
HAL Id: hal-01775130
https://hal.science/hal-01775130v1

Submitted on 24 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SLA4CLOUD: Measurement and SLA Management of
Heterogeneous Cloud Infrastructures Testbeds

El Hadi Cherkaoui, Elie Rachkidy, Marcelo F. Santos, Paulo A. L. Rego,
Javier Baliosian, Jose N de Souza, Nazim Agoulmine

To cite this version:
El Hadi Cherkaoui, Elie Rachkidy, Marcelo F. Santos, Paulo A. L. Rego, Javier Baliosian, et al..
SLA4CLOUD: Measurement and SLA Management of Heterogeneous Cloud Infrastructures Testbeds.
3rd International Workshop on ADVANCEs in ICT INfrastructures and Services(ADVANCE 2014),
Dec 2014, Miami, United States. �hal-01775130�

https://hal.science/hal-01775130v1
https://hal.archives-ouvertes.fr

1

SLA4CLOUD: Measurement and SLA Management
of Heterogeneous Cloud Infrastructures Testbeds

El Hadi Cherkaoui1, Elie Rachkidy1, Marcelo Santos2, Paulo A. L. Rego3, Javier Baliosian4, Jose N. de
Souza3 and Nazim Agoulmine1

1IBISC/LRSM Lab, University of Evry Val d’Essonne, France.
2Federal University of Pernambuco, Brazil.
3Federal University of Ceara, Brazil, Brazil.

4University of the Republic, Uruguay
E-mail: cherkaoui,rachkidy,agoulmine@ibisc.fr, marcelo@upfe.br, paaloalr,neuman@ufc.br,

javierba@fing.edu.uy

Abstract—There is an increasing number of cloud plat-
forms emerging in both academia and industry. They often
allow the collaboration of a pool of resources from multiple
infrastructures (IaaS) in order to benefit from the unique
features that each presents. AmSud SLA4CLOUD project
is a collaboration between research groups from South
America and France on Cloud Computing with the aim
to develop different offers of Cloud Service with Service
a Level Agreement (SLA) representation. This project
builds on different existing projects such as the EU Easi-
Clouds project. After introducing the main capabilities
and features of OpenStack, this document addresses the
integration of OpenStack-based platforms into a larger
and heterogeneous multi-cloud infrastructures distributed
in different continents. Finally, we aim to implement a
strategy for dynamic services composition and optimal
placement of virtual machines in order to improve network
capabilities without compromising performance require-
ments as specified in a SLA.

Index Terms—cloud computing, Service Level Agree-
ments, Smart Placement Algorithms, IaaS, Openstack,
Testbed

I. I NTRODUCTION

Cloud computing introduces interactions between
cloud providers (or infrastructure providers IaaS) and
cloud service providers [13]. Many existing cloud service
providers (e.g. Amazon, Rackspace or GoGrid) offer
to their customers the possibility to deploy services in
different datacenters located in different world regions.
These datacenters are different in term of hardware
capacity and support different variants of cloud ser-
vices. However, although the same provider manages
these datacenters, they are independent systems in terms
of resources management, scheduling and provisioning.
Each datacenter can be considered as a complete cloud

infrastructure capable of providing full cloud capabili-
ties. In an IaaS environment, a cloud provider acquires
a hardware infrastructure such as main frames, servers,
networks and storage equipments. The cloud provider
deploys then an IaaS cloud platform such as Openstack
[5], OpenNebula [10] or AmazonS3 [1]) which permits
to manage the pool of physical resources, and make
them available on-demand to cloud consumers (service
providers) through a set of service interfaces and com-
puting resource abstractions (virtual machines and virtual
network interfaces). Different deployment models may
exist. Each one defining how exclusive the computing
resources of these clouds are made available to a cloud
customer, how their usage is priced, how multi-tenancy
is achieved,..., etc. allowing Cloud Providers to define
their own business models.

In SLA4CLOUD project, we aim to build an environ-
ment where a customer could request the deployment
of its services anywhere in the underlying infrastructure
given a set of defined constraints. Services can be mod-
eled as service graphs of service components that could
be deployed in different datacenters located in France,
Brazil and Uruguay, depending on the SLA objectives
such as localization objectives, QoS objectives or pric-
ing. This paper describes some preliminary experimental
results as well as some benchmarks. The rest of this
paper is described as follows. In Section II we present an
overview of the SLA4CLOUD project highlighting the
objective and the requirements of the project in term of
resource provisioning and self-healing. In Section III, we
introduce the concept of service composition and smart
placement algorithms identifying the main components
that have developed on the top of the orchestration
system. Next, we describe the infrastructure platform
of the SLA4CLOUD testbed. Finally, conclusions and

2

future works on the project are presented.

II. PROJECTOVERVIEW AND GLOBAL

ARCHITECTURE

We propose in this project (i) the development of dif-
ferent offers of Cloud Service with a SLA representation
that could be used for offline and on-line negotiation in
cloud environments; (ii) the implementation of a strategy
for dynamic consolidations of virtual machines in order
to reduce energy consumption without compromising
performance requirements concerning availability and
SLA violation; (iii) the development of a semi- or fully-
automated security policy composition mechanism for
composite services in Cloud, while maintaining con-
sistency with the security policies of the external ser-
vices; (iv) a rule-based pricing system that implements
the same intuitive ideas in the shape of policy-rules
to improve the quality of service and to increase the
global income of a Cloud Computing provider; and v)
to deploy the developed mechanisms in a Mobile Cloud
Computing scenario as case study and proof-of-concept
demonstrator. To achieve the above goals, we began
the implementation of a Cloud Computing architecture
described below.

A. Backgrounds

IaaS cloud platforms are software solutions installed
(completely or partially) on servers in order to manage
the underlying physical resources and offer the cloud
consumer a set of services. These services are accessible
via APIs, where each API require certain authoriza-
tions from the cloud consumer in order to be used.
Differences between IaaS cloud platforms lies in the
virtualization system (hypervisors they support), the set
of services provided by APIs, the users managing tech-
niques, and the network configurations. Virtualization
shifts the thinking from physical to logical infrastructure,
where physical resources of a set of hardware compo-
nents (e.g. physical servers) are considered as logical re-
sources rather than separated physical resources. There-
fore virtualization creates an abstraction layer between
actual computing, storage and network hardware, and
the software running on them. Thus allowing different
operating systems contained in isolated virtual machines
running on the same physical substrate. This abstraction
layer is called virtualization layer which is created and
managed by a software or firmware component known
‘hypervisor”.

Thus, to meet the project goals, we have general
definitions and components in our architecture:

• Cloud Developer: It is the type of user that re-
quests resources available in the cloud to the cloud
provider. A request is a set of virtual machines
or services that have restrictions based on SLAs
(Service Level Agreements).

• SLAs: We consider a Service Level Agreement
(SLA) as a document of performance expectations,
responsibilities and obligations between the cloud
provider and its customers.

• Requests: The Open Cloud Computing Interface
(OCCI [4]) is one of the standards for modeling
cloud computing resource. Physical and virtual re-
sources are modeled following the API provided by
OCCI.

• REST API: The system uses an interface RESTful
[7] to perform the communication between mod-
ules. With the use of a REST API is possible to
implement the system modules independently, for
example, a module may be implemented in JAVA
and another Python.

The global architecture of the SLA4CLOUD project
is presented in Figure1.

Figure 1. Entities Overview for the SLA4CLOUD Testbed

The architecture implemented between universities is
based on the OpenStack platform. OpenStack is a com-
plete platform for Cloud Computing initially developed
by Nasa and Rackspace [6]. Currently, OpenStack has
more than 200 members integrating the list of contribu-
tors of its project as Cisco, IBM, Dell, VMware, AT&T
and Ericsson. Due to the maturity of the development
of its OpenStack software was used as a tool for the
deployment of Cloud Computing System in France and
Brazil. OpenStack modules that were used have a brief
description below and the interaction between universi-
ties can be seen in Figure2:

• Identity (Keystone):Operate as an authentication
system that supports multiple forms of authenti-
cation and provide four services: (1) Identity; (2)
Token; (3) Catalog and (4) Policy.

3

• Image (Glance): provides services for discovering,
registering, and retrieving virtual machine images.
Glance has a RESTful API that allows querying of
VM image metadata as well as retrieval of the actual
image.

• Compute (Nova): is a cloud computing fabric con-
troller, the main part of an IaaS system. Individuals
and organizations can use Nova to host and manage
their own cloud computing systems.

Figure 2. The global architecture of both OpenStack sites in Brazil
and France

As the installation was performed independently at
each university, the version of OpenStack installed at
each institution was different. The Computer Science
Department of Federal University of Ceara (UFC),
Brazil, has adopted a hybrid cloud to assist the re-
sources management and experimentation. The infras-
tructure is being used for educational purpose and to
develop research in several areas such as benchmarking
of cloud infrastructures, mobile cloud computing, quality
of service for management system database. Icehouse
version of Openstack and OpenNebula were configured
in CloudUFC. Whereas, in University of Evry in France,
Folsom version of Openstack was used for the resource
allocation of the University facilities and for deployment
of scientific and distributed applications inCloudEvry.
There is a plan to add a new cloud platform in Recife at
Federal University of Pernambuco, using the OpenNeb-
ula platform integrated with OpenStack.

B. Service Requests and Multisite Orchestration System

Multisite Orchestration System (MOSt) [3] is a stand-
alone component developed under the umbrella of the
ITEA EU EASI-CLOUDS project [2] with the aim is
to provide an optimal provisioning plan in a distributed
cloud infrastructure of a service request in form of a
service graph. The service graph represents the request
of a customer (called MANIFEST) in terms of a set
of basic services to instantiate (i.e. virtual machines,

storage, computation,..., etc.) and the links between these
services (i.e. required network links between the nodes,
available bandwidth,...,etc.). MOSt permits to find the
best placement of the graph service onto a networked
cloud infrastructure while minimizing the mapping cost.
Substrate nodes in the network graph are sites located
in different geographical locations as it is show in
figure 1. Each site is a full IaaS cloud operated by
a Site Manager which has its own service portfolio
and pricing (this may depends on the effective cost of
the datacenter CAPEX/OPEX in a particular region or
country) described in the SLA contract.

MOSt is responsible for the global provisioning only,
meaning that it will decide which service component
will be initiated where (i.e. which datacenter site). Lo-
cal provisioning depends on the local implementation,
therefore sites may use different scheduling mechanisms
to deploy service component on each country. Therefore
the core system of the MOSt is responsible for building
the provisioning plan and requesting the underlying sites
to instantiate the resources based on the SLA terms.

The main requirements that are presented in the design
of MOSt are:

• Multi-site deployment: MOSt must be capable of
deploying a complex service over different cloud
datacenters (called cloud sites or sites) that are
geographically distributed.

• Optimal provisioning plan: MOSt must provide the
customer with the best (optimal) provisioning plan
and relies on an algorithm called IGM (Iterative
Graph Mapping) described in [12].

• Site Independence: MOSt should be independent
from any underlying site. This means that the sys-
tem should be stand-alone and not connected by the
internal details.

The handling of a customer service request deploy-
ment is achieved in three phases:

• Multi-site provisioning phase: MOSt calculates the
optimal provisioning plan and engage the resources
(e.g., Virtual Machines) in the multiple underlying
sites

• Post-configuration phase: MOSt launches the post-
configuration of the deployed virtual machines
based on the customers request (i.e. Manifest in
OpenStack).

• Networking provisioning phase: MOSt launches the
configuration of the network connections between
datacenters sites to fulfill nodes communication
requirements of the service. This requires the instan-
tiation of specific network gateways in each site to
build the necessary VPL (Virtual Private Links) to

4

allow Virtual Machines (VMs) of the same project
to communicate.

MOSt system is responsible for:

• The global provisioning only: meaning that it will
decide which service component will be initiated
(i.e. which datacenter site).

• Allocating resources to zones/sites.
• Orchestrating other sub-components such as net-

work configuration and post-configuration.
• Parsing requests.
• Initiating deployment of requested applications in

different zones.
• Consulting current state of deployed applications.
• For applications with reconfiguration, request-

ing/deleting more resources in case of scale
up/down.

III. SERVICE COMPOSITION ANDSMART

PLACEMENT ALGORITHMS

Network Management strategies rely on dynamic allo-
cation mechanisms over physical resources for efficient
virtual network deployment. For this purpose, several
algorithms have been proposed to achieve a convenient
use of network resources such as links, routers, and
nodes, mainly due to the NP-hard characteristic of the
problem [8] [14] [9].

Although efficient network resource allocation is a
fundamental question to be addressed, it is important
assess the risks involved with a virtual network request.
Obviously risks are inherent to physical infrastructure
(nodes and links) because its hardware is prone failure
as well as the respective software infrastructure. Thus,
to perform the allocation of resources and services
optimally are working on a random heuristic based on the
meta-heuristic GRASP (Greedy Randomized Adaptive
Search Procedures) [11] considering a set of constraints
and SLAs as: node load, link Load, link delay, availabil-
ity, cost, geographic position, impact on the violation of
SLAs Network, ..., etc.

The resource allocation algorithm that is being devel-
oped considering SLAs restrictions is in initial testing
phase. The first step is to perform simulations to validate
the efficiency of the algorithm.

The considered metrics that will be collected are
shown in Table I:

IV. SLA4CLOUD PLATFORM TESTBED

In this section we present the infrastructure of the
SLA4CLOUD platform and the initial configuration for
the testbed.

Table I
SIMULATION METRICS

Metric Description
Availability Average availability of all virtual re-

quests
Acceptance rate Average rate of virtual request accep-

tance
Nodes utilization Average physical node utilization
Links utilization Average physical link utilization
Execution time Average execution time for each prob-

lem

A. Infrastructure

The SLA4CLOUD architecture envisions the emer-
gence of large scale distributed applications supported
by services and processes based on distributed, in-
tegrated facilities and infrastructure among different
countries covering Europe and South America. In this
view, the infrastructure should be an extremely flexible
programmable platform that allows new functions and
capabilities to easily be created and implemented. In
order to establish the previous architecture first we need
full OpenStack installed in two sites, one in Brazil
and the other in France. As illustrated in Figure 2, the
SLA4CLOUD testbed is located in different data centers
at IBISC Laboratory, Evry University (France), UFC
Fortaleza (Brazil) and UFPE Recife (Brazil).

CloudEvry comprises 1 environment of production
which use the Openstack’s platform containing 4 racks
servers. Each server contains 32 nodes of Quad core Intel
2.4GHz CPU and 8GB memory, which then connects to
the outside by a 1Gb/s uplink. The Table II shows the
configuration of the CloudEvry infrastructure.

Table II
ENVIRONMENT SUMMARY

Production Cloud (OpenStack Folsom4.0)
machines Processor model Memory
1 controller 1x Intel(R) Xeon(R) CPU E5 2609 2.40GHz 8 GB

4 compute nodes 4x Intel(R) Xeon(R) CPU E5 2609 2.40GHz 8 GB

CloudUFC: comprises two environments. The pro-
duction one uses the default OpenNebula’s architecture
based on front-end and compute nodes. An overview
of the CloudUFC production architecture is shown in
Figure 3.

For high availability purpose, 2 front-ends are used
and 8 compute nodes host the virtual machines. All
machines are connected through a Gigabit Ethernet net-
work and they use a shared file system (with NFS),
which allows the use of the live migration technique
once all virtual machine images can be accessed from
all compute nodes. Users can manage virtual resources

5

Figure 3. CloudUFC production environment (based on OpenNeb-
ula).

Figure 4. CloudUFC test environment (based on OpenStack).

by using the cloud operation center (Sunstone) through a
website or by using the OpenNebula or OCCI APIs. The
access to virtual machines can be done through SSH or
VNC/Spice. CloudUFC extends local resources by using
Amazon EC2 to create a hybrid cloud when necessary.
It is possible to scale out the infrastructure according
to research demands in a transparent way to users. Our
test cloud environment uses the Icehouse version of
OpenStack, and follows the architecture shown in Figure
4. This newer version presents several new features,
mainly related to the management of the network stack,
which provides better network isolation between the
virtual machines, as well as improves the resources
control, enabling the development of modules to provide
better security and quality of services. The controller
runs Object Store, Block Storage, Image, Identity and
Dashboard services. Besides that, the controller runs
also all networking services. To host virtual machines,
we have two compute nodes. Users can manage virtual
resources by using the dashboard (Horizon) through a
website or by using OpenStack or OCCI APIs. The
access to virtual machines can be done through SSH or
VNC.

The local infrastructure is composed of a set of 13
heterogeneous machines, totaling 116 cores and 232
GB of RAM. Beyond these resources, Amazon EC2
instances can be initialized to fulfill the researchers needs
on the production environment.

All physical machines are running Ubuntu Server

14.04 and KVM hypervisor. The Table III shows the
configuration of the CloudUFC infrastructure.

B. Openstack services and MOSt Deployment

In order to deploy MOSt, first we need to create
its Mysql databases containing initial information about
both sites.

Then, we configure the Openstack modules such that
the Keystone and Glance modules of both sites are
connected to the same databases. In order to use the
database deployed inCloudUFC as the shared database,
we update the following connection string inCoudEvry:

connection = mysql://DB user:DB pass@Site IP/DB
name in both files: /etc/keystone/keystone.conf and
/etc/glance/glance-registry.conf

V. CONCLUSION

AmSud SLA4CLOUD project is a collaboration be-
tween France, BRazil and Uruguay to conduct research
in the area of Federated Cloud Computing with em-
phasise on Service a Level Agreement (SLA) . This
project builds on different existing projects such as the
EU Easi-Clouds project. In this paper, we have presented
the advances in the project in term of infrastructure
deployment in different countries. In the next phase of
the project, we plan to test the MOSt component from
Easi-Clouds project to deploy complex services in the
distributed sites. This testbed will help us also to evaluate
new placement algorithms as well as new security and
realibility solutions.

ACKNOWLEDGMENT

This research is partially funded by the EU EASI-
CLOUDS project (ITEA 2 #10014) and STIC-AmSud
SLA4CLOUD project(14 STIC #11). Thanks to all the
partners of the project who have helped with their
discussions to improve the research work presented in
this paper.

REFERENCES

[1] AmazonEC2 Available on: http://aws.amazon.com/ec2.
[2] EASI-CLOUDS Available on: http://easi-clouds.eu/.
[3] Multisite Orchestration System (MOSt) Available on:

https://www.lrsm.ibisc.univ-evry.fr/MOSt-api.
[4] Open Cloud Computing Interface Open Standard Open Com-

munity Available on: http://occi-wg.org/.
[5] OpenStack Cloud Software Available on:

http://www.openstack.org.
[6] Rackspace available on: http://www.rackspace.com.
[7] Subbu Allamaraju.Restful web services cookbook: solutions for

improving scalability and simplicity. ” O’Reilly Media, Inc.”,
2010.

6

Table III
ENVIRONMENT SUMMARY OF CLOUDUFC

Production Cloud (OpenNebula 4.0)
machines Processor model Memory
2 controllers 1x Intel(R) Xeon(R) CPU E5620 @ 2.40GHz 8 GB

5 compute nodes 2x Intel(R) Xeon(R) CPU E5645 @ 2.40GHz 16 GB
2 compute nodes 2x Intel(R) Xeon(R) CPU E5645 @ 2.40GHz 32 GB
1 compute node 2x Intel(R) Xeon(R) CPU E5645 @ 2.40GHz 16 GB

Test Cloud (OpenStack Icehouse)
machines Processor model Memory
1 controller 1x Intel(R) Xeon(R) CPU X3430 @ 2.40GHz 8 GB

2 compute nodes 1x Intel(R) Core(TM) i7 CPU 930 @ 2.80GHz 24 GB

[8] Mosharaf Chowdhury, Muntasir Raihan Rahman, and Raouf
Boutaba. Vineyard: virtual network embedding algorithms with
coordinated node and link mapping.IEEE/ACM Transactions
on Networking (TON), 20(1):206–219, 2012.

[9] Andreas Fischer, Juan Felipe Botero, M Till Beck, Hermann
De Meer, and Xavier Hesselbach. Virtual network embed-
ding: A survey. Communications Surveys & Tutorials, IEEE,
15(4):1888–1906, 2013.

[10] Dejan Milojičić, Ignacio M Llorente, and Ruben S Montero.
Opennebula: A cloud management tool.IEEE Internet Com-
puting, 15(2):0011–14, 2011.

[11] Mauricio GC Resende and Celso C Ribeiro. Greedy random-
ized adaptive search procedures: Advances, hybridizations, and
applications. InHandbook of Metaheuristics, pages 283–319.
Springer, 2010.

[12] Khanh-Toan Tran, N. Agoulmine, and Y. Iraqi. Cost-effective
complex service mapping in cloud infrastructures. InNetwork
Operations and Management Symposium (NOMS), 2012 IEEE,
pages 1–8, April 2012.

[13] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik
Lindner. A break in the clouds: Towards a cloud definition.
SIGCOMM Comput. Commun. Rev., 39(1):50–55, December
2008.

[14] Fida-E Zaheer, Jin Xiao, and Raouf Boutaba. Multi-provider
service negotiation and contracting in network virtualization.
In Network Operations and Management Symposium (NOMS),
2010 IEEE, pages 471–478. IEEE, 2010.

