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CARTAN GEOMETRIES ON COMPLEX MANIFOLDS OF ALGEBRAIC
DIMENSION ZERO

INDRANIL BISWAS, SORIN DUMITRESCU, AND BENJAMIN MCKAY

Abstract. We prove that every compact complex manifold of algebraic dimension zero
bearing a holomorphic Cartan geometry of algebraic type must have infinite fundamental
group. This generalizes the main Theorem in [DM] where the same result was proved for
the special cases of holomorphic affine connections and holomorphic conformal structures.

1. Introduction

Let G be connected complex Lie group and H ⊂ G a closed complex Lie subgroup. A

holomorphic Cartan geometry of type (G, H) on a complex manifold X is an infinitesimal

structure on X modeled on G/H (details are in Section 2). Holomorphic affine connections,

holomorphic projective connections and holomorphic conformal structures are among the

important geometric examples of holomorphic Cartan geometries [Sh].

Contrary to the real setting, compact complex manifolds admitting a holomorphic Cartan

geometry are rather rare. All known examples of compact complex manifolds admitting a

holomorphic Cartan geometry actually admit a flat holomorphic Cartan geometry. It should

be clarified that the model of the flat Cartan geometry (see Definition 2.1) could be different

from the given one. Indeed, compact complex parallelizable manifolds [Wa] biholomorphic to

quotients G/Γ, where G is complex semi-simple Lie group and Γ ⊂ G a uniform lattice, are

known to admit holomorphic affine connections, but not flat holomorphic affine connections

[Du2].

Nevertheless, the following was conjectured in [DM]: Compact complex simply connected

manifolds admitting a holomorphic Cartan geometry with model (G, H) are biholomorphic

to the model G/H. (See [DM, Section 6].)

This question is open even for the very special case of holomorphic projective connec-

tions: accordingly to this conjecture, complex compact simply connected manifolds bearing

a holomorphic projective connection should be complex projective spaces (endowed with the

standard flat projective geometry); this is not known even for smooth complex projective va-

rieties (except for the complex dimensions one, two [KO1, KO2] and three [PR1]). A special

case of this conjecture is that compact complex simply connected manifolds X do not admit

any holomorphic affine connection. This is known to be true for Kähler manifolds; indeed,

in this case the rational Chern classes of the holomorphic tangent bundle TX must vanish,
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[At], and using Yau’s theorem proving Calabi’s conjecture it can be shown that X admits

a finite unramified cover which is a complex torus [IKO]. According to the conjecture, the

only simply connected compact complex manifold which admits a holomorphic conformal

structure is the smooth nondegenerate quadric hypersurface in complex projective space.

However, this is not known even for smooth complex projective varieties (except for the

complex dimensions one, two [KO3] and three [PR2]). It is known that the smooth quadric

hypersurface admits precisely one holomorphic conformal structure (the standard one) [BMc,

Corollary 3].

Examples of non–Kähler complex compact manifolds of algebraic dimension zero admit-

ting holomorphic Riemannian metrics [Le, Gh] of constant sectional curvature were con-

structed by Ghys in [Gh]. If the sectional curvatures of a holomorphic Riemannian metric

are constant, then the associated Levi-Civita holomorphic affine connection is projectively

flat. They also admit the corresponding flat holomorphic conformal structure. The examples

in [Gh] are deformations of parallelizable manifolds covered by SL(2,C).

In the direction of the conjecture, the following was proved in [DM, Theorem 1]:

Compact complex simply connected manifolds with algebraic dimension zero admit neither

holomorphic affine connections, nor holomorphic conformal structures.

Generalizing the main theorem in [DM] (Theorem 1), here we prove the following:

Compact complex manifolds of algebraic dimension zero bearing a holomorphic Cartan

geometry of algebraic type have infinite fundamental group (Theorem 4.1).

2. Cartan geometries

Let X be a complex manifold, G a complex connected Lie group and H a closed complex

Lie subgroup of G. The Lie algebras of the Lie groups G and H will be denoted by g and h

respectively.

Definition 2.1. A holomorphic Cartan geometry (P, ω) on X with model (G, H) is a holo-

morphic principal (right) H-bundle

π : P −→ X (2.1)

endowed with a holomorphic g-valued 1-form ω satisfying the following three conditions:

(1) ωp : TpP −→ g is a complex linear isomorphism for all p ∈ P ,

(2) the restriction of ω to every fiber of π coincides with the left invariant Maurer-Cartan

form of H, and

(3) (Rh)
∗ω = Ad(h)−1ω, for all h ∈ H, where Rh is the right action of h on P and Ad

is the adjoint representation of G on g.

Definition 2.2. The kernel N of a model (G, H) is the largest subgroup of H normal in G;

the kernel is clearly a closed complex normal subgroup, and we denote its Lie algebra by n.

A model (G, H) is effective if its kernel is N = {1}. In other words, (G, H) is effective if H

does not contain any nontrivial subgroup normal in G. A Cartan geometry is effective if its
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model is effective. Any Cartan geometry (P, ω) has an induced effective Cartan geometry

(P , ω) where P = P/N and ω is the unique g/n-valued 1-form on P which pulls back, via

the natural quotient map P −→ P , to the g/n-valued one-form given by ω.

Definition 2.3. If Ad(H/N) ⊂ GL(g/n) is an algebraic subgroup, then the holomorphic

Cartan geometries with model (G, H) are said to be of algebraic type.

Holomorphic affine connections, holomorphic projective connections, and holomorphic

conformal structures are among the examples of effective holomorphic Cartan geometries

of algebraic type [Pe, Sh].

Notice that Definition 2.1 implies, in particular, that the complex dimension of the homo-

geneous model space G/H coincides with the complex dimension n of the manifold X.

Let us give some important examples.

A holomorphic affine connection corresponds to the model (Cn o GL(n,C), GL(n,C)) of

the complex affine space acted on by the group CnoGL(n,C) of complex affine transforma-

tions.

A holomorphic projective connection is a Cartan geometry with model (PGL(n+1,C), Q),

where PGL(n+1,C) is the complex projective group acting on the complex projective space

CP n and Q ⊂ PGL(n+ 1,C) is the maximal parabolic subgroup that fixes a given point in

CP n.

Holomorphic conformal structures are modeled on the quadric z20 + z21 + . . .+ z2n+1 = 0 in

CP n+1. Here G is the subgroup PO(n+2,C) of the complex projective group PGL(n+2,C)

preserving the above quadric, while H is the stabilizer of a given point in the quadric. For

more details about those Cartan geometries and for many other examples the reader may

consult [Sh].

Definition 2.4. Let X be equipped with a holomorphic Cartan geometry (P, ω) of type

(G, H). A (local) biholomorphism between two open subsets U and V in X is a (local)

automorphism of the Cartan geometry (P, ω) if it lifts to a holomorphic principal H-bundle

isomorphism between π−1(U) and π−1(V ) that preserves the form ω; here π is the projection

in (2.1).

A (local) holomorphic vector field on X is a (local) Killing field of (P, ω) if its (local) flow

acts by (local) automorphisms of (P, ω).

The Cartan geometry (P, ω) is called locally homogeneous on an open subset U ⊂ X if

the tangent space TuX is spanned by local Killing fields of (P, ω) for every point u ∈ U .

The curvature of (P, ω) is defined as a 2-form Ω on P , with values in g, given by the

following formula

Ω(Y, Z) = dω(Y, Z)− [ω(Y ), ω(Z)]g (2.2)

for all local holomorphic vector fields Y, Z on P . When at least one of Y and Z is a vertical

vector field (meaning lies in the kernel of the differential dπ of π in (2.1)), then Ω(Y, Z) = 0

(see [Sh, 5.3.10]). From this it follows that Ω is basic and it descends on X.
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More precisely we have the following classical interpretation of Ω.

Let

PG := P ×H G πG−→ X (2.3)

be the holomorphic principal G–bundle over X obtained by extending the structure group

of the holomorphic principal H–bundle P using the inclusion of H in G. Recall that PG is

the quotient of P ×G where two points (p1, g1), (p2, g2) ∈ P ×G are identified if there is an

element h ∈ H such that p2 = p1h and g2 = h−1g1. The projection πG in (2.3) is induced

by the map P ×G −→ X, (p, g) 7−→ π(p). The action of G on PG is induced by the action

of G on P ×G given by the right–translation action of G on itself.

Consider the adjoint vector bundle ad(PG) = PG×G g of PG. We recall that ad(PG) is the

quotient of PG× g where two points (c1, v1) and (c2, v2) are identified if there is an element

g ∈ G such that c2 = c1g and v2 is the image of v1 through the automorphism of the Lie

algebra g defined by automorphism of G given by z 7−→ g−1zg.

Starting with (P, ω) there is a natural Ehresmann connection on the principal bundle PG
given by the following g-valued form on P ×G:

ω̃(p, g) = Ad(g−1)π∗1(ω) + π∗2(ωG) ,

where π1 and π2 are the projections of P ×G on the first and the second factor respectively,

while ωG is the left-invariant Maurer-Cartan form on G.

The above form ω̃ is invariant by the previous H-action on P × G and it vanishes when

restricted to the fibers of the fibration P × G −→ PG. This implies that ω̃ is basic and

it descends on PG. Let us denote also by ω̃ this one-form on PG with values in g: it is an

Ehresmann connection on the principal bundle PG (see [BD], Proposition 3.4).

Recall that the curvature of the connection ω̃ on the principal bundle PG is a tensor of

the following type:

Curv(ω̃) ∈ H0(X, ad(PG)⊗ Ω2
X) . (2.4)

Moreover, the curvature Ω of ω in (2.2) vanishes if and only if Curv(ω̃) vanishes. If Ω = 0,

then ω produces local isomorphisms of X to the homogeneous space G/H. This way we get

a developing map from the universal cover of X to G/H, which is a local biholomorphism

(see for example [Sh] or [BD, p. 9]).

3. Cartan geometries on manifolds of algebraic dimension zero

As a preparation for the proof of Theorem 4.1, we first prove the following Lemma 3.1

which is an adaptation, for Cartan geometries, of [DM, Proposition 2] on rigid geometric

structures.

Recall that a compact complex manifold is of algebraic dimension zero if it does not admit

any nonconstant meromorphic function [Ue]. These manifolds are far from being algebraic.

Indeed, a manifold is bimeromorphic with an algebraic manifold if and only if its field of

meromorphic functions separates points [Moi, Ue].
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Lemma 3.1. Let X be a compact complex simply connected manifold of algebraic dimension

zero endowed with a holomorphic effective Cartan geometry (P, ω). Then the connected

component of the automorphism group of (P, ω) is a connected complex abelian Lie group

L acting on X with an open dense orbit. The open dense orbit is the complement of an

anticanonical divisor. Moreover, the natural map from L to this open dense orbit, constructed

by fixing a point of this orbit, is a biholomorphism. Furthermore, L is covered by (C∗)n.

Proof. By Theorem 1.2 in [Du] (see also [Du1]) the Cartan geometry (P, ω) is locally ho-

mogeneous on an open dense subset in X. Recall that on simply connected manifolds, local

Killing vector fields of Cartan geometries extend to all of the manifold X [Am, No, Gr, Pe].

Therefore, it follows that there exists a Lie algebra a of globally defined Killing vector fields

on X which span TX at the generic point. Let us fix a basis {X1, · · · , Xk} of a and consider

the generalized Cartan geometry (P, ω, a) (in the sense of Definition 4.11 in [Pe]) which is a

juxtaposition of (P, ω) with the family of vector fields {X1, · · · , Xk}. The proof of Theorem

1.2 in [Du] applies to the generalized geometry (P, ω, a) which must also be locally homoge-

neous on an open dense set. Notice that local Killing vector fields of (P, ω, a) are restrictions

of elements in a which commute with the vector fields Xi. It follows that local vector fields of

(P, ω, a) are elements in the centralizer a′ of a, and a′ is transitive on an open dense subset.

Since a′ is commutative, the action is simply transitive on the open dense subset (note that

a′ has the same dimension as that of X). A basis of a′ is a family of commuting vector fields

spanning TX at the generic point. Since the vector fields Xi commute with elements in this

basis, they must be a linear combination of elements in a′ with constant coefficients (on the

open dense subset and hence on all of X). In particular, we have Xi ∈ a′, which implies

that a = a′ is an abelian algebra; this also implies that k is the complex dimension of X.

In particular, the corresponding connected Lie group L (the connected component of the

identity of the automorphism group of (P, ω)) is an abelian group of the same dimension as

that of X acting with an open dense orbit. This open dense orbit is the complement of the

vanishing set S of the holomorphic section X1

∧
· · ·

∧
Xk of the anticanonical bundle.

Since L is abelian, any `0 ∈ L stabilizing some point x0 of the open orbit stabilizes all

points `x0 for ` ∈ L: `0x0 = x0, so `0`x0 = ``0x0 = `x0. By density of the open dense

orbit, `0 stabilizes all points of X. So the stabilizer of any point in the open orbit is trivial,

i.e., X is an L-equivariant compactification of L.

The following arguments which prove that L is covered by (C∗)n are borrowed from [DM]

(Proposition 2).

Let us define nontrivial meromorphic 1-forms ωi on X by

ωi(ξ) =
X1 ∧X2 ∧ · · · ∧Xi−1 ∧ ξ ∧Xi+1 ∧ · · · ∧Xn

X1 ∧X2 ∧ · · · ∧Xn

.

Notice that the previous meromorphic 1-forms ωi are L-invariant and are holomorphic

when restricted to X \ S. Since L is abelian the classical Lie-Cartan formula implies that

the forms ωi are closed (on the open dense orbit X \S and hence on all of X). The indefinite

integral of any nonzero closed meromorphic 1-form is a nonconstant meromorphic function
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on some covering space of the complement of the simple poles of the 1-form. Since X

is simply connected and does not admit nontrivial meromorphic functions, every nonzero

meromorphic 1-form on X must have a simple pole on some component of the complement

S of the open dense orbit of L.

Define

∆ = H1(X \ S, Z) = H1(L, Z) .

Then ∆ identifies with a discrete subgroup in the Lie algebra a of L and L is isomorphic to

the quotient a/∆.

The restriction to X \ S of the L-invariant meromorphic 1-forms ωi identify with a basis

of a∗.

Pair any γ ∈ ∆, ω ∈ a∗ as follows:

γ, ω 7−→
∫
γ

ω ∈ C . (3.1)

Assume that for a given ω this pairing vanishes for every γ. Then ω integrates around each

component of S to define a meromorphic function on X. This meromorphic function must be

constant and therefore we have ω = 0. Consequently, the pairing in (3.1) is nondegenerate,

and hence ∆ ⊂ a spans a over C. This implies that L = a/∆ is covered by (C∗)n. �

Recall that a large and important class of non-Kähler smooth equivariant compactifications

of complex abelian Lie groups (namely the so-called LMBV manifolds) was constructed in

[BM, Mer] (see also [PUV]).

4. Equivariant compactifications of abelian groups and stability

In this section we prove the main result of the article (Theorem 4.1).

Let us first recall the notion of slope stability for holomorphic vector bundles complex

manifolds which will be used in the sequel.

Let X be a compact complex manifold of complex dimension n. Let us fix a Gauduchon

metric g on it. Recall that the (1, 1)-form αg associated to a Gauduchon metric g satisfies

the equation

∂∂αn−1g = 0 .

By a result of Gauduchon, any hermitian metric on X is conformally equivalent to a Gaudu-

chon metric (satisfying the above equation) which is uniquely defined up to a positive con-

stant [Ga].

The degree of a torsionfree coherent analytic sheaf F on X is defined to be

deg(F ) :=

√
−1

2π

∫
M

K(detF ) ∧ αn−1g ∈ R , (4.1)

where detF is the determinant line bundle for F [Ko, Ch. V, § 6] (or Definition 1.34 in [Br])

and K is the curvature for a hermitian connection on detF compatible with ∂detF . This
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degree is independent of the hermitian metric since any two such curvature forms differ by

a ∂∂-exact 2–form on X:∫
X

(∂∂u) ∧ αn−1g = −
∫
X

u ∧ ∂∂αn−1g = 0 .

This notion of degree is independent of the choice of the hermitian connection, but depends

on the Gauduchon metric (it is not a topological invariant). In the particular case where

dαg = 0 we find the classical degree for Kähler manifolds (and in this case the degree is a

topological invariant).

Define

µ(F ) :=
deg(F )

rank(F )
∈ R ,

which is called the slope of F (with respect to g).

A torsionfree coherent analytic sheaf F on X is called stable (respectively, semi-stable)

if for every coherent analytic subsheaf W ⊂ F such the rank(W ) ∈ [1 , rank(F ) − 1], the

inequality µ(W ) < µ(F ) (respectively, µ(W ) ≤ µ(F )) holds (see [LT, p. 44, Definition

1.4.3], [Ko, Ch. V, § 7]).

The rest of the section is devoted to the proof of the main theorem of the article:

Theorem 4.1. Compact complex manifolds with algebraic dimension zero bearing a holo-

morphic Cartan geometry of algebraic type have infinite fundamental group.

Proof. Assume, by contradiction, that a complex manifold X of algebraic dimension zero

admits a holomorphic Cartan geometry (P, ω) and has finite fundamental group. Consider-

ing the universal cover of X and pulling back the Cartan geometry (P, ω) to it, we would

assume that X is simply connected. Replace the Cartan geometry by the induced effective

Cartan geometry, so we can assume that it is effective.

By Lemma 3.1, the maximal connected subgroup of the automorphism group of (P, ω) is

a complex connected abelian Lie group L acting on X with an open dense orbit (it is the

complement of an anticanonical divisor on X). The complement of this anticanonical divisor

is biholomorphic to L (see Lemma 3.1).

Let us now prove the following lemma describing the geometry of simply connected smooth

equivariant compactifications of a complex abelian Lie groups.

Lemma 4.2. Let X be a simply connected smooth equivariant compactification X of a com-

plex abelian Lie group L. Then the following four hold:

(1) There is no nontrivial holomorphic k-form on X, for k ≥ 1.

(2) Any holomorphic line bundle E1 over X admitting a holomorphic connection is holo-

morphically trivial.

(3) If E is a holomorphic vector bundle over X admitting a holomorphic connection, then

E is semi-stable of degree zero.

(4) If F is a coherent analytic subsheaf of the holomorphic tangent bundle TX, such that

TX/F is nonzero and torsionfree, then the quotient deg(TX/F ) > 0.
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Proof of Lemma 4.2. (1) Let us first consider the special case of k = 1. Let η be a holo-

morphic one-form on X. Let {X1, · · · , Xn} be a family of commuting holomorphic vector

fields on X which span TX at the generic point. By the Lie-Cartan formula we get that for

any i, j ∈ {1, · · · , n}:

dη(Xi, Xj) = Xi · η(Xj)−Xj · η(Xi)− η([Xi, Xj]) = 0 . (4.2)

Since any holomorphic function on X is a constant one and [Xi, Xj] = 0 for all i, j, it

follows from (4.2) that the form η is closed. Now since X is simply connected, η coincides

with the differential of a global holomorphic function u on X. Since X is compact, u is

constant and hence η = 0.

Now consider a k-form η on X with k > 1. For any i1, i2, · · · , ik−1 ∈ {1, · · · , n}, the

one-form on X

v 7−→ η(X i1 , · · · , Xik−1
, v)

vanishes by the previous proof. Consequently, η must vanish.

(2) Let ∇ be a holomorphic connection on a holomorphic line bundle E1. The curvature

Curv(∇) of ∇ is a holomorphic two-form on X. Hence Curv(∇) = 0 by (1). So ∇ is flat.

This implies that E1 is the trivial holomorphic line bundle, because X is simply connected.

(3) Let ∇ be a holomorphic connection of E. The determinant line bundle det(E) of E

has a holomorphic connection induced by ∇. So det(E) is holomorphically trivial by (2).

Hence the degree of E is zero (see (4.1)).

Assume, by contradiction, that E is not semi-stable. Then there exists a maximal semi-

stable coherent analytic subsheaf W (the smallest nonzero term of the Harder–Narasimhan

filtration of E) [HL, pp. 14–15, Theorem 1.3.1]. The maximal semistable subsheaf W has

the following property:

H0(X, Hom(W, E/W )) = 0 . (4.3)

Indeed, this follows immediately from the facts that the slopes of the graded pieces for the

Harder–Narasimhan filtration of E/W are strictly less than µ(W ), and there is no nonzero

homomorphism from a semistable sheaf to another semistable sheaf of strictly smaller slope.

Now consider the second fundamental form

S : W −→ (E/W )⊗ Ω1
X

of W for the holomorphic connection ∇, which associates to any locally defined holomorphic

section s of W the projection, to (E/W )⊗Ω1
X , of∇(s) (which is a section of E⊗Ω1

X). For any

global holomorphic vector field Xi on X we have the homomorphism W −→ E/W defined

by w 7−→ S(w)(Xi). From (4.3) we know that this homomorphism vanishes identically.

Since the vector fields Xi span TX at the generic point, we have S = 0. Therefore, the

connection ∇ preserves W . In other words, ∇ induces a holomorphic connection on W . This

implies that the coherent analytic sheaf W is locally free (see Lemma 4.5 in [BD]). Since

W admits a holomorphic connection, from (2) we have deg(W ) = 0. This contradicts the

assumption that W destabilizes E.

Consequently, E is semistable.
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(4) Take F ⊂ TX as in (4). Let TX/F be of rank r ≥ 1. Consider the projection

q : TX −→ TX/F and the associated homomorphism

q̂ :
∧r

TX −→ det(TX/F ) . (4.4)

Note that q produces a homomorphism
∧r TX −→ det(TX/F ) over the subset U ⊂ X

where the torsionfree coherent analytic sheaf TX/F is locally free; now this homomorphism

extends to entire X by Hartogs’ theorem, because det(TX/F ) is locally free and the complex

codimension of X \ U is at least two.

Choose i1, · · · , ir ∈ {1, 2, · · · , n} for which {q(Xi1), · · · , q(Xir)} generate TX/F at

the generic point. Then q(Xi1)
∧
· · ·

∧
q(Xir) defines a holomorphic section of det(TX/F )

which is not identically zero; we shall denote this section of det(TX/F ) by σ. So we have

deg(TX/F ) ≥ 0, because det(TX/F ) admits a nonzero holomorphic section namely σ.

Assume by contradiction deg(TX/F ) = 0. Then the divisor div(σ) ⊂ X of the above

section σ is the zero divisor. Indeed, the degree of TX/F is the volume of div(σ) with respect

to the given Gauduchon metric (see [Br, Proposition 5.23]). Consequently, the line bundle

det(TX/F ) is holomorphically trivializable. Once a holomorphic trivialization of det(TX/F )

is fixed, the homomorphism q̂ in (4.4) becomes a holomorphic 1-form on X which is not

identically zero. This is in contradiction with (1). This proves that deg(TX/F ) > 0. �

Continuing with the proof of Theorem 4.1, let us now consider the curvature of the Cartan

geometry (P, ω)

Curv(ω̃) ∈ H0(X, ad(PG)⊗ Ω2
X)

constructed in (2.4). When contracted with any global holomorphic vector field Xi on X,

this curvature form Curv(ω̃) produces a holomorphic homomorphism

ϕ(Xi) : TX −→ ad(PG) , v 7−→ Curv(ω̃)(Xi, v) . (4.5)

The holomorphic connection ω̃ on PG induces a holomorphic connection on the vector bundle

ad(PG) associated to the principal G–bundle PG. Hence from Lemma 4.2(3) we know that

the vector bundle ad(PG) is semistable of degree zero. Consequently, from Lemma 4.2(3) it

follows immediately that

H0(X, Hom(TX, ad(PG)) = 0 ;

indeed, the image of a nonzero homomorphism TX −→ ad(PG) would contradict the

semistability condition for ad(PG). In particular, the homomorphism ϕ(Xi) in (4.5) van-

ishes identically.

Since the vector fields Xi generate the tangent bundle of X over a nonempty open subset

of X, from the vanishing of the homomorphisms ϕ(Xi) we conclude that Curv(ω̃) = 0.

Consequently, the Cartan geometry (P, ω) is flat.

Since X is simply connected, the developing map of the Cartan geometry is a holomorphic

biholomorphism between X and G/H. But G/H is algebraic and X has algebraic dimension

zero: a contradiction. This completes the proof of Theorem 4.1. �



10 I. BISWAS, S. DUMITRESCU, AND B. MCKAY

Recall that a generalized Cartan geometry in the sense of [BD] is given by a pair (P, ω)

satisfying conditions (2) and (3) in Definition 2.1, while the homomorphism in Definition

2.1(1) is not required to be an isomorphism anymore. Consequently, X and G/H do not

necessarily have the same dimension.

The proof of Theorem 4.1 shows that on simply connected smooth equivariant compacti-

fications X of complex abelian Lie groups, all (generalized) holomorphic Cartan geometries

in the sense of [BD] are flat (notice that the condition on the algebraic dimension of X is

not needed for this part of the proof; neither the condition on the algebraicity of G/H). In

conclusion all (generalized) holomorphic Cartan geometries on X are given by holomorphic

maps X −→ G/H.
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[Gh] E. Ghys, Déformations des structures complexes sur les espaces homogènes de SL(2,C), Jour. Reine

Angew. Math. 468 (1995), 113–138.
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