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Introduction and main results

This article is devoted to the study of existence of solutions of some second order quasilinear equations with measure data with a source-reaction term involving the function and its gradient. First we consider the problem with a Radon measure µ in R N in the whole space

-div(A(x, ∇u)) = |u| q1-1 u |∇u| q2 + µ in R N . (1.1) 1 
In this setting, (x, ξ) → A(x, ξ) from R N ×R N to R N is a Carathéodory vector field satisfying for almost all x ∈ R N the growth and ellipticity conditions

(i) |A(x, ξ)| + |ξ||∇ ξ A(x, ξ)|| ≤ Λ 1 |ξ| p-1 for all ξ ∈ R N , (ii) A(x, ξ) -A(x, η), ξ -η ≥ Λ 2 (|ξ| 2 + |η| 2 ) p-2
2 |ξ -η| 2 for all ξ, η ∈ R N , (iii)

|A(x, ξ) -A(y, ξ)| ≤ Λ 1 |x -y| α0 |ξ| p-1 for all ξ ∈ R N , (iv)

A(x, λξ) = |λ| p-2 λA(x, ξ) for all (λ, ξ) ∈ R × R N , (1.2) where Λ 1 ≥ Λ 2 > 0 are constants and 3N -2 2N -1 < p < N , and where q 1 , q 2 > 0 satisfy q 1 + q 2 > p -1, and α 0 ∈ (0, 1). The special case A(x, ξ) = |ξ| p-2 ξ gives rise to the standard p-Laplacian ∆ p u = div (|∇u| p-2 ∇u). Note that these conditions imply that A(x, 0) = 0 for a.e. x ∈ R N , and

∇ ξ A(x, ξ)λ, η ≥ 2 p-2 2 Λ 2 |ξ| p-2 |η| 2
for every (η, ξ) ∈ R N × R N \ {(0, 0)} and a.e. x ∈ R N .

When p = 2, q 1 = q 2 = 1, we obtain a toy model of the forced stationary NavierStokes equations describing the motion of incompressible fluid in the whole space R N :

-∆U + ∇p = -U.∇U + F, div(U ) = 0, (1.3) in R N ,where U = (U 1 , ..., U N ) : R N → R N is an unknown velocity of the fluid, P : R N → R is an unknown pressure, and F = (F 1 , ..., F N ) : R N → R N is a given external force.

We also consider the homogeneous Dirichlet problem with measure data in a bounded domain Ω ⊂ R N -div(A(x, ∇u)) = |u| q1-1 u |∇u| q2 + µ in Ω, u = 0 on ∂Ω, (1.4) where, in this setting, A : (x, ξ) → A(x, ξ) is a Carathéodory vector field defined in Ω × R N satisfying (1.2) (i)-(iv) in Ω × R N , and q 1 , q 2 are as in the first case; and Ω ⊂ R N is a bounded domain with a C 1,β0 boundary for β 0 ∈ (0, 1) and such that Ω ⊂ B R (x 0 ) for some R > 0 and x 0 ∈ Ω. The two specific cases,

-div(A(x, ∇u)) = |u| q1-1 u + µ in Ω u = 0 in ∂Ω, (1.5) 
and -div(A(x, ∇u))

= |∇u| q2 + µ in Ω, u = 0 in ∂Ω, (1.6) 
have been studied thoroughly in the last decade. Each of these equations carries a critical exponent q c j : q c 1 = N (p-1)

N -p for equation (1.5) and q c 2 = N (p-1)

N -1

for (1.6). These critical thresholds mean that if 0 < p -1 < q 1 < q c 1 for (1.5) and 1 -1 N < p -1 < q 1 < q c 1 for (1.6) any nonnegative bounded measure is eligible for the respective equation, provided it is small enough. Concerning equation (1.1), the criticality is expressed by a linear relation 0 < q 1 (N -p) + q 2 (N -1) < N (p -1). Then, if p > 2 -1 N and q 1 + q 2 > p -1, problem (1.4) any Radon measure small enough, see [START_REF] Véron | Local and Global Aspects of Quasilinear Degenerate Elliptic Equations[END_REF] and references therein. The treatment of the supercritical case for equations (1.5) and (1.6) have been treated more recently. In these cases not only the measure µ has to be small enough, but also it cannot be too concentrated with respect to some Bessel capacity, specific to each problem. It is proved in [START_REF] Phuc | Quasilinear and Hessian equations of Lane-Emden type[END_REF] that if µ is a nonnegative Radon measure with compact support in Ω, a necessary and sufficient condition for the existence of a renormalized solution to (1.5) is that there exists some c 1 > 0 depending on the structural constants and µ M such that µ(K) ≤ c 1 Cap Gp, q 1 q 1 +1-p (K) for all compact set K ⊂ Ω, (1.7) where Cap Gp, q 1 q 1 +1-p denotes some Bessel capacity. Concerning (1.6), assuming max{p -1, 1} < q 2 , it is proved in [START_REF] Phuc | Quasilinear Riccati type equations with super-critical exponents[END_REF][START_REF] Phuc | Nonlinear Muckenhoupt-Wheeden type bounds on Reifenberg flat domains, with application to quasilinear Riccati type equations[END_REF][START_REF] Nguyen | Good-λ and Muckenhoupt-Wheeden type bounds in quasilinear measure datum problems, with applications[END_REF][START_REF] Nguyen | Quasilinear Riccati type equations with oscillatory and singular data[END_REF][START_REF] Nguyen | Existence and regularity estimates for quasilinear equations with measure data: the case 1 < p ≤ 3n-2 2n-1[END_REF] that there exists a structural constant c 2 > 0 as above such that if

|µ|(K) ≤ c 2 Cap G1, q 2 q 2 +1-p (K) for all compact set K ⊂ Ω, (1.8) 
there exists a renormalized solution to (1.6) with the property that ˆK |∇u| q2 dx ≤ c 3 Cap G1, q 2 q 2 +1-p (K) for all compact set K ⊂ Ω, (1.9)

for some c 3 > 0.

The complete expression of these results as well as the ones we will state below necessitates the introduction of several definitions and notations from harmonic analysis such as Wolff potential, Riesz potentials, Bessel spaces and maximal functions. The role of these operators has appeared to be a key-stone for conducting a fine analysis of quasilinear equations with measure data; this is very clearly presented in the introduction of the seminal paper [START_REF] Phuc | Quasilinear and Hessian equations of Lane-Emden type[END_REF]. If D is either a bounded domain or whole R for all x in R N . If R = ∞, we drop it in the expressions of (1.10). We write

W R α,p [f ], I R β [f ] in place of W R α,p [µ], I R β [µ]
whenever dµ = f dx, where f ∈ L 1 loc (R N ). For α > 0, p > 1, the (I α , p)-capacity, (G α , p)-capacity of a Borel set O ⊂ R N are defined by Cap Iα,p (O) = inf

ˆRN |g| p dx : g ∈ L p + (R N ), I α [g] ≥ χ O , Cap Gα,p (O) = inf ˆRN |g| p dx : g ∈ L p + (R N ), G α * g ≥ χ O ,
where

G α = F -1 (1 + |ξ| 2 ) -α 2
is the Bessel kernel of order α, see [START_REF] Adams | Function Spaces and Potential Theory[END_REF] (and F and F -1 are respectively the Fourier transform and its inverse).

The results we prove consist in obtaining sufficient conditions for the solvability of (1.1) or (1.4) where A is of the form (1.2) in R N (or Ω) expressed in terms of inequalities between Wolff or Riesz potentials of µ. In order to obtain these inequalities we will develop a series of sharp relations between these potentials and will connect them with some specific capacities. We recall that a Radon measure µ in R N (or Ω) is absolutely continuous with respect to some capacity Cap in R N (or Ω) if for a Borel set E

Cap(E) = 0 =⇒ |µ| (E) = 0, (1.11)
and it is Lipschitz continuous (with constant c > 0) if |µ| (E) ≤ cCap(E) for all Borel set E.

(1.12)

The capacity associated to the Sobolev space W Our first result deals with the equation in the whole space,

Theorem 1.1 Let q 1 , q 2 > 0, q 1 + q 2 > p -1, 0 < q 2 < N (p-1) N -1 and µ ∈ M(R N ). Assume that A(x, ξ) = A(ξ) for any (x, ξ) ∈ R N × R N .
If for some C > 0 depending on p, N , q j and Λ j (j=1,2), there holds

|µ|(K) ≤ CCap I q 1 p+q 2 q 1 +q 2 , q 1 +q 2 q 1 +q 2 -p+1 (K) for all compact K ⊂ R N , (1.13) 
then problem (1.1) admits a distributional solution u which satisfies

|u| ≤ C 0 W 1,p [|µ|], |∇u| ≤ C 0 W 1 p ,p [|µ|], (1.14) 
if p > 2, and

|u| ≤ C 0 (I p [|µ|]) 1 p-1 , |∇u| ≤ C 0 (I 1 [|µ|]) 1 p-1 , (1.15) if 3N -2 2N -1 < p ≤ 2.
Moreover, if µ ≥ 0, then u ≥ 0. Notice also that if µ ≥ 0 the solutions u in Theorem 1.1 are nonnegative p-super-harmonic functions.

When R N is replaced by a bounded domain Ω, we have the following general result.

Theorem 1.2 Let q 1 , q 2 > 0, q 1 + q 2 > p -1, 0 < q 2 < N (p-1)
N -1 . Let µ ∈ M(Ω) be such that dist (supp (µ), ∂Ω) > 0. If for some C > 0 depending on p, N , q j and Λ j (j=1,2), Ω and dist (supp (µ), ∂Ω) there holds

|µ|(K) ≤ CCap G q 1 p+q 2 q 1 +q 2 , q 1 +q 2 q 1 +q 2 -p+1 (K) for all compact K ⊂ R N , (1.16) 
then problem (1.4) admits a renormalized solution u satisfying

|u| ≤ C 0 W 1,p [|µ|] and |∇u| ≤ C 0 W 1 p ,p [|µ|],
(1.17)

if p > 2, and |u| ≤ C 0 (I p [|µ|]) 1 p-1 , |∇u| ≤ C 0 (I 1 [|µ|]) 1 p-1 , (1.18) if 3N -2 2N -1 < p ≤ 2. Moreover, if µ ≥ 0, then u ≥ 0.
The key-stone of our method which combines sharp potential estimates and Schauder fixed point theorem is to reduce our problems (1.1)-(1.4) to a system of nonlinear Wolff integral equations in the spirit of the method developed in [START_REF] Bidaut-Véron | Quasilinear and Hessian Lane-Emden systems with reaction and measure data[END_REF] and [START_REF] Nguyen | Quasilinear and Hessian Type Equations with Exponential Reaction and Measure Data[END_REF]. The proof of Theorem 1.1 (and similarly for Theorem1.2) is based upon the existence of a fixed point obtained by Schauder's theorem, of the mapping S which associates to

v ∈ E Λ = v : |v| ≤ Λ (I p [|µ n,k |]) 1 p-1 s.t. |∇v| ≤ Λ (I 1 [|µ n,k |]) 1 p-1 in B 2k the solution u = u n,k = S(v), of -div (A(x, ∇u)) = χ B k |v| q1-1 v|∇v| q2 + µ n,k in B 2k , u = 0 on ∂B 2k , (1.19) 
where µ n,k is a smooth approximation of µ with support in B k := B k (0) and Λ > 0, k, n ∈ N * are parameters. In order to prove that the set E Λ is invariant under S we use a series of a priori estimates dealing with renormalized solutions of

-div (A(x, ∇u)) = ν in B 2k , u = 0 on ∂B 2k , (1.20) 
where ν ∈ M b (Ω), and for our purpose ν = χ B k (0) |v| q1-1 v|∇v| q2 + µ n,k . Then we use pointwise estimates satisfied by a renormalized solution, e.g. in the case p ≤ 2, there holds a.e. in

B k |u(x)| ≤ C I p |χ B k |v| q1-1 v|∇v| q2 + µ n,k | (x) 1 p-1 , (1.21) 
and

|∇u(x)| ≤ C I 1 |χ B k |v| q1-1 v|∇v| q2 + µ n,k | (x) 1 p-1 , (1.22) 
see Theorem 3.6 and Corollary 3.8.

Using the fact that v ∈ E Λ we derive

|u(x)| ≤ C Λ q1+q2 I p (I p [|µ n,k |]) q 1 p-1 (I 1 [|µ n,k |]) q 2 p-1 (x) + I p [|µ n,k |](x) 1 p-1 , (1.23) 
and

|∇u(x)| ≤ C Λ q1+q2 I 1 (I p [|µ n,k |]) q 1 p-1 (I 1 [|µ n,k |]) q 2 p-1 (x) + I 1 [|µ n,k |](x) 1 p-1 . (1.24)
At this point we use the multplicative inequalities concerning the Riesz potential provided the measures satisfies some Lipschitz continuity estimate with respect to Cap I pq 1 +βpq 2 q 1 +q 2 , q 1 +q 2 q 1 +q 2 +1-p :

I α (I p [|µ n,k |]) q 1 p-1 (I 1 [|µ n,k |]) q 2 p-1 ≤ M I α [|µ n,k |] for α = 1 or p.
(1.25)

These multiplicative inequalities are the key of our construction, since they imply that for suitable choice of Λ, E Λ is invariant. The compactness of S being easy to prove we derive the existence of a solution to (1.19). One of the tools is a series of equivalence linking the Lipschitz continuity of µ with respect to some capacity with integral estimates of the Wolff (or Riesz) potential of the measure and even to a system of nonlinear Wolff integral equations as in [START_REF] Nguyen | Quasilinear and Hessian Type Equations with Exponential Reaction and Measure Data[END_REF]. In this spirit we prove the following:

Theorem 1.3 Let 1 < p < N , 0 < β < 1, q 1 , q 2 > 0 such that q 1 + q 2 > p -1 and q 2 < N (p-1)
N -βp . If µ is a nonnegative measure in R N , the following statements are equivalent: (a) The inequality µ(K) ≤ C 1 Cap I pq 1 +βpq 2 q 1 +q 2 , q 1 +q 2 q 1 +q 2 +1-p (K), (1.26) holds for any compact set K ⊂ R N , for some C 1 > 0.

(b) The inequality

ˆK (W α,p [µ]) q1 (W β,p [µ]) q2 dx ≤ C 2 Cap I pq 1 +βpq 2 q 1 +q 2 , q 1 +q 2 q 1 +q 2 +1-p (K), (1.27) 
holds for any compact set K ⊂ R N and some C 2 > 0.

(c) The inequalities

W 1,p (W 1,p [µ]) q1 W 1 p ,p [µ] q2 ≤ C 3 W 1,p [µ] W 1 p ,p (W 1,p [µ]) q1 W 1 p ,p [µ] q2 ≤ C 3 W 1 p ,p [µ],
(1.28) in R N are verified for some C 3 > 0.

(d) The system of equations

U = W 1,p [U q1 V q2 ] + W 1,p [µ] V = W 1 p ,p [U q1 V q2 ] + W 1 p ,p [µ], (1.29) 
in R N has a solution U, V ≥ 0 for > 0 small enough.

Actually the full statement is more complete and the above Theorem is a consequence of Theorem 2.10. Furthermore it has an analogue in Ω, see Theorem 2.12.

Estimates on potential

In the sequel C denotes a generic constant depending essentially on some structural constants (i.e. the ones associated to the operator and reaction term) and the domain, the value of which may change from one occurence to another. Sometimes, in order to avoid confusion, we introduce notations C j , j = 0, 1, 2.... We also use the notation to assert that the two quantities linked by this relation are comparable up to multiplication by constants of the previous type. The following result is a general version of results of Phuc and Verbitsky [START_REF] Phuc | Quasilinear and Hessian equations of Lane-Emden type[END_REF]Th 2.3]. It connects the Lipschitz continuity of a positive measure in R N with respect to some Riesz capacity to various integral or pointwise estimates of Wolff potentials of this measure.

Theorem 2.1 Let 1 < p < N/α, q > p -1, µ ∈ M + (R N ).
Then, the following statements are equivalent:

(a) The inequality µ(K) ≤ C 1 Cap Iαp, q q-p+1 (K), (2.1) 
holds for any compact set K ⊂ R N , for some C 1 > 0.

(b) The inequality

ˆK (W α,p [µ](y)) q dy ≤ C 2 Cap Iαp, q q-p+1 (K), (2.2) 
holds for any compact set K ⊂ R N , for some C 2 > 0.

(c) The inequality ˆRN W α,p [χ B t (x) µ](y) q dy ≤ C 3 µ(B t (x)), (2.3) 
holds for any x ∈ R N and t > 0, for some C 3 > 0.

(d) The inequality

W α,p [(W α,p [µ]) q ] ≤ C 4 W α,p [µ] < ∞, (2.4) 
holds almost everywhere in R N , for some C 4 > 0.

Proof 

ˆK (I αp [ν](y)) q p-1 dy Cap Iαp, q q-p+1 (K) sup K∈K(R N ) ˆK (W α,p [ν](y)) q dy Cap Iαp, q q-p+1 (K) for all ν ∈ M + (R N ),
where K(R N ) denotes the set of compact subsets of R N . Moreover, by [21, Theorem 2.1],

sup

K∈K(R N ) ν(K) Cap Iαp, q q-p+1 (K) sup K∈K(R N ) ˆK (I αp [ν](y)) q p-1 dy
Cap Iαp, q q-p+1 (K) for all ν ∈ M + (R N ).

From this we infer the equivalence between (a) and (b).

Step 2: Proof of (a) ⇔ (c). By [21, Theorem 2.1] (a) is equivalent to

ˆRN I αp [χ B t (x) µ](y) q p-1 dy ≤ Cµ(B t (x)),
for any ball B t (x) ⊂ R N . It is equivalent to (c) because of (2.5).

Step 3: By Proposition 2.4, we obtain (c) ⇒ (d).

Step 4

: Proof of (d) ⇒ (b). Set dν(x) = (W α,p [µ](x)) q dx. Clearly, (d) implies (W α,p [ν](x)) q dx ≤ Cdν(x).
Let M ν denote the centered Hardy-Littlewood maximal function defined for any f ∈ L 1 loc (R N , dν) by

M ν f (x) = sup t>0 1 ν(B t (x)) ˆBt(x) |f |dν. If E ⊂ R N is a Borel set, we have ˆRN (W α,p [χ E ν]) q dx ≤ ˆRN (M ν χ E ) q p-1 (W α,p [ν]) q dx ≤ C ˆRN (M ν χ E ) q p-1 dν.
Since M ν is bounded on L s (R N , dν), s > 1, by the Besicovitch's theorem, see e.g. [START_REF] Fefferman | Strong differentiation with respect to measure[END_REF], we deduce that

ˆRN (W α,p [χ E ν]) q dx ≤ Cν(E),
for any Borel set E. Applying the equivalence of (a) and (c) with µ = ν, we derive (b).

The next result is the analogue of the previous one when the whole space is replaced by a ball. It can be proved in the same way, see also [START_REF] Phuc | Quasilinear Riccati type equations with super-critical exponents[END_REF]

, Proof of Theorem 2.3]. Theorem 2.2 Let 1 < p < N/α, q > p-1, ω ∈ M + b (B R (x 0
)) for some R > 0 and x 0 ∈ R N . Then, the following statements are equivalent: (a) The inequality

ω(K) ≤ C 1 Cap Gαp, q q-p+1 (K), (2.6) 
holds for any compact set K ⊂ R N , for some

C 1 = C 1 (R) > 0. (b) The inequality ˆK W 4R α,p [ω](y) q dy ≤ C 2 Cap Gαp, q q-p+1 (K), (2.7) 
holds for any compact set K ⊂ R N , for some

C 2 = C 2 (R) > 0. (c) The inequality ˆRN W 4R α,p [χ B t (x) ω](y) q dy ≤ C 3 ω(B t (x)), (2.8) 
holds for any x ∈ R N and t > 0, for some

C 3 = C 3 (R) > 0. (d) The inequality W 4R α,p W 4R α,p [ω] q ≤ C 4 W 4R α,p [ω], (2.9) 
holds almost everywhere in B 2R (x 0 ), for some

C 4 = C 4 (R) > 0.
The following stability result of the Lipschitz continuity of a measure with respect a capacity will be used several times in the sequel since we will approximate the initial data by smooth and truncated ones; its proof is easy, see e.g. [START_REF] Phuc | Nonlinear Muckenhoupt-Wheeden type bounds on Reifenberg flat domains, with application to quasilinear Riccati type equations[END_REF]Lemma 2.7].

Proposition 2.3 Let 1 < p < N/α and 0 < β < N/p, µ ∈ M + (R N ), ω ∈ M + b (B R (x 0 )) for some R > 0 and x 0 ∈ R N . Set dµ n (x) = (ϕ n * µ)(x)dx, dω n (x) = (ϕ n * ω)(x)dx
where {ϕ n } is a sequence of mollifiers. Then, (i) If inequality (2.1) in Theorem 2.1 holds with q > (p-1)N N -αp and constant C 1 , then

µ n (K) ≤ CC 1 Cap Iαp, q q-p+1 (K) for all K ⊂ R N , n ∈ N (2.10)
for some C = C(N, α, p, q) > 0.

(ii) If inequality (2.6) in Theorem 2.2 holds with q > p -1 and constant C 2 , then

ω n (K) ≤ CC 2 Cap Gαp, q q-p+1 (K) for all K ⊂ R N , n ∈ N (2.11)
for some C = C(N, α, p, q) > 0.

The next proposition is crucial as it gives pointwise estimates of interates of Wolff potentials of positive measures and connect them with the capacitary estimates of the Wolff potentials of the same measures.

Proposition 2.4 Let 1 < p < N/α and 0 < β < N/p, µ ∈ M + (R N ), ω ∈ M + b (B R (x 0 )) for some B R (x 0 ) ⊂ R N . Then, (i) The inequality (2.3) in Theorem 2.1 with q > (p-1)N N -αp implies that W β,p [(W α,p [µ]) q ] ≤ C 1 W β,p [µ] < ∞, (2.12) 
holds almost everywhere in R N , for some C 1 > 0.

(ii) The inequality (2.8) in Theorem 2.2 with q > p -1 implies that

W 4R β,p W 4R α,p [ω] q ≤ C 2 W 4R β,p [ω], (2.13) 
holds almost everywhere in B 2R (x 0 ), for some C 2 > 0.

Proof. Assertion (i). First we assume that µ has compact support. Let x ∈ R N and t > 0.

For any y ∈ B t (x),

W α,p [χ B t (x) µ](y) ≥ ˆ+∞ 2t µ(B t (x) ∩ B r (y)) r N -αp 1 p-1 dr r ≥ ˆ+∞ 2t µ(B t (x)) r N -αp 1 p-1 dr r ≥ C µ(B t (x)) t N -αp 1 p-1 . From (2.3) we have µ(B t (x)) ≥ C ˆBt(x) W α,p [χ B t (x) µ](y) q dy ≥ Ct N µ(B t (x)) t N -αp 1 p-1 . Hence, µ(B t (x)) ≤ Ct N -αpq q-p+1 . Therefore ˆ∞ r µ(B t (x)) t N -αp 1 p-1 dt t ≤ Cr -αp q-p+1 . (2.14)
Since, B t (y) ⊂ B 2 max{t,r} (x) for any y ∈ B r (x), we have

ˆBr(x) (W α,p [µ](y)) q dy ≤ C ˆBr(x) ˆr 0 µ(B t (y) ∩ B 2r (x)) t N -αp 1 p-1 dt t q dy + C ˆBr(x) ˆ∞ r µ(B t (y) ∩ B 2t (x)) t N -αp 1 p-1 dt t q dy ≤ C ˆBr(x) W α,p [χ B 2r (x) µ] q dy + Cr N ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q ≤ Cµ(B 2r (x)) + Cr N ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q .
Note that, in the last inequality, we have used (2.3). Thus,

W β,p [(W α,p [µ]) q ] (x) = ˆ∞ 0 ´Br(x) (W α,p [µ](y)) q dy r N -βp 1 p-1 dr r ≤ C ˆ∞ 0 µ(B 2r (x)) r N -βp 1 p-1 dr r + C ˆ∞ 0 r βp p-1 -1 ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q p-1 dr.
Therefore, it remains to prove

ˆ∞ 0 r βp p-1 -1 ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q p-1 dr ≤ CW β,p [µ](x).
Notice that

r βp p-1 ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q p-1 → 0 as t → 0 and r βp p-1 ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q p-1 ≤ Cr βp p-1 -N -αp p-1 q p-1 (µ(R N )) q (p-1) 2 → 0 as t → ∞, since βp p-1 -N -αp p-1 q p-1 < βp p-1 -N p-1 < 0.
Hence, using integration by parts and inequality (2.14), we have

ˆ∞ 0 r βp p-1 -1 ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q p-1 dr = q βp ˆ∞ 0 r βp p-1 ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q p-1 -1 µ(B 2r (x)) r N -αp 1 p-1 dr r ≤ C ˆ∞ 0 r βp p-1 r -αp q-p+1 q p-1 -1 µ(B 2r (x)) r N -αp 1 p-1 dr r = CW β,p [µ](x).
Next, we assume that µ is not necessarily compactly supported. From the previous step,

W β,p W α,p [χ Bn(0) µ] q ≤ CW β,p [χ Bn (0) µ] ≤ CW β,p [µ] < ∞ a.e in R N .
Then we derive (2.12) by Fatou's lemma. Assertion (ii). For any x ∈ B 2R (x 0 ), 0 < t < R/2 and y ∈ B t (x),

W 4R α,p [χ B t (x) ω](y) ≥ ˆ4R 2t ω(B t (x) ∩ B r (y)) r N -αp 1 p-1 dr r ≥ C ω(B t (x)) t N -αp 1 p-1 . From (2.8) we have ω(B t (x)) ≥ C ˆBt(x) W 4R α,p [χ B t (x) ω](y) q dy ≥ Ct N ω(B t (x)) t N -αp 1 p-1 . Hence, ω(B t (x)) ≤ Ct N -αpq q-p+1 for all t ∈ (0, R/2) and x ∈ B 2R (x 0 ). It implies ˆ4R r ω(B 2t (x)) t N -αp 1 p-1 dt t ≤ Cr -αp q-p+1 for all x ∈ B 2R (x 0 ) , 0 < r < 4R. (2.15) Since B t (y) ⊂ B 2 max{t,r} (x) for any 0 < r < 4R and y ∈ B r (x), ˆBr(x) W 4R α,p [ω](y) q dy ≤ C ˆBr(x) ˆr 0 ω(B t (y) ∩ B 2r (x)) t N -αp 1 p-1 dt t q dy + C ˆBr(x) ˆ4R r ω(B t (y) ∩ B 2t (x)) t N -αp 1 p-1 dt t q dy ≤ C ˆBr(x) W 4R α,p [χ B 2r (x) ω] q dy + Cr N ˆ4R r µ(B 2t (x)) t N -αp 1 p-1 dt t q ≤ Cµ(B 2r (x)) + Cr N ˆ4R r µ(B 2t (x)) t N -αp 1 p-1 dt t q .
In the last inequality we have used (2.8). Thus, as above, we only need to prove that

ˆ4R 0 r βp p-1 -1 ˆ4R r ω(B 2t (x)) t N -αp 1 p-1 dt t q p-1 dr ≤ CW 2R β,p [ω](x).
Using integration by parts and (2.15)

ˆ4R 0 r βp p-1 -1 ˆ4R r ω(B 2t (x)) t N -αp 1 p-1 dt t q p-1 dr = q βp ˆ4R 0 r βp p-1 ˆ4R r ω(B 2t (x)) t N -αp 1 p-1 dt t q p-1 -1 ω(B 2r (x)) r N -αp 1 p-1 dr r ≤ C ˆ4R 0 r βp p-1 r -αp q-p+1 q p-1 -1 ω(B 2r (x)) r N -αp 1 p-1 dr r ≤ CW 8R β,p [ω](x) ≤ CW 4R β,p [ω](x), since W 8R β,p [ω](x) ≤ CW 4R β,p [ω](x) for any x ∈ B 2R (x 0 ), because supp ω ⊂ B 2R (x 0
). The next result is at the core of our construction since it connects the integral of product of Wolff potentials to some power to the integral of a new Wolff potential. In this highly technical construction, the role of Hardy Littlewood maximal function plays an important role as well as classical tools from harmonic analysis such as the Vitali Covering Lemma.

Theorem 2.5 Let α, β, q 1 , q 2 > 0, α > β, 1 < p < N α , q 1 + q 2 > p -1, q 2 < N (p-1)
N -βp and αpq1+βpq2 q1+q2

< N . Then, there holds

ˆRN M αpq 1 +βpq 2 q 1 +q 2 [µ](x) q 1 +q 2 p-1 dx ˆRN W αpq 1 +βpq 2 q 1 +q 2 ,p [µ](x) q1+q2 dx ˆRN (W α,p [µ](x)) q1 (W β,p [µ](x)) q2 dx, (2.16 
)

for any µ ∈ M + (R N ), and 
ˆRN M 2R αpq+βpq 2 q 1 +q 2 [ω](x) q 1 +q 2 p-1 ˆRN W 2R αpq 1 +βpq 2 q 1 +q 2 ,p [ω](x) q1+q2 dx ˆRN W 2R α,p [ω](x) q1 W 2R β,p [ω](x) q2 dx, (2.17 
)

for any R > 0 and ω ∈ M + (R N ) with diam(supp ω) ≤ R.
For proving this theorem we need several intermediate results.

For any α ∈ (0, N ), s > 0, R ∈ (0, ∞] we denote L R α,s [µ](x) = ˆR 0 µ(B t (x)) t N -α s dt t , (2.18) 
and

L α,s [µ] := L ∞ α,s [µ] when R = ∞. We notice that L R α,s is actually a Wolff potential since L R α,s [µ] = W R αs s+1 , s+1 s [µ] and L α,s [µ] = W αs s+1 , s+1 s [µ]. (2.19) Lemma 2.6 Let α 1 , α 2 , s 1 , s 2 > 0, 0 < α 2 < α 1 < N . There exist C = C(N, α 1 , α 2 , s 1 , s 2 ) > 0 and ε 0 = ε 0 (N, α 1 , α 2 , s 1 , s 2 ) > 0 such that for any µ ∈ M + (R N ), R ∈ (0, ∞], ε ∈ (0, ε 0 )
and λ > 0, the inequality

L 2R α1,s1 [µ]L 2R α2,s2 [µ] > ε 1/2 λ < ∞, (2.20) implies L R α1,s1 [µ]L R α2,s2 [µ] > aλ ∩ M 2R α 1 s 1 +α 2 s 2 s 1 +s 2 [µ] s1+s2 ≤ ελ ≤ Cε N 2s 2 (N -α 2 ) L 2R α1,s1 [µ]L 2R α2,s2 [µ] > ε 1/2 λ .
(2.21)

To prove this, we need the following two lemmas:

Lemma 2.7 Let 0 < α < N and s > 0. There exists C = C(N, α, s) such that |{L α,s [ω] > λ}| ≤ C (ω(R N )) s λ N s(N -α)
for all λ > 0, (2.22)

for any ω ∈ M + b (R N ). Proof. It is easy to see that L α,s [ω](x) ≤ C (M(ω)(x)) s(N -α) N (ω(R N )) αs N . Thus, thanks to boundedness of the operator M from M + b (R N ) to L 1,∞ (R d ), we get (2.22). The proof is complete. The next result is a consequence of Vitali Covering Lemma. Lemma 2.8 Let 0 < ε < 1, R > 0 and B := B R (x 0 ) for some x 0 ∈ R N . Let E ⊂ F ⊂ B
be two measurable sets in R N with |E| < ε|B| and satisfying the following property: for all x ∈ B and r ∈ (0, R], we have

B r (x) ∩ B ⊂ F provided |E ∩ B r (x)| ≥ ε|B r (x)|. Then |E| ≤ Cε|F | for some C = C(N ).
Proof of Lemma 2.6. We only consider the case R < ∞, the case R = ∞ being similar. Let {B R (x j )} be a cover of R N such that, for some constant

M = M (N ) > 0, j χ B R/4 (x j ) (x) ≤ M for all x ∈ R N .
It is sufficient to show that there exist constants c 1 , c 2 > 0 and ε 0 ∈ (0, 1) depending on N, α 1 , α 2 , s 1 , s 2 , p such that for any B ∈ {B R/4 (x j )}, λ > 0 and ε ∈ (0, ε 0 ), there holds

B ∩ L R α1,s1 [µ]L R α1,s1 [µ] > aλ ∩ M 2R α 1 s 1 +α 2 s 2 s 1 +s 2 [µ] s1+s2 ≤ ελ ≤ Cε N 2s 2 (N -α 2 ) B ∩ L 2R α1,s1 [µ]L 2R α1,s1 [µ] > ε 1/2 λ , (2.23) 
where

a = 1 + s 1 + s 2 s 1 s 2 (α 1 -α 2 ) 2 + 2 (N -α1)s1+(N -α2)s2+1 .
Fix λ > 0 and 0 < ε < min{1/10, 2 -10s 1 s 2 (α 1 -α 2 )

s 1 +s 2 }. We set E = B ∩ L R α1,s1 [µ]L R α1,s1 [µ] > aλ ∩ M 2R α 1 s 1 +α 2 s 2 s 1 +s 2 [µ] s1+s2 ≤ ελ , and 
F = B ∩ L 2R α1,s1 [µ]L 2R α1,s1 [µ] > ε 1/2 λ .
Thanks to Lemma 2.8 we will obtain (2.23) provided we verify the following two claims:

|E| ≤ Cε N 2s 2 (N -α 2 ) |B|, (2.24) 
and, for any x ∈ B and 0 < r ≤ R/4,

|E ∩ B r (x)| < Cε N 2s 2 (N -α 2 ) |B r (x)|, (2.25) whenever B r (x) ∩ B ∩ F c = ∅ and E ∩ B r (x) = ∅.
Proof of (2.24): For any x ∈ E, we have

L R α1,s1 [µ](x) ≤ ˆR 0 t -α 1 s 1 +α 2 s 2 s 1 +s 2 +α1 M 2R α 1 s 1 +α 2 s 2 s 1 +s 2 [µ](x) s1 dt t ≤ s 1 + s 2 s 1 s 2 (α 1 -α 2 ) R s 1 s 2 (α 1 -α 2 ) s 1 +s 2 (ελ) s 1 s 1 +s 2 .
Hence, the inequality

L R α1,s1 [µ](x)L R α2,s2 [µ](x) > λ implies L R α2,s2 [µ](x) > s 1 s 2 (α 1 -α 2 ) s 1 + s 2 R -s 1 s 2 (α 1 -α 2 ) s 1 +s 2 ε -s 1 s 1 +s 2 λ s 2 s 1 +s 2 . Clearly, L R α2,s2 [µ] = L R α2,s2 [χ B 2R (y0) µ] in B for any y 0 ∈ B. Fix y 0 ∈ E, we have |E| ≤ L α2,s2 [χ B 2R (y 0 ) µ] > s 1 s 2 (α 1 -α 2 ) s 1 + s 2 R -s 1 s 2 (α 1 -α 2 ) s 1 +s 2 ε -s 1 s 1 +s 2 λ s 2 s 1 +s 2 .
Using (2.21) from Lemma 2.7 and the fact that

M 2R α 1 s 1 +α 2 s 2 s 1 +s 2 [µ](y 0 ) s1+s2 ≤ ελ, we get |E| ≤ C (µ(B 2R (y 0 ))) s2 R -s 1 s 2 (α 1 -α 2 ) s 1 +s 2 ε -s 1 s 1 +s 2 λ s 2 s 1 +s 2 N s 2 (N -α 2 ) ≤ C (ελ) s 2 s 1 +s 2 (2R) s2N -s2 α 1 s 1 +α 2 s 2 s 1 +s 2 R -s 1 s 2 (α 1 -α 2 ) s 1 +s 2 ε -s 1 s 1 +s 2 λ s 2 s 1 +s 2 N s 2 (N -α 2 ) = Cε N s 2 (N -α 2 ) |B| ≤ Cε N 2s 2 (N -α 2 ) |B|.
We obtain (2.24).

Proof of (2.25): Take x ∈ B and 0 < r ≤ R/4. Now assume that B r (x) ∩ B ∩ F c = ∅ and E ∩B r (x) = ∅, then there exists

x 1 ∈ B r (x)∩B such that L 2R α1,s1 [µ](x 1 )L 2R α2,s2 [µ](x 1 ) ≤ ε 1/2 λ. We need to prove that |E ∩ B r (x)| < Cε N 2s 2 (N -α 2 ) |B r (x)|. (2.26)
To do this, we can write

L R α1,s1 [µ](y)L R α1,s1 [µ](y) = T 1 (y) + T 2 (y) + T 3 (y) + T 4 (y),
where

T 1 (y) = L 4r α1,s1 [µ](y)L 4r α2,s2 [µ](y), T 2 (y) = L 4r α1,s1 [µ](y) ˆR 4r µ(B ρ (y)) ρ N -α2 s2 dρ ρ , T 3 (y) = ˆR 4r µ(B ρ (y)) ρ N -α1 s1 dρ ρ L 4r α2,s2 [µ](y), T 4 (y) = ˆR 4r µ(B ρ (y)) ρ N -α1 s1 dρ ρ ˆR 4r µ(B ρ (y)) ρ N -α2 s2 dρ ρ .
For all y ∈ E ∩ B r (x), we have

T 2 (y) ≤ ˆ4r 0 ρ -α 1 s 1 +α 2 s 2 s 1 +s 2 +α1 M R α 1 s 1 +α 2 s 2 s 1 +s 2 [µ](y) s1 dρ ρ × ˆR 4r ρ -α 1 s 1 +α 2 s 2 s 1 +s 2 +α2 M R α 1 s 1 +α 2 s 2 s 1 +s 2 [µ](y) s2 dρ ρ ≤ s 1 + s 2 s 1 s 2 (α 1 -α 2 ) 2 r (α 1 -α 2 )s 1 s 2 s 1 +s 2 r -(α 1 -α 2 )s 1 s 2 s 1 +s 2 M R α 1 s 1 +α 2 s 2 s 1 +s 2 [µ](y) s1+s2 ≤ s 1 + s 2 s 1 s 2 (α 1 -α 2 ) 2 ελ, (2.27) also T 4 (y) ≤ ˆR 4r µ(B 2ρ (x 1 )) ρ N -α1 s1 dρ ρ ˆR 4r µ(B 2ρ (x 1 )) ρ N -α2 s2 dρ ρ ≤ 2 (N -α1)s1+(N -α2)s2 L 2R α1,s1 [µ](x 1 )L 2R α2,s2 [µ](x 1 ) ≤ 2 (N -α1)s1+(N -α2)s2 λ,
(2.28) and

T 3 (y) ≤ ˆR 4r µ(B 2ρ (x 1 )) ρ N -α1 s1 dρ ρ L 4r α2,s2 [µ](y) ≤ 2 s1(N -α1) L 2R α1,s1 [µ](x 1 )L 4r α2,s2 [µ](y), (2.29) 
Thus,

|E ∩ B r (x)| ≤ Y 1 + Y 2 + Y 3 + Y 4 ,
where

Y 1 = E ∩ B r (x) ∩ T 1 > λ ∩ M 2R α 1 s 1 +α 2 s 2 s 1 +s 2 [µ] s1+s2 ≤ ελ , Y 2 = E ∩ B r (x) ∩ T 2 > s 1 + s 2 s 1 s 2 (α 1 -α 2 ) 2 λ ∩ M 2R α 1 s 1 +α 2 s 2 s 1 +s 2 [µ] s1+s2 ≤ ελ , Y 3 = E ∩ B r (x) ∩ T 3 > 2 s1(N -α1) λ ∩ M 2R α 1 s 1 +α 2 s 2 s 1 +s 2 [µ] s1+s2 ≤ ελ , Y 4 = E ∩ B r (x) ∩ T 4 > 2 (N -α1)s1+(N -α2)s2 λ ∩ M 2R α 1 s 1 +α 2 s 2 s 1 +s 2 [µ] s1+s2 ≤ ελ .
As in the proof of (2.24), it can be shown that 

Y 1 ≤ c 11 ε N 2s 2 (N -α 2 ) |B r (x)|. ( 2 
Y 3 ≤ B r (x) ∩ L 4r α2,s2 [µ] > λ(L 2R α1,s1 [µ](x 1 )) -1 = B r (x) ∩ L 4r α2,s2 [χ B 6r (x 1 ) µ] > λ(L 2R α1,s1 [µ](x 1 )) -1
since B 4r (y) ⊂ B 6r (x 1 ) for all y ∈ B r (x). Using (2.21) from Lemma 2.7, we get

Y 3 ≤ C (µ(B 6r (x 1 ))) s2 λ(L 2R α1,s1 [µ](x 1 )) -1 N s 2 (N -α 2 ) ≤ C L 2R α1,s1 [µ](x 1 )L 2R α2,s2 [µ](x 1 ) λ N s 2 (N -α 2 ) r N ≤ Cε N 2s 2 (N -α 2 ) |B r (x)|.
Combining these inequalities, we infer (2.26).

Proof of Theorem 2.5. Step 1: Proof of (2.16). By [7, Theorem 2.3], we have

ˆRN M αpq 1 +βpq 2 q 1 +q 2 [µ](x) q 1 +q 2 p-1 dx ˆRN W αpq 1 +βpq 2 q 1 +q 2 ,p [µ](x) q1+q2 dx.
Next, we prove

ˆRN M αpq 1 +βpq 2 q 1 +q 2 [µ](x) q 1 +q 2 p-1 dx ˆRN (W α,p [µ](x)) q1 (W β,p [µ](x)) q2 dx.
Since for all x ∈ R N there holds

(W α,p [µ](x)) q1 (W β,p [µ](x)) q2 ≥ C M αpq 1 +βpq 2 q 1 +q 2 [µ](x) q 1 +q 2 p-1 , (W α,p [µ](x)) q1 ≤ C L αp, q 1 (q 1 +q 2 )(p-1) [µ](x) q1+q2 , (W β,p [µ](x)) q2 ≤ C L βp, q 2 (q 1 +q 2 )(p-1) [µ](x) q1+q2 ,
It is therefore enough to show that

ˆRN L αp, q 1 (q 1 +q 2 )(p-1) [µ]L βp, q 2 (q 1 +q 2 )(p-1) [µ] q1+q2 dx ≤ C ˆRN M αpq 1 +βpq 2 q 1 +q 2 [µ] q 1 +q 2 p-1
dx.

(2.31) Set dµ n = χ Bn (0) dµ, then we have

L αp, q 1 (q 1 +q 2 )(p-1) [µ n ]L βp, q 2 (q 1 +q 2 )(p-1) [µ n ] > t < ∞ for all t > 0.
Hence, by Lemma (2.6), there exist positive constants C, ε 0 , a such that for any λ > 0, ε ∈ (0, ε 0 ),

L αp, q 1 (q 1 +q 2 )(p-1) [µ n ]L βp, q 2 (q 1 +q 2 )(p-1) [µ n ] > aλ ≤ Cε N (q 1 +q 2 )(p-1) 2q 2 (N -βp) L αp, q 1 (q 1 +q 2 )(p-1) [µ n ]L βp, q 2 (q 1 +q 2 )(p-1) [µ n ] > ε 1/2 λ + M αpq 1 +βpq 2 q 1 +q 2 [µ] 1 p-1 > ελ .
Multiplying by λ q1+q2-1 and integrating over (0, ∞), we get ˆ∞ 0 λ q1+q2 L αp,

q 1 (q 1 +q 2 )(p-1) [µ n ]L βp, q 2 (q 1 +q 2 )(p-1) [µ n ] > aλ dλ λ ≤ Cε N (q 1 +q 2 )(p-1) 2q 2 (N -βp) ˆ∞ 0 λ q1+q2 L αp, q 1 (q 1 +q 2 )(p-1) [µ n ]L βp, q 2 (q 1 +q 2 )(p-1) [µ n ] > ε 1/2 λ dλ λ + ˆ∞ 0 λ q1+q2 M αpq 1 +βpq 2 q 1 +q 2 [µ] 1 p-1 > ελ dλ λ .
By a change of variable, we derive

a -q1-q2 -Cε N (q 1 +q 2 )(p-1) 2q 2 (N -βp) - q 1 +q 2 2 × ˆ∞ 0 λ q1+q2 L αp, q 1 (q 1 +q 2 )(p-1) [µ n ]L βp, q 2 (q 1 +q 2 )(p-1) [µ n ] > λ dλ λ ≤ ε -q1-q2 ˆ∞ 0 λ q1+q2 M αpq 1 +βpq 2 q 1 +q 2 [µ] 1 p-1 > λ dλ λ .
Since N (q1+q2)(p-1) 2q2(N -βp) -q1+q2 2 > 0, there exists ε 0 > 0 such that for any 0 < ≤ 0 , there holds

a -q1-q2 -Cε N (q 1 +q 2 )(p-1) 2q 2 (N -βp) - q 1 +q 2 2
> 0. Hence we obtain (2.31) by Fatou's Lemma.

Step 2: Proof of (2.17). By [7, Theorem 2.3], we have ˆRN M 2R αpq 1 +βpq 2 q 1 +q 2

[ω](x)

q 1 +q 2 p-1 dx ˆRN W 2R αpq 1 +βpq 2 q 1 +q 2 ,p [ω](x) q1+q2 dx.
Next, we prove ˆRN M 2R αpq 1 +βpq 2 q 1 +q 2

[ω](x)

q 1 +q 2 p-1 dx ˆRN W 2R α,p [ω](x) q1 W 2R β,p [ω](x) q2 dx. Let x 0 ∈ R N such that supp(ω) ⊂ B R (x 0 ). Since for all x ∈ R N , W 4R α,p [ω](x) q1 W 4R β,p [ω](x) q2 ≥ C M 2R αpq 1 +βpq 2 q 1 +q 2 [ω](x) q 1 +q 2 p-1
, and for any y ∈ B 3R/2 (x 0 ),

W 4R α,p [ω](y) ≤ CW 2R α,p [ω](y), W 4R β,p [ω](y) ≤ CW 2R β,p [ω](y), we have, ˆRN M 2R αpq+βpq 2 q 1 +q 2 [ω](x) q 1 +q 2 p-1 ≤ C ˆB5R (x0) W 4R α,p [ω](x) q1 W 4R β,p [ω](x) q2 dx ≤ C ˆB3R/2 (x0) W 2R α,p [ω](x) q1 W 2R β,p [ω](x) q2 dx + CR N ω(R N ) R N -αpq 1 +βpq 2 q 1 +q 2 q 1 +q 2 p-1 ≤ C ˆRN W 2R α,p [ω](x) q1 W 2R β,p [ω](x) q2 dx.
(2.32)

On the other hand, since there holds almost everywhere,

W 2R α,p [ω](x) q1 ≤ C L 3R αp, q 1 (q 1 +q 2 )(p-1) [ω](x) q1+q2 , W 2R β,p [ω](x) q2 ≤ C L 3R βp, q 2 (q 1 +q 2 )(p-1) [ω](x) q1+q2 , it is enough to prove that ˆRN L 3R αp, q 1 (q 1 +q 2 )(p-1) [ω](x)L 3R βp, q 2 (q 1 +q 2 )(p-1) [ω](x) q1+q2 dx ≤ C ˆRN M 2R
αpq 1 +βpq 2 q 1 +q 2

[ω](x)

q 1 +q 2 p-1
dx.

(2.33) By Lemma (2.6) there exist positive constants C, ε 0 and a such that for any λ > 0, ε ∈ (0, ε 0 ),

L 3R αp, q 1 (q 1 +q 2 )(p-1) [ω]L 3R βp, q 2 (q 1 +q 2 )(p-1)
[ω] > aλ

≤ Cε N (q 1 +q 2 )(p-1) 2q 2 (N -βp) L 6R αp, q 1 (q 1 +q 2 )(p-1) [ω]L 6R βp, q 2 (q 1 +q 2 )(p-1) [ω] > ε 1/2 λ + M 6R
αpq 1 +βpq 2 q 1 +q 2

[ω]

1 p-1 > ελ .
Multiplying by λ q1+q2-1 and integrating over (0, ∞), we obtain

a -q1-q2 ˆRN L 3R αp, q 1 (q 1 +q 2 )(p-1) [ω](x)L 3R βp, q 2 (q 1 +q 2 )(p-1) [ω](x) q1+q2 dx ≤ Cε N (q 1 +q 2 )(p-1) 2q 2 (N -βp) - q 1 +q 2 2 ˆRN L 6R αp, q 1 (q 1 +q 2 )(p-1) [ω](x)L 6R βp, q 2 (q 1 +q 2 )(p-1) [ω](x) q1+q2 dx + ε -q1-q2 ˆRN M 6R αpq 1 +βpq 2 q 1 +q 2 [ω](x) q 1 +q 2 p-1 dx.
Similarly as (2.32), we can see that ˆRN L 6R αp, q 1 (q 1 +q 2 )(p-1)

[ω](x)L 6R βp, q 2 (q 1 +q 2 )(p-1)

[ω](x)

q1+q2 dx ≤ C ˆRN L 2R αp, q 1 (q 1 +q 2 )(p-1) [ω](x)L 2R βp, q 2 (q 1 +q 2 )(p-1) [ω](x) q1+q2 dx,

and

ˆRN

M 6R αpq 1 +βpq 2 q 1 +q 2

[ω](x)

q 1 +q 2 p-1 dx ≤ ˆRN M 2R αpq 1 +βpq 2 q 1 +q 2 [ω](x) q 1 +q 2 p-1 dx, Therefore, since N (q1+q2)(p-1) 2q2(N -βp) -q1+q2 2 
> 0, for some ε > 0 small enough we infer (2.33).

Lemma 2.9 Let α > 0, p > 1, 0 < αp < N and 0 < γ < N (p-1) N -αp . There exists a constant

C = C(N, α, p, γ) such that for any µ ∈ M + (R N ), ˆBr(x) W r α,p [µ] γ dy ≤ Cr N µ(B 2r (x)) r N -αp γ p-1
for all x ∈ R N and r > 0.

(2.34)

Proof. We have ˆBr(x) W r α,p [µ] γ dy ≤ ˆBr(x) W α,p [χ B 2r (x) µ] γ dy = γ ˆ∞ 0 λ γ-1 | W α,p [χ B 2r (x) µ] > λ ∩ B r (x)|dλ.
By Lemma 2.7, we obtain ˆBr(x)

W r α,p [µ] γ dy ≤ γ µ(B 2r (x)) r N -αp γ p-1 |B r (x)| + ˆ∞ µ(B 2r (x)) r N -αp 1 p-1 λ γ-1 | W α,p [χ B 2r (x) µ] > λ |dλ ≤ Cr N µ(B 2r (x)) r N -αp γ p-1 + C ˆ∞ µ(B 2r (x)) r N -αp 1 p-1 λ γ-1 (µ(B 2r (x))) 1 p-1 λ N (p-1) N -αp dλ = Cr N µ(B 2r (x)) r N -αp γ p-1 .
which is the claim.

The next result is fundamental inasmuch it shows the equivalence between the capacitary estimates, the potential inequalities used in our construction and the solvability of the system of nonlinear integral equations connected to (1.1).

Theorem 2.10 Let α, β, q 1 , q 2 > 0, α > β, 1 < p < min{N/α, N/β}, q 1 + q 2 > p -1, q 2 < N (p-1)
N -βp and αpq1+βpq2 q1+q2 < N and µ ∈ M + (R N ). Then, the following statements are equivalent:

(a) The inequality

µ(K) ≤ C 1 Cap I αpq 1 +βpq 2 q 1 +q 2 , q 1 +q 2 q 1 +q 2 -p+1 (K),
(2.35)

holds for any compact set K ⊂ R N , for some C 1 > 0. (b) The inequality ˆK (W α,p [µ](x)) q1 (W β,p [µ](x)) q2 dx ≤ C 2 Cap I αpq 1 +βpq 2 q 1 +q 2 , q 1 +q 2 q 1 +q 2 -p+1 (K),
(2.36)

holds for any compact set K ⊂ R N , for some C 2 > 0. (c) The inequality ˆRN W αq 1 +βq 2 q 1 +q 2 ,p [χ B t (x) µ](y) q1+q2 dy ≤ C 3 µ(B t (x)), (2.37 
)

holds for any ball B t (x) ⊂ R N , for some C 3 > 0. (d) The inequality ˆRN W α,p [χ B t (x) µ](y) q1 W β,p [χ B t (x) µ](y) q2 dy ≤ C 4 µ(B t (x)), (2.38) 
holds for any ball B t (x) ⊂ R N , for some C 4 > 0.

(e) The inequalities

W α,p [(W α,p [µ]) q1 (W β,p [µ]) q2 ] ≤ C 5 W α,p [µ] < ∞ (2.39) W β,p [(W α,p [µ]) q1 (W β,p [µ]) q2 ] ≤ C 5 W β,p [µ] < ∞ (2.40)
hold for some C 5 > 0.

(f ) The system equation

U = W α,p [U q1 V q2 ] + εW α,p [µ] V = W β,p [U q1 V q2 ] + εW β,p [µ] , (2.41) 
in R N has a nonnegative solution for some ε > 0.

Proof. By Theorem 2.1 we have (a) ⇔ (c), by Theorem 2.5, (c) ⇔ (d). We now assume (e).

Put

T[µ] = (W α,p [µ](x)) q1 (W β,p [µ](x)) q2 for any µ ∈ M + (R N ). It is easy to see that (T[µ](x)) γ ≥ C ˆ∞ 0 µ(B ρ (x)) ρ N -αq 1 p+βq 2 p q 1 +q 2 γ(q 1 +q 2 ) p-1 dρ ρ = CW β,s [µ](x) for all x ∈ R N (2.42)
where γ = p-1 q1 + p-1 q2 , β = γ(αq1p+βq2p) γ(q1+q2)+p-1 and s = γ(q1+q2)+p-1 γ(q1+q2)

< 1 + 1 γ . From (2.39) and (2.40), we have

T [T[µ]] ≤ CT[µ] < ∞ almost everywhere.
Using (2.42), we obtain

(W β,s [T[µ]]) 1 γ ≤ CT[µ] < ∞ almost everywhere.
Applying W β,s to both sides of the above inequality and using Theorem 2.1 with α = β, p = s, q = 1 γ , we derive (i): Assume that (2.41) has a nonnegative solution for some

ˆK T[µ](x)dx ≤ CCap I βs , 1 1+γ-γs (K), ( 2 
ε > 0. Set dν(x) = U q1 V q2 dx + εdµ(x). Clearly (W α,p [ν]) q1 (W β,p [ν]) q2 ≤ Cdν(x) in R N . If E ⊂ R N is a Borel set, we have ˆRN (W α,p [χ E ν]) q1 (W β,p [χ E ν]) q2 dx ≤ ˆRN (M ν χ E ) q 1 +q 2 p-1 (W α,p [ν]) q1 (W β,p [ν]) q2 dx ≤ C ˆRN (M ν χ E ) q 1 +q 2 p-1 dν.
Since M ω f is bounded on L s (R N , dω), s > 1, we deduce from Fefferman's result [START_REF] Fefferman | Strong differentiation with respect to measure[END_REF] that

ˆRN (W α,p [χ E ν]) q1 (W β,p [χ E ν]) q2 dx ≤ Cν(E),
is verified for any Borel set E ⊂ R N . Applying (a) ⇔ (c) to µ = ν, we derive that

ν(K) ≤ C 1 Cap I αpq 1 +βpq 2 q 1 +q 2 , q 1 +q 2 q 1 +q 2 -p+1 (K),
(2.44) holds for any compact set K ⊂ R N . Since ν ≥ µ, we obtain (c).

(ii): Suppose that (2.39) and (2.40) hold with constant C 5 > 0.Take 0

< ε ≤ 1 2(2C5) p-1 q 1 +q 2 -p+1 . Consider the sequence {U m , V m } m≥0 of nonnegative functions defined by U 0 = W α,p [µ], V 0 = W β,p [µ] and U m+1 = W α,p [U q1 m V q2 m ] + εW α,p [µ] V m+1 = W β,p [U q1 m V q2 m ] + εW β,p [µ]
. It is easy to see that {U m , V m } m≥0 is well defined and satisfies

U m ≤ 2εW α,p [µ], V m ≤ 2εW α,p [µ] for all m ≥ 0.
Clearly {U m }, {V m } are nondecreasing. Using the dominated convergence theorem, it follows that (U (x), V (x)) := lim m→∞ (U m (x), V m (x)) is a solution of (2.41).

(iii): Assume that statements (a), (c) and (d) hold true. We first assume that µ has compact support. From (a) we have

µ(B r (x)) ≤ Cr N -αpq 1 +βpq 2 q 1 +q 2 -p+1
for all x ∈ R N and r > 0.

(2.45)

From (b) ˆBr(x) W r αq 1 +βq 2 q 1 +q 2

,p [µ](y) q1+q2 dy ≤ C 2 µ(B 2r (x)) for all x ∈ R N and r > 0.

Using Hölder's inequality and W r αq 1 +βq 2 q 1 +q 2

,p

[µ] ≥ r

- (α-β)pq 2
(p-1)(q 1 +q 2 ) W r α,p [µ], we obtain,

ˆBr(x) W r α,p [µ](y) q1 dy ≤ Cr (α-β)pq 1 q 2 +(p-1)N q 2 +(N -βp)(p-1)q 1 (p-1)(q 1 +q 2 )
µ(B 2r (x)) r N -βp q 1 q 1 +q 2 , (2.46) again for all x ∈ R N and r > 0. From (c),

ˆBr(x) W r α,p [µ](y) q1 W r β,p [µ](y) q2 dy ≤ C 3 µ(B 2r (x)) for all x ∈ R N and r > 0. (2.47) By Lemma 2.9, ˆBr(x) W r β,p [µ] q2 dy ≤ Cr N µ(B 2r (x)) r N -βp q 2 p-1
for all x ∈ R N and r > 0.

(2.48)

We have, with η = α or η = β,

W η,p [(W α,p [µ]) q1 (W β,p [µ]) q2 ] (x) ≤ C 4 i=1 ˆ∞ 0 A i (x, r) r N -ηp 1 p-1 dr r , (2.49) 
where

A 1 (x, r) = ˆBr(x) W r α,p [µ](y) q1 W r β,p [µ](y) q2 dy, A 2 (x, r) = ˆBr(x) W r α,p [µ](y) q1 ˆ∞ r µ(B t (y)) t N -βp 1 p-1 dt t q2 dy, A 3 (x, r) = ˆBr(x) ˆ∞ r µ(B t (y)) t N -αp 1 p-1 dt t q1 W r β,p [µ](y) q2 dy, A 4 (x, r) = ˆBr(x) ˆ∞ r µ(B t (y)) t N -αp 1 p-1 dt t q1 ˆ∞ r µ(B t (y)) t N -βp 1 p-1 dt t q2 dy.
Thanks to (2.47) we get

A 1 (x, r) ≤ Cµ(B 2r (x)),
which implies

ˆ∞ 0 A 1 (x, r) r N -ηp 1 p-1 dr r ≤ CW η,p [µ](x).
(2.50) Since B t (y) ≤ B 2t (x) for any y ∈ B r (x), t ≥ r and thanks to (2.46), (2.9) we deduce

A 2 (x, t) ≤ ˆBr(x) W r α,p [µ](y) q1 dy ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t q2 ≤ Cr
(α-β)pq 1 q 2 +(p-1)N q 2 +(N -βp)(p-1)q 1 (p-1)(q 1 +q 2 )

µ(B 2r (x)) r N -βp q 1 q 1 +q 2 ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t q2 ≤ Cr (α-β)pq 1 q 2 +(p-1)N q 2 +(N -βp)(p-1)q 1 (p-1)(q 1 +q 2 ) ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t q2+ q 1 (p-1) q 1 +q 2 , then A 3 (x, t) ≤ ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q1 ˆBr(x) W r β,p [µ](y) q2 dy ≤ C ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q1 r N µ(B 2r (x)) r N -βp q 2 p-1 ≤ Cr N ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q1 ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t q2 ,
and finally

A 4 (x, t) ≤ Cr N ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q1 ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t q2 . I-From the estimate of A 2 we derive ˆ∞ 0 A 2 (x, r) r N -ηp 1 p-1 dr r ≤ C ˆ∞ 0 r (α-β)pq 1 q 2 +(p-1)N q 2 +(N -βp)(p-1)q 1 (p-1) 2 (q 1 +q 2 ) -N -ηp p-1 × ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t q 2 p-1 + q 1 q 1 +q 2 dr r . Since αpq1+βpq2 q1+q2 < N , it follows that 0 < κ := (α -β)pq 1 q 2 + (p -1)N q 2 + (N -βp)(p -1)q 1 (p -1) 2 (q 1 + q 2 ) - N -ηp p -1 < N -βp p -1 q 2 p -1 + q 1 q 1 + q 2 .
Hence,

r κ ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t q 2 p-1 + q 1 q 1 +q 2
→ 0 as t → 0, and therefore

r κ ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t q 2 p-1 + q 1 q 1 +q 2 ≤ Cr κ-N -βp p-1 q 2 p-1 + q 1 q 1 +q 2 µ(R N ) q 2 (p-1) 2 + q 1
(p-1)(q 1 +q 2 ) , a quantity which converges to 0 when t → 0. Hence, by integration be parts, we obtain

ˆ∞ 0 A 2 (x, r) r N -ηp 1 p-1 dr r ≤ C ˆ∞ 0 r κ ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t q 2 p-1 + q 1 q 1 +q 2 dr r ≤ C ˆ∞ 0 r κ ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t q 2 p-1 + q 1 q 1 +q 2 -1 µ(B 2r (x)) r N -βp 1 p-1 dr r = C ˆ∞ 0 r (α-β)pq 1 q 2 +(p-1)N q 2 +(N -βp)(p-1)q 1 (p-1) 2 (q 1 +q 2 ) -N -βp p-1 × ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t q 2 p-1 + q 1 q 1 +q 2 -1 µ(B 2r (x)) r N -ηp 1 p-1 dr r .
Observing that we have from (2.45),

r (α-β)pq 1 q 2 +(p-1)N q 2 +(N -βp)(p-1)q 1 (p-1) 2 (q 1 +q 2 ) -N -βp p-1 ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t q 2 p-1 + q 1 q 1 +q 2 -1 ≤ C, we derive ˆ∞ 0 A 2 (x, r) r N -ηp 1 p-1 dr r ≤ CW η,p [µ](x). ( 2 

.51)

II-From the estimate of A 3 and A 4 , we have, as above, by integration be parts,

ˆ∞ 0 A 3 (x, r) r N -ηp 1 p-1 dr r + ˆ∞ 0 A 4 (x, r) r N -ηp 1 p-1 dr r ≤ C ˆ∞ 0 r ηp p-1 ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q 1 p-1 ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t q 2 p-1 dr r = C ˆ∞ 0 D 1 (x, r) µ(B 2r (x)) r N -ηp 1 p-1 dr r + C ˆ∞ 0 D 2 (x, r) µ(B 2r (x)) r N -ηp 1 p-1 dr r ,
where

D 1 (x, r) = r αp p-1 ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q 1 p-1 -1 ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t q 2 p-1 , D 2 (x, r) = r βp p-1 ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q 1 p-1 ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t q 2 p-1 -1 . Clearly, ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t ≤ r -(α-β)p p-1 ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t , ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t ≤ Cr αp p-1 - αpq 1 +βpq 2 (p-1)(q 1 +q 2 -p+1) .
We derive

D 1 (x, r) ≤ Cr αp p-1 ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q 1 p-1 -1 r -(α-β)p p-1 ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q 2 p-1 = C 1 r αp p-1 - (α-β)pq 2 (p-1) 2 ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 dt t q 1 +q 2 p-1 -1 ≤ C 2 r αp p-1 - (α-β)pq 2 (p-1) 2 r αp p-1 - αpq 1 +βpq 2 (p-1)(q 1 +q 2 -p+1) q 1 +q 2 p-1 -1 = C 3 .
Next, we estimate D 2 (x, r). If q1 p-1 ≥ 1, similarly as for estimate of D 1 (x, r) we obtain

D 2 (x, r) ≤ C. If q1 p-1 < 1, we have D 2 (x, r) = q 1 p -1 r βp p-1 ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 ˆ∞ t µ(B 2s (x)) s N -αp 1 p-1 ds s q 1 p-1 -1 dt t × ˆ∞ r µ(B 2t (x)) t N -βp 1 p-1 dt t q 2 p-1 -1 ≤ r βp p-1 ˆ∞ r µ(B 2t (x)) t N -αp 1 p-1 ˆ∞ t µ(B 2s (x)) s N -αp 1 p-1 ds s q 1 p-1 -1 × ˆ∞ t µ(B 2s (x)) s N -βp 1 p-1 ds s q 2 p-1 -1 dt t .
On the other hand,

µ(B 2t (x)) t N -αp 1 p-1 = t (α-β)p(p-1-q 2 ) (p-1) 2 µ(B 2t (x)) t N -αp 1 p-1 q 2 p-1 µ(B 2t (x)) t N -βp 1 p-1 1- q 2 p-1 ≤ Ct (α-β)p(p-1-q 2 ) (p-1) 2 ˆ∞ t µ(B 2s (x)) s N -αp 1 p-1 ds s q 2 p-1 ˆ∞ t µ(B 2s (x)) s N -βp 1 p-1 ds s 1- q 2 p-1 , therefore, D 2 (x, r) ≤ Cr βp p-1 ˆ∞ r t (α-β)p(p-1-q 2 ) (p-1) 2 ˆ∞ t µ(B 2s (x)) s N -αp 1 p-1 ds s q 1 +q 2 p-1 -1 dt t ≤ C 1 r βp p-1 ˆ∞ r t (α-β)p(p-1-q 2 ) (p-1) 2 r αp p-1 - αpq 1 +βpq 2 (p-1)(q 1 +q 2 -p+1) q 1 +q 2 p-1 -1 dt t = C 2 .
Hence, 

ˆ∞ 0 A 3 (x, r) r N -ηp 1 p-1 dr r + ˆ∞ 0 A 4 (x, r) r N -ηp 1 p-1 dr r ≤ CW η,p [µ](x). ( 2 
W η,p [(W α,p [µ]) q1 (W β,p [µ]) q2 ] ≤ CW η,p [µ] < ∞,
for η = α or β, provided µ has compact support in R N . Next, we assume that µ may not have compact support. Since the above constants noted C are independent of µ, for n ∈ N * , we set

µ n = χ Bn(0) µ W η,p [(W α,p [µ n ]) q1 (W β,p [µ n ]) q2 ] ≤ CW η,p [µ n ] ≤ CW η,p [µ] < ∞ < C ,
for η = α or β. Then we infer (e) by Fatou's lemma.

An important step for proving relative compactness in nonlinear problems is the convergence of the nonlinear terms and their equi-integrability is one of the key tool for such a task.

Lemma 2.11 Let µ be satisfying (2.35) with compact support in R N . Set µ n = ϕ n µ. Then,

(W α,p [µ n ](x)) q1 (W β,p [µ n ](x)) q2 (2.53) is equi-integrable in B t (0) for all t > 1.
Proof. Since supp µ n ⊂ B t0 (0) for some t 0 > 0 and

W 2T α,p [µ n ] q1 ≤ C L 3T αp, q 1 (q 1 +q 2 )(p-1) [µ n ] q1+q2 , W 2T β,p [µ n ] q2 ≤ C L 3T βp, q 2 (q 1 +q 2 )(p-1) [µ n ] q1+q2 , it suffices to show that L 2(t0+t) αp, q 1 (q 1 +q 2 )(p-1) [µ n ]L 2(t0+t) βp, q 2 (q 1 +q 2 )(p-1) [µ n ] q1+q2 is equi-integrable in B t (0). Since I 2(t0+t) αpq 1 +pβq 2 q 1 +q 2 [µ n ] q 1 +q 2 p-1 ≤ C I 4(t0+t) αpq 1 +pβq 2 q 1 +q 2 [µ] ϕ n q 1 +q 2 p-1
, so

I 2(t0+t) αpq 1 +pβq 2 q 1 +q 2 [µ n ] q 1 +q 2 p-1
is equi-integrable in B t (0) for any t > t 0 . Thus, by [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Proposition 1.27] we can find a nondecreasing function Φ : [0, ∞) → [0, ∞) such that Φ(λ)/λ → ∞ as λ → ∞, and φ(2 j λ) ≤ jφ(λ) for all λ > 0, j ∈ N and Φ (λ) = φ(λ)

ˆ∞ 0 φ(λ) I 2(t0+t) αpq 1 +pβq 2 q 1 +q 2 [µ n ] q 1 +q 2 p-1 > λ dλ ≤ 1.
On the other hand, by Lemma 2.6, there exists C > 0 and ε 0 > 0 such that

L 2(t0+t) αp, q 1 (q 1 +q 2 )(p-1) [µ n ]L 2(t0+t) βp, q 2 (q 1 +q 2 )(p-1) [µ n ] > aλ, I 2(t0+t) αpq 1 +pβq 2 q 1 +q 2 [µ n ] 1 p-1 ≤ ελ ≤ Cε N (q 1 +q 2 )(p-1) 2q 2 (N -βp) L 2(t0+t) αp, q 1 (q 1 +q 2 )(p-1) [µ n ]L 2(t0+t) βp, q 2 (q 1 +q 2 )(p-1) [µ n ] > ε 1/2 λ (2.54)
for any ε ∈ (0, ε 0 ) and t > 0, for some a > 1. This gives

L 2(t0+t) αp, q 1 (q 1 +q 2 )(p-1) [µ n ]L 2(t0+t) βp, q 2 (q 1 +q 2 )(p-1) [µ n ] q1+q2 > aλ, I 2(t0+t) αpq 1 +pβq 2 q 1 +q 2 [µ n ] q 1 +q 2 p-1 ≤ ελ ≤ Cε N (p-1) 2q 2 (N -βp) L 2(t0+t) αp, q 1 (q 1 +q 2 )(p-1) [µ n ]L 2(t0+t) βp, q 2 (q 1 +q 2 )(p-1) [µ n ] q1+q2 > ε 1/2 λ (2.55)
for any ε ∈ (0, ε 0 ) and t > 0, for some a > 1. It is easy to obtain from the above two inequality that

ˆ∞ 0 φ(λ) L 2(t0+t) αp, q 1 (q 1 +q 2 )(p-1) [µ n ]L 2(t0+t) βp, q 2 (q 1 +q 2 )(p-1) [µ n ] q1+q2 > λ dλ ≤ Cε N (p-1) 2q 2 (N -βp) ˆ∞ 0 φ(λ) L 2(t0+t) αp, q 1 (q 1 +q 2 )(p-1) [µ n ]L 2(t0+t) βp, q 2 (q 1 +q 2 )(p-1) [µ n ] q1+q2 > a -1 ε 1/2 λ dλ + C ˆ∞ 0 φ(λ) I 2(t0+t) αpq 1 +pβq 2 q 1 +q 2 [µ n ] q 1 +q 2 p-1 > ελ dλ ≤ Cε N (p-1) 2q 2 (N -βp) -1/2 ˆ∞ 0 φ(aε -1/2 λ) L 2(t0+t) αp, q 1 (q 1 +q 2 )(p-1) [µ n ]L 2(t0+t) βp, q 2 (q 1 +q 2 )(p-1) [µ n ] q1+q2 > λ dλ + C ˆ∞ 0 φ(ελ) I 2(t0+t) αpq 1 +pβq 2 q 1 +q 2 [µ n ] q 1 +q 2 p-1 > λ dλ Since φ(ελ), φ(aε -1/2 λ) ≤ C| log(ε)|φ(λ) for any λ > 0, ε << 1 and N (p-1) 2q2(N -βp) -1/2 > 0, so it is easy to get that ˆ∞ 0 φ(λ) L 2(t0+t) αp, q 1 (q 1 +q 2 )(p-1) [µ n ]L 2(t0+t) βp, q 2 (q 1 +q 2 )(p-1) [µ n ] q1+q2 > λ dλ ≤ C Hence, L 2(t0+t) αp, q 1 (q 1 +q 2 )(p-1) [µ n ]L 2(t0+t) βp, q 2 (q 1 +q 2 )(p-1) [µ n ] q1+q2 is equi-integrable in B t (0). The proof is complete.
The next statement is the analogue of Theorem 2.10 in a bounded domain.

Theorem 2.12 Let α, β, q 1 , q 2 > 0, α > β, 1 < p < N α , q 1 + q 2 > p -1, q 2 < N (p-1) N -βp , ω ∈ M + b (B R (x 0 )) for some B R (x 0 ) ⊂ R N , extended by 0 in B c R (x 0 ).
Then, the following statements are equivalent:

(a) The inequality ω(K) ≤ C 1 Cap G αpq 1 +βpq 2 q 1 +q 2 , q 1 +q 2 q 1 +q 2 -p+1 (K), (2.56) 
holds for any compact set K ⊂ R N , for some

C 1 = C 1 (R) > 0. (b) The inequality ˆK W 4R α,p [ω](x) q1 W 4R β,p [ω](x) q2 dx ≤ C 2 Cap G αpq 1 +βpq 2 q 1 +q 2 , q 1 +q 2 q 1 +q 2 -p+1 (K), (2.57 
)

holds for any compact set K ⊂ R N , for some C 2 = C 2 (R) > 0.
(c) The inequality

ˆRN W 4R αq 1 +βq 2 q 1 +q 2 ,p [χ B t (x) ω](y) q1+q2 dy ≤ C 3 ω(B t (x)), (2.58) 
holds for any ball B t (x) ⊂ R N , for some

C 3 = C 3 (R) > 0. (d) The inequality ˆRN W 4R α,p [χ B t (x) ω](y) q1 W 4R β,p [χ B t (x) ω](y) q2 dy ≤ C 4 ω(B t (x)), (2.59) 
holds for any ball B t (x) ⊂ R N , for some

C 4 = C 4 (R) > 0.
(e) The system of inequalities

(i) W 4R α,p W 4R α,p [ω] q1 W 4R β,p [ω] q2 ≤ C 5 W 4R α,p [ω] (ii) W 4R β,p W 4R α,p [ω] q1 W 4R β,p [ω] q2 ≤ C 5 W 4R β,p [ω], (2.60) 
holds in B 2R (x 0 ) for some C 5 = C 5 (R) > 0.
Proof. By Theorem 2.2 we have (a) ⇔ (c); by Theorem 2.5, (c) ⇔ (d). As in the proof of Theorem 2.10, we can see that (e) ⇒ (a) and (e) ⇒ (b). Since

W 4R α,p [ω](x) q1γ W 4R β,p [ω](x) q2γ ≥ C ˆ4R 0 ω(B r (x)) r N -αp q 1 γ p-1 ω(B r (x)) r N -βp q 2 γ p-1 dr r = CW 4R α0,p0 [ω](x) for all x ∈ B 2R (x 0 ), where γ = 1 q1 + 1 q2 , α 0 = γ(αpq1+βpq2) γ(q1+q2)+p-1 and p 0 = γ(q1+q2)+p-1 γ(q1+q2) , then, (b) implies that ˆK W 4R α0,p0 [ω](x) 1 γ dx ≤ CCap G αpq 1 +βpq 2 q 1 +q 2 , q 1 +q 2 q 1 +q 2 -p+1 (K) = Cap Gα 0 p 0 , 1 γ 1 γ -p 0 +1 (K), (2.61)
is verified for any compact set K ⊂ R N . Therefore (a) follows by Theorem 2.2. It remains to prove (a)+(c)+(d) ⇒ (e). From (a) we have

ω(B r (x)) ≤ Cr N -αpq 1 +βpq 2 q 1 +q 2 -p+1
for all x ∈ R N and r > 0.

(2.62)

From (b) ˆBr(x) W r αq 1 +βq 2 q 1 +q 2 ,p [ω](y) q1+q2 dy ≤ C 2 ω(B 2r (x)) for all x ∈ R N and 0 < r < 8R.
Using Hölder's inequality and W r αq 1 +βq 2 q 1 +q 2

,p

[ω] ≥ r

- (α-β)pq 2 (p-1)(q 1 +q 2 ) W r α,p [ω], we get ˆBr(x) W r α,p [ω](y) q1 dy ≤ Cr (α-β)pq 1 q 2 +(p-1)N q 2 +(N -βp)(p-1)q 1 (p-1)(q 1 +q 2 ) ω(B 2r (x)) r N -βp q 1 q 1 +q 2 , (2.63) for all x ∈ R N and 0 < r < 8R. From (c), ˆBr(x) W r α,p [ω](y) q1 W r β,p [ω](y) q2 dy ≤ C 3 ω(B 2r (x)
) for all x ∈ R N and 0 < r < 8R.

(2.64) By Lemma 2.9,

ˆBr(x) W r β,p [µ] q2 dy ≤ Cr N µ(B 2r (x)) r N -βp q 2 p-1
for all x ∈ R N and 0 < r < 8R. (2.65)

Next we have for η = α or η = β and almost all x ∈ B 2R (x 0 ),

W 4R η,p W 4R α,p [µ] q1 W 4R β,p [µ] q2 (x) ≤ C 4 i=1 ˆ4R 0 A i (x, r) r N -ηp 1 p-1 dr r , (2.66) 
where

A 1 (x, r) = ˆBr(x) W r α,p [µ](y) q1 W r β,p [µ](y) q2 dy, A 2 (x, r) = ˆBr(x) W r α,p [µ](y) q1 ˆ4R r µ(B t (y)) t N -βp 1 p-1 dt t q2 dy, A 3 (x, r) = ˆBr(x) ˆ4R r µ(B t (y)) t N -αp 1 p-1 dt t q1 W r β,p [µ](y) q2 dy, A 4 (x, r) = ˆBr(x) ˆ4R r µ(B t (y)) t N -αp 1 p-1 dt t q1 ˆ4R r µ(B t (y)) t N -βp 1 p-1 dt t q2 dy.
Thanks to (2.47) there holds

A 1 (x, r) ≤ Cµ(B 2r (x)), which implies ˆ4R 0 A 1 (x, r) r N -ηp 1 p-1 dr r ≤ CW 8R η,p [µ](x) ≤ CW 4R η,p [µ](x) for all x ∈ B 2R (x 0 ). (2.67) 
Since B t (y) ≤ B 2t (x) for any y ∈ B r (x) and t ≥ r , and thanks to (2.46) and (2.9) we deduce that there holds, for 0 < r < 4R and x ∈ B 2R (x 0 ),

A 2 (x, r) ≤ ˆBr(x) W r α,p [µ](y) q1 dy ˆ4R r µ(B 2t (x)) t N -βp 1 p-1 dt t q2 ≤ Cr (α-β)pq 1 q 2 +(p-1)N q 2 +(N -βp)(p-1)q 1 (p-1)(q 1 +q 2 ) µ(B 2r (x)) r N -βp q 1 q 1 +q 2 ˆ4R r µ(B 2t (x)) t N -βp 1 p-1 dt t q2 ≤ Cr (α-β)pq 1 q 2 +(p-1)N q 2 +(N -βp)(p-1)q 1 (p-1)(q 1 +q 2 ) ˆ4R r µ(B 2t (x)) t N -βp 1 p-1 dt t q2+ q 1 (p-1) q 1 +q 2 . Next A 3 (x, r) ≤ ˆ4R r µ(B 2t (x)) t N -αp 1 p-1 dt t q1 ˆBr(x) W r β,p [µ](y) q2 dy ≤ C ˆ4R r µ(B 2t (x)) t N -αp 1 p-1 dt t q1 r N µ(B 2r (x)) r N -βp q 2 p-1 ≤ Cr N ˆ4R r µ(B 2t (x)) t N -αp 1 p-1 dt t q1 ˆ4R r µ(B 2t (x)) t N -βp 1 p-1 dt t q2 , and 
A 4 (x, r) ≤ Cr N ˆ4R r µ(B 2t (x)) t N -αp 1 p-1 dt t q1 ˆ4R r µ(B 2t (x)) t N -βp 1 p-1 dt t q2 .
As in the proof of Theorem 2.10, we easily obtain

ˆ4R 0 A 2 (x, r) r N -ηp 1 p-1 dr r ≤ CW 4R η,p [µ](x) for all x ∈ B 2R (x 0 ), and 
ˆ4R 0 A 3 (x, r) r N -ηp 1 p-1 dr r + ˆ4R 0 A 4 (x, r) r N -ηp 1 p-1 dr r ≤ CW 4R η,p [µ](x) for all x ∈ B 2R (x 0 ).
Combining these inequalities with (2.66) and (2.67), we get (e).

Renormalized solutions

Let Ω be a bounded domain in R N . If µ ∈ M b (Ω), we denote by µ + and µ -respectively its positive and negative parts in the Jordan decomposition. We denote by M 0 (Ω) the space of diffuse measures in Ω and by M s (Ω) the space of measures in Ω which are singular with respect to the Cap G1,p which means that their support is set of zero Cap G1,p -capacity. Classically, any µ ∈ M b (Ω) can be written in a unique way under the form µ = µ 0 +µ s where µ 0 ∈ M 0 (Ω) ∩ M b (Ω) and µ s ∈ M s (Ω). It is well known that any µ 0 ∈ M 0 (Ω) ∩ M b (Ω) can be written under the form µ 0 = f -div g where f ∈ L 1 (Ω) and g ∈ L p (Ω, R N ).

For k > 0 and s ∈ R we set T k (s) = max{min{s, k}, -k}. If u is a measurable function defined in Ω, finite a.e. and such that T k (u) ∈ W 1,p loc (Ω) for any k > 0, there exists a measurable function v : Ω → R N such that ∇T k (u) = χ |u|≤k v a.e. in Ω and for all k > 0. We define the gradient of u by v = ∇u almost everywhere. We recall the definition of a renormalized solution given in [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF]. 

-div A(x, ∇u n )) = µ n in Ω u n = 0 on ∂Ω. (3.2) 
Then, up to a subsequence, {u n } converges a.e. to a solution u of -div(A(x, ∇u)) = µ in the sense of distributions in Ω, for some measure µ ∈ M b (Ω), and for every k > 0, k -1 ∇T k (u) p L p ≤ M for some M > 0. The following fundamental stability result of [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF] extends Theorem 3.3.

Theorem 3.4 Let µ = µ 0 + µ + s -µ - s ∈ M b (Ω), with µ 0 = f -div g ∈ M 0 (Ω), µ + s , µ - s ∈ M + s (Ω). Assume there are sequences {f n } ⊂ L 1 (Ω), {g n } ⊂ (L p (Ω)) N , {η 1 n }, {η 2 n } ⊂ M + b (Ω) such that f n f weakly in L 1 (Ω), g n → g in L p (Ω) and div g n is bounded in M b (Ω), η 1 n µ + s and η 2 n µ - s in the narrow topology. If µ n = f n -div g n + η 1 n -η 2
n and u n is a renormalized solution of (3.2), then, up to a subsequence, u n converges a.e. to a renormalized solution u of (3.1). Furthermore, T k (u n ) → T k (u) in W 1,p 0 (Ω) for any k > 0.

The next result is proved in [START_REF] Bidaut-Véron | Removable singularities and existence for a quasilinear equation with absorption or source term and measure data[END_REF]Th 3.2]. Therein it plays an important role in study the stability of the renormalized solutions of the following problem with absorption,

-div(A(x, ∇u n k )) + |u n k | q-1 u n k = µ n k in Ω, u n k = 0 on ∂Ω. (3.3) Theorem 3.5 Let {n k } k be an increasing sequence in N, q > p -1, {µ n k } k be a sequence in M(R N ) such that sup k≥k0 |µ n k | B n k 0 (0) < +∞ for all k 0 ∈ N.
Let u n k be a renormalized solution of (3.1) with data µ n k and Ω = B n k (0) such that {|u n k | q } k≥k0 is bounded in L 1 (B n k 0 (0)) for any k 0 . Then, there exist subsequence of {u n k } k , still denoted by {u n k } k a measure µ and measurable function u such that µ n k µ in the weak sense of measures,

u n k → u, ∇u n k → ∇u a.e in R N . Moreover, |∇u n k | p-2 ∇u n k → |∇u| p-2 ∇u in L s loc (R N
) for all 0 ≤ s < N N -1 and u satisfies (3.1) in the sense of distributions in R N . Theorem 3.6 [START_REF] Phuc | Quasilinear and Hessian equations of Lane-Emden type[END_REF][START_REF] Bidaut-Véron | Quasilinear Lane-Emden equations with absorption and measure data[END_REF] Let Ω be a bounded domain of R N . Then there exists a constant 

C = C(N, p, Λ 1 , Λ 2 ) > 1 such that if µ ∈ M b (Ω)
where R = diam(Ω). Moreover, if µ ≥ 0 and u ≥ 0 then, 

u(x) ≥ 1 C W d(x,∂Ω) 4 1,p [µ] 
for any B r (x) ⊆ Ω and for some γ 0 ∈ (0, N (p-1) N -1 ). Moreover, if A(x, ξ) = A(ξ) for any (x, ξ) ∈ R N × R N , then the constant in (3.6) does not depend on diam(Ω). 

(x)| ≤ C R δ N I 2R 1 [|µ|](x) 1 p-1 , (3.7) 
for any x ∈ Ω such that d(x, ∂Ω) > δ with δ ∈ (0, R/2). Moreover, if A(x, ξ) = A(ξ) for any (x, ξ) ∈ R N × R N , then the constant in (3.7) does not depend on R.

Proof. We can choose µ n ∈ C ∞ c (Ω) such that µ n converges to µ in the sense of theorem 3.4 and |µ n | ≤ ϕ n * |µ|, where {ϕ n } is a sequence of mollifiers in R N . Let u n be solutions of problem (3.1) with data µ n . Fixed δ ∈ (0, R/2), by Theorem 3.7, we have

|∇u n (x)| ≤ C I δ/2 1 [|µ n |](x) 1 p-1 + C B δ/2 (x)
|∇u n |dx, for any x ∈ Ω, d(x, ∂Ω) > δ. Notice that (see e.g. [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF])

|{|∇u n | > s}| ≤ C (|µ n |(Ω)) N N -1 s N (p-1) N -1
for all s > 0.

It leads to 

ˆΩ |∇u n (x)|dx ≤ CR N |µ n |(Ω) R N -1 1 p-1 . Thus, |∇u n (x)| ≤ C R δ N I 2R 1 [|µ n |](x) 1 p-1 ≤ C R δ N (ϕ n * I 2R 1 [|µ|])(x)

Proof of the main results

Proof of Theorem 1.1.

Step 

1: Case 3N -2 2N -1 < p ≤ 2. Let µ n,k ∈ C ∞ c (B 2k (0)) for k ∈ N such that µ n,k converges to χ B k (0) µ
|µ n,k |(K) ≤ C CCap I q 1 p+q 2 q 1 +q 2 , q 1 +q 2 q 1 +q 2 -p+1 (K) for all compact K ⊂ R N (4.1)
We will prove that if C in (4.1) is small enough, then for any k ≥ 1, n ∈ N the problem

-div(A(∇u n,k )) = χ B k (0) |u n,k | q1-1 u|∇u n,k | q2 + µ n,k in B 2k (0), u n,k = 0 on ∂B 2k (0), (4.2) 
has a renormalized solution satisfying

|u n,k | ≤ C 0 (I p [|µ n,k |]) 1 p-1 , |∇u n,k | ≤ C 0 (I 1 [|µ n,k |]) 1 p-1 in B k (0). ( 4.3) 
By Theorem (2.10), we need to prove that there exists M > 0 such that, if for α = 1 and p, the following inequalities hold,

I α (I p [|µ n,k |]) q 1 p-1 (I 1 [|µ n,k |]) q 2 p-1 ≤ M I α [|µ n,k |] < ∞ almost everywhere, (4.4) 
then problem (4.2) has a renormalized solution satisfying (4.3).

For any k ∈ N, we set

E Λ = u : |u| ≤ Λ (I p [|µ n,k |]) 1 p-1 , |∇u| ≤ Λ (I 1 [|µ n,k |]) 1 p-1 in B k (0) . Since µ n,k ∈ C ∞ c (B 2k (0)), E Λ ⊂ W 1,∞ 0 (B 2k (0)).
Clearly, E Λ is convex and closed under the strong topology of W 1,1 0 (B 2k (0)). Moreover, if u ∈ E Λ , then |u| q1 |∇u| q2 ∈ L 1 (B k (0)). We consider the map S :

E Λ → W 1,1 0 (Ω) defined for each v ∈ E Λ by S(v) = u, where u ∈ W 1,1 0 (Ω) is the unique renormalized solution of -div(A(∇u)) = χ B k (0) |v| q1-1 v|∇v| q2 + µ n,k in B 2k (0), u = 0 on ∂B 2k (0). (4.5) Notice that W 1,p [|µ n,k |] ≤ C (I p [|µ n,k |]) 1 
p-1 , this is due to the fact that, since 1 < p < 2, then

W 1,p [µ](x) ∼ a 1 p-1 n ≤ a n 1 p-1 ∼ (I p [µ]) 1/(p-1) with a n = µ(B(x, 2 n )) 2 n(N -p)
By Theorem 3.6 and Corollary 3.8, we have

|u| ≤ C I p [χ B k (0) |v| q1 |∇v| q2 dx + |µ n,k |] 1 p-1 , |∇u| ≤ C I 1 [χ B k (0) |v| q1 |∇v| q2 dx + |µ n,k |] 1 p-1 , in B k (0). By the definition of v we get |u| ≤ C Λ q1+q2 I p [(I p [|µ n,k |]) q 1 p-1 (I 1 [|µ n,k |]) q 2 p-1 ] + I p [|µ n,k |] 1 p-1 , |∇u| ≤ C Λ q1+q2 I 1 [(I p [|µ n,k |]) q 1 p-1 (I 1 [|µ n,k |]) q 2 p-1 ] + I 1 [|µ n,k |] 1 p-1 , in B k (0). Using (4.4), we obtain |u| ≤ C Λ q1+q2 M I p [|µ n,k |] + I p [|µ n,k |] 1 p-1 = C Λ q1+q2 M + 1 1 p-1 (I p [|µ n,k |]) 1 p-1 , |∇u| ≤ C Λ q1+q2 M I 1 [|µ n,k |] + I 1 [|µ n,k |] 1 p-1 = C Λ q1+q2 M + 1 1 p-1 (I 1 [|µ n,k |]) 1 p-1 , in B k (0). We choose Λ = C q 1 + q 2 q 1 + q 2 -p + 1 1 p-1 , M = Λ -q1-q2 q 1 + q 2 q 1 + q 2 -p + 1 1 p-1 -1 , then C (Λ q1+q2 M + 1) 1 p-1 = Λ and u ∈ E Λ . Hence, S(E Λ ) ⊂ E Λ . Next we show that S : E Λ → E Λ is continuous. Let {v n } be a sequence in E Λ such that v m converges strongly in W 1,1 0 (B 2k (0)) to a function v ∈ E Λ . Set u m = S(v m ). We need to show that u m → S(v) in W 1,1 0 (B 2k (0)). We have -div(A(∇u m )) = χ B k (0) |v m | q1-1 v m |∇v m | q2 + µ n,k in B 2k (0), u m = 0 on ∂B 2k (0), and 
|u m |, |v m | ≤ Λ (I p [|µ n,k |]) 1 p-1 , |∇u m |, |∇v m | ≤ Λ (I 1 [|µ n,k |]) 1 p-1 in B k (0). Since (I p [|µ n,k |]) q 1 p-1 (I 1 [|µ n,k |]) q 2 p-1 ∈ L 1 loc (R N ), we obtain χ B k (0) |v m | q1-1 v m |∇v m | q2 → χ B k (0) |v| q1-1 v|∇v| q2 as n → ∞.
Applying Theorem 3.4, we derive that u n → S(v) in W 1,1 0 (B 2k (0)) as n → ∞. Similarly, we can prove that S(E Λ ) is pre-compact under the strong topology of W 1,1 0 (B 2k (0)). Thus, by Schauder Fixed Point Theorem, S has a fixed point on E Λ . This means that for any k, n ∈ N, problem (4.2) has a renormalized solution u n,k satisfying (4.3).

By Lemma 2.11, (I

p [|µ n,k |]) q 1 p-1 (I 1 [|µ n,k |]) q 2 p-1 n
is equi-integrable in B 2k (0). Thus, by a standard compactness argument, we get that u n,k converges to a renormalized solution

u k of -div(A(∇u k )) = χ B k (0) |u k | q1-1 u k |∇u k | q2 + χ B k (0) µ in B 2k (0), u k = 0 on ∂B 2k (0), (4.6) 
which satisfies

|u k | ≤ C 0 (I p [|µ|]) 1 p-1 , |∇u k | ≤ C 0 (I 1 [|µ|]) 1 p-1 in B k (0). ( 4.7) 
Finally, thanks to Theorem 3.5, there exists a subsequence of {u k } k , still denoted by {u k } k and u ∈ W 1,1 loc (R N ) such that u k converges to u and ∇u k converges to ∇u almost everywhere. Since

χ B k (0) |u k | ≤ C 0 (I p [|µ|]) 1 p-1 , χ B k (0) |∇u k | ≤ C 0 (I 1 [|µ|]) 1 p-1 for all k, and (I p [|µ|]) q 1 p-1 (I 1 [|µ|]) q 2 p-1 ∈ L 1 loc (R N ), thus χ B k (0) |u k | q1-1 u k |∇u k | q2 → |u| q1-1 u|∇u| q2 in L 1 loc (R N
). This implies that, u is a solution of problem (1.1) with g(x, u, ∇u) = |u| q1 u|∇u| q2 in the sense of distributions in R N and it satisfies Step 2: Case p > 2. In order to obtain the result, we will use 

|µ n |(K) ≤ C CCap G q 1 p+q 2 q 1 +q 2
, q 1 +q 2 q 1 +q 2 -p+1 (K) for all compact K ⊂ R N (4.9)

We will prove that if C in (4.9) is small enough, then for any n ∈ N the problem By Theorem (2.12), we need to prove that there exists M > 0 such that, if for α = 1 and p, the following inequalities hold, then problem (4.10) has a renormalized solution satisfying (4.11).

I α I 4R p [|µ n,k |] q 1 p-1 I 4R 1 [[|µ n,k |]
We have to prove that there exists M > 0 such that if α = 1 and p, there holds

I 4R α I 4R p [|µ n |] q 1 p-1 I 4R 1 [|µ n |] q 2 p-1 ≤ M I 4R α [|µ n |] < ∞ almost everywhere in B 2R (x 0 ), (4.13) 
For n ∈ N fixed, we set

E Λ = u ∈ W 1,1 0 (Ω) : |u| ≤ Λ I 4R p [|µ n |] 1 p-1 , |∇u| ≤ Λ I 4R 1 [|µ n |] 1 p-1 in Ω .
Clearly, E Λ is closed under the strong topology of W 1,1 0 (Ω), convex and |u| q1 |∇u| q2 ∈ L ∞ (Ω) for any u ∈ E Λ . We consider the map S : E Λ → W 1,1 0 (Ω) defined for each v ∈ E Λ by S(v) = u, where u ∈ W 1,1 0 (Ω) is the unique renormalized solution of -div(A(x, ∇u)) = |v| q1-1 v|∇v| q2 + µ n in Ω u = 0 on ∂Ω,

We will show that S(E Λ ) is subset of E Λ for some Λ > 0 small enough. 

I 4R p [||v| q1-1 v|∇v| q2 + µ n |] ≤ Λ q1+q2 I 4R p [ I 4R p [|µ n |] q 1 p-1 I 4R 1 [|µ n |] q 2 p-1 ] + I 4R p [|µ n |] ≤ Λ q1+q2 M + 1 I 4R p [|µ n |],
and 

I 4R 1 [||v| q1-1 v|∇v| q2 + µ n |] ≤ Λ q1+q2 I 4R 1 [ I 4R p [|µ|] q 1 p-1 I 4R 1 [|µ n |] q 2 p-1 ] + I 4R 1 [|µ n |] ≤ Λ q1+q2 M + 1 I 4R 1 [|µ n |].
L ∞ (Ω d/2 ) ≤ ||v|| q 1 p-1 L ∞ (Ω d/2 ) |||∇v||| q 2 p-1 L ∞ (Ω d/2 ) ≤ C 1 Λd -N -p
p-1 (|µ n |(Ω)) 1/(p-1)

q 1 p-1 C 1 Λd -N -1 p-1 (|µ n |(Ω)) 1/(p-1) q 2 p-1 ≤ C 7 Λ q 1 p-1 + q 2 p-1 (|µ n |(Ω)) q 1 +q 2 (p-1) 2 ≤ C 8 Λ q 1 p-1 + q 2 p-1 M 1 p-1 inf x∈Ω I 4R 1 [|µ n |](x) 1 p-1 ,
where C 8 = C 8 (N, p, α, q 1 , q 2 , d, R). Therefore,

|||∇u||| L ∞ (Ω d/4 ) ≤ C 11 Λ q 1 p-1 + q 2 p-1 M 1 p-1 + Λ q1+q2 M + 1 1 p-1 inf x∈Ω I 4R 1 [|µ n |](x) 1 p-1 ,
where C 11 = C 11 (N, p, α, q 1 , q 2 , d, R, Ω). Combining this with (4.15) we get for all x ∈ Ω,

|∇u(x)| ≤ C 4 Λ q1+q2 M + 1 1 p-1 I 4R 1 [|µ n |](x) 1 p-1 + C 11 Λ q 1 p-1 + q 2 p-1 M 1 p-1 + Λ q1+q2 M + 1 1 p-1 I 4R 1 [|µ n |](x) 1 p-1 . (4.16) 
We can find M, Λ > 0 such that

C 2 Λ q1+q2 M + 1 1 p-1 ≤ Λ, C 4 Λ q1+q2 M + 1 1 p-1 + C 11 Λ q 1 p-1 + q 2 p-1 M 1 p-1 + Λ q1+q2 M + 1 1 p-1 ≤ Λ.
Thus, from (4.14) and (4.16) we obtain S(E Λ ) ⊂ E Λ . Moreover, it can be shown that the map S : E Λ → E Λ is continuous and S(E Λ ) is pre-compact under the strong topology of W 1,1 0 (Ω). Then by Schauder Fixed Point Theorem, S has a fixed point on E Λ . This means problem (4.10) has a renormalized solution satisfying (4.11).

Step 2: The case p > 2. To obtain the result, we will use 

W 4R

-αp 1 p

 1 N , we denote by M(D) (resp. M b (D)) the set of Radon measures (resp. bounded Radon measures) in D. Their positive cones are M + (D) and M + b (D) respectively. For R ∈ (0, ∞], we define the R-truncated Wolff potential W R α,p (α ∈ (0, N/p), p > 1) and the R-truncated Riesz potential I R β (β ∈ (0, N )) of a measure µ ∈ M + (R N ) by W R α,p [µ](x) = ˆR 0 µ(B ρ (x)) ρ N

1 γ

 1 .43) for any compact set K ⊂ R N , which implies (b). So, (e) ⇒ (b). Next, assume (b), using (2.42) again, we derive from (b) that ˆK (W β,s [µ](x)) dx ≤ CCap I βs , 1 1+γ-γs (K), for any compact set K ⊂ R N . Thanks to Theorem 2.1, we get (a). So, (b) ⇒ (a). It remains to prove that (i): (f) ⇒ (a), (ii): (e) ⇒ (f), (iii): (a)+(c)+(d) ⇒ (e).

Definition 3 . 1 Proposition 3 . 2 [ 26 ]Theorem 3 . 3

 31322633 Let A : R N → R N satisfy (1.2). Let µ = µ 0 + µ s ∈ M b (Ω). A measurable function u defined in Ω and finite a.e. is called a renormalized solution of-div(A(x, ∇u)) = µ in Ω, u = 0 on ∂Ω, (3.1) if T k (u) ∈ W 1,p 0 (Ω) for any k > 0, |∇u| p-1 ∈ L r (Ω) for any 0 < r < N N -1 ,and u has the property that for any k > 0 there exist λ + k and λ - k belonging to M + b ∩ M 0 (Ω), respectively concentrated on the sets u = k and u = -k, with the property that µ + k µ + s , µ - k λ - s in the narrow topology of measures and such that ˆ{|u|<k} A(x, ∇u).∇ϕdx = ˆ{|u|<k} ϕdµ 0 + ˆΩ ϕdλ + k -ˆΩ ϕdλ - k , for every ϕ ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω). If µ ∈ M 0 (Ω), then problem (3.1) has a unique renormalized solution. We recall the next two important results which are proved in [9, Th 4.1, Sec 5.1]. Let {µ n } ⊂ M b (Ω) be a sequence such that sup n |µ n |(Ω) < ∞ and let {u n } be renormalized solutions of

. 5 )

 5 (x) a.e in Ω. (3Theorem 3.7 [10, 14, 17] Let Ω be a bounded domain of R N . Then there exists a constant C = C(N, p, Λ 1 , Λ 2 , diam(Ω)) > 0 such that if µ ∈ C b (Ω) and u is a solution of problem (3.1) there holds |∇u(x)| ≤ C (I r 1 [|µ|](x))

Corollary 3 . 8

 38 Let Ω be a bounded domain of R N , R = diam(Ω), µ ∈ M b (Ω). Then there exists a constant C = C(N, p, Λ 1 , Λ 2 ) > 0 and a renormalized solution u of problem (3.1) such that |∇u

  in the sense of theorem 3.4 with Ω = B 2k (0) and |µ n,k | ≤ ϕ n * (χ B k (0) |µ|), where {ϕ n } is a sequence of mollifiers in R N . Thanks to Proposition 2.3,

1 p- 1 ,

 11 |u| ≤ C 0 (I p [|µ|]) |∇u| ≤ C 0 (I 1 [|µ|])

W

  α,p (W 1,p [|µ n,k |]) q1 W 1 p ,p [|µ n,k |] q2 ≤ M W α,p [|µ n,k |] < ∞ almost everywhere,with α = 1 and α = 1/p, instead of (4.4); andF Λ = u ∈ W 1,1 0 (B 2k (0)) : |u| ≤ ΛW 1,p [|µ n,k |], |∇u| ≤ ΛW 1 p ,p [|µ n,k |] in B k (0) ,instead of E Λ . We omit the details. The proof is complete.Proof of Theorem 1.2.Step 1:Case 3N -2 2N -1 < p ≤ 2. Let µ n ∈ C ∞ c(Ω) such that µ n converges to µ in the sense of theorem 3.4 and |µ n | ≤ ϕ n * (|µ|), where {ϕ n } is a sequence of mollifiers in R N . Thanks to Proposition 2.3,

- 1 p- 1 ,

 11 div(A(x, ∇u n )) = |u n | q1-1 u|∇u n | q2 + µ n in Ω u n = 0 on Ω,(4.10)has a renormalized solution satisfying|u n | ≤ C 0 I 4R p [|µ n |] |∇u n | ≤ C 0 I 4R 1 [|µ n |]

q 2 p- 1 ≤

 1 M I 4R α [|µ n,k |] < ∞ almost everywhere,(4.12) 

1 p- 1 , 1 p- 1 .

 1111 For v ∈ E Λ and u = S(v), we have|v| ≤ Λ I 4R p [|µ n |] |∇v| ≤ Λ I 4R 1 [|µ| n ]In particular,||v|| L ∞ (Ω d/2 ) ≤ C 1 Λd -N -p p-1 (|µ n |(Ω)) 1/(p-1) , |||∇v||| L ∞ (Ω d/2 ) ≤ C 1 Λd -N -1 p-1 (|µ n |(Ω)) 1/(p-1) ,where Ω d/2 = {x ∈ Ω : d(x, ∂Ω) ≤ d/2}. From (4.13) with α = 1 and p we derive

By Theorem 3 . 1 p- 1

 311 6 and W 4R 1,p [|µ n |] I 4R p [|µ n |] in Ω, we have |u| ≤ C 2 I 4R p [||v| q1-1 v|∇v| q2 + µ n |]

1 [

 1 ||v| q1-1 v|∇v| q2 + µ n |](x)

( 4 . 15 ) 1 q 1

 41511 for any x ∈ Ω verifying d(x, ∂Ω) > d/4. By the standard regularity results for quasilinear equations, we deduce|||∇u||| L ∞ (Ω d/4 ) ≤ C 5 ||u|| L ∞ (Ω d/2 ) + |||v| q1 |∇v| q2 || 1/(p-1) L ∞ (Ω d/2 ) ,where C 5 = C 5 (N, p, Ω). (a) Estimate of |||v| q1 |∇v| q2 || 1/(p-1) L ∞ (Ω d/2 ) . From (4.13) , we have |µ n |(Ω) ≤ C 6 M p-+q 2 -p+1 . Thus |||v| q1 |∇v| q2 || 1/(p-1)

1 1 p- 1 ||I- 1 ≤ C 9 Λ- 1 ≤ 1 p

 111911 (b) Estimate of ||u|| L ∞ (Ω d/2 ) . By (4.14) we have ||u|| L ∞ (Ω d/2 ) ≤ C 2 Λ q1+q2 M + 4R p [|µ n |]|| L ∞ (Ω d/2 ) 1 pq1+q2 M + 1 1 p-1 d -N -p p-1 (|µ n |(Ω)) 1 pC 10 Λ q1+q2 M + 1

1 p

 1 [|µ n |] q1 W 1 p ,p [|µ n |] q2 ≤ M W 4R α,p [|µ|] < ∞ almost everywhere in Ωwith α = 1 and α = 1/p, instead of (4.4); andF Λ = u ∈ W 1,1 0 (Ω) : |u| ≤ ΛW 4R 1,p [|µ n |], |∇u| ≤ ΛW 4R ,p [|µ n |]in Ω , instead of E Λ . We omit the details. The proof is complete.

  1,p (R N ) is denoted by Cap 1,p . It coincides with Cap G1,p , [1, Th 1.2.3]. A measure is called diffuse if it is absolutely continuous with respect to Cap 1,p

  On the other hand, by theorem 3.4, there exists a subsequence of {u n } converging to a renormalized solution u of (3.1) with data µ n . Therefore, u satisfies (3.7) since ϕ n * I 2R 1 [|µ|] → I 2R 1 [|µ|] almost everywhere.

1 p-1 ,

for any x ∈ Ω, d(x, ∂Ω) > δ.