.fr/Thomas.Genet/timbuk/

	Extending Timbuk to Verify Functional Programs

