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Quasilinear elliptic equations with a source reaction term
involving the function and its gradient and measure data

Marie-Francgoise Bidaut-Véron*
Quoc-Hung Nguyen'’
Laurent Véron!

Abstract

We study the equation —div(A(z, Vu)) = |u|? " u|Vu|? + u where A(z, Vu) ~ |Vu|P"2Vu in
some suitable sense, p is a measure and ¢1, g2 are nonnegative real numbers and satisfy g1 +q2 > p—1.
We give sufficient conditions for existence of solutions expressed in terms of the Wolff potential or
the Riesz potentials of the measure. Finally we connect the potential estimates on the measure
with Lipchitz estimates with respect to some Bessel or Riesz capacity.

key-words: Quasilinear equations; Wolff and Riesz potentials; Hardy-Littlewood maximal function;
renormalized solutions; Bessel and Riesz capacities.
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1 Introduction and main results

This article is devoted to the study of existence of solutions of some second order quasilinear
equations with measure data with a source-reaction term involving the function and its
gradient. First we consider the problem with a Radon measure ; in RY in the whole space

—div(A(z, Vu)) = [u|” " u|Vu|® + 4 in RV, (1.1)
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In this setting, (7, &) — A(x, &) from RY xRY to RY is a Carathéodory vector field satisfying
for almost all z € RY the growth and ellipticity conditions

i) [A(z, &) + [€]|[VeA(z, )| < A€~ for all € € RV,

i) (A(z,) = A(z,m),6 — 1) > Aa(I€]% + [n|2) "= € — mf? for all &, € RY,
1i1) |A(x, &) — A(y, &)| < Ar]z — y|oo|¢[P~L for all € € RY,

i) Az NE) = AP 2AA(z, &) for all (A, €) € R x RV,

(1.2)
where A; > As > 0 are constants and g%:? < p < N, and where ¢1,q92 > 0 satisfy
q1+q2 >p—1,and ag € (0,1). The special case A(z, &) = |£|P~2¢ gives rise to the standard
p-Laplacian A,u = div (|Vu[P~?Vu). Note that these conditions imply that A(x,0) = 0 for
a.e. € RV, and

(VeA(z,©)An) = 2" AgleP~2|n)?
for every (n,£) € RN x RN\ {(0,0)} and a.e. z € RY.

When p = 2,¢q1 = g2 = 1, we obtain a toy model of the forced stationary NavierStokes
equations describing the motion of incompressible fluid in the whole space R":

—AU +Vp=-UVU + F, (1.3)
div(U) = 0, '
in RY where U = (Uy, ...,Uy) : RY — R¥ is an unknown velocity of the fluid, P : RY — R
is an unknown pressure, and F = (Fi, ..., Fy) : RY — R¥ is a given external force.

We also consider the homogeneous Dirichlet problem with measure data in a bounded
domain Q c RV

—div(A(z, Vu)) = [u|™ " |Vl + p in Q, (1.4)
u=0 on 01}, '
where, in this setting, A : (z,&) — A(z,€) is a Carathéodory vector field defined in  x R
satisfying (1.2) (i)-(iv) in Q x R™, and ¢, ¢o are as in the first case; and Q C RY is a
bounded domain with a C1#° boundary for 3y € (0,1) and such that Q C Br(z¢) for some
R >0 and zg € Q. The two specific cases,

—div(A(z, Vu)) = [u|" " u+ p in Q (1.5)
u=0 in 09, '
and
—div(A(z, Vu)) = |Vu|? + u in Q, (1.6)
u=20 in 09, '

have been studied thoroughly in the last decade. Each of these equations carries a critical
ngp:pl) for equation (1.5) and ¢§ = % for (1.6). These critical
thresholds mean that if 0 < p—1 < ¢; < ¢f for (1.5) and 1 — + <p—1 < ¢ < ¢f for
(1.6) any nonnegative bounded measure is eligible for the respective equation, provided it
is small enough. Concerning equation (1.1), the criticality is expressed by a linear relation
0<q(N—=p)+q(N—-1) <N(p—1). Then, if p>2— % and q; + g2 > p — 1, problem
(1.4) any Radon measure small enough, see [27, Chap 6-2] and references therein. The
treatment of the supercritical case for equations (1.5) and (1.6) have been treated more

exponent ¢j: ¢f =



recently. In these cases not only the measure p has to be small enough, but also it cannot be
too concentrated with respect to some Bessel capacity, specific to each problem. It is proved
in [22] that if 4 is a nonnegative Radon measure with compact support in €2, a necessary
and sufficient condition for the existence of a renormalized solution to (1.5) is that there
exists some ¢; > 0 depending on the structural constants and ||x|yy, such that

wWK) <eCapg o, (K) for all compact set K C €, (1.7)

Prq;+1—p

where CapGI”q - denotes some Bessel capacity. Concerning (1.6), assuming max{p —
e

1,1} < q,, it is proved in [23, 24, 16, 19, 18] that there exists a structural constant ca > 0
as above such that if

[u[(K) < e2Capg, sy (K) for all compact set K C , (1.8)

a9 +1—p

there exists a renormalized solution to (1.6) with the property that

/ |Vu|® dz < c3Capg, s, (K) for all compact set K C Q, (1.9)
K

Tagt1-p
for some c3 > 0.

The complete expression of these results as well as the ones we will state below neces-
sitates the introduction of several definitions and notations from harmonic analysis such as
Wolff potential, Riesz potentials, Bessel spaces and maximal functions. The role of these op-
erators has appeared to be a key-stone for conducting a fine analysis of quasilinear equations
with measure data; this is very clearly presented in the introduction of the seminal paper
[22]. If D is either a bounded domain or whole RY we denote by (D) (resp. 9, (D))
the set of Radon measures (resp. bounded Radon measures) in D. Their positive cones
are M (D) and M, (D) respectively. For R € (0,00], we define the R- truncated Wolff
potential W ~(a € (0, N/p),p > 1) and the R-truncated Riesz potential Iff (8 € (0, N))

of a measure y € M+ (RY) by
R T R r
Wi = [ (M) wge = [N

prap pr,B p

for all z in RY. If R = oo, we drop it in the expressions of (1.10). We write Wf’p (1], Ig[f]
in place of W[ (1], Tf[u] whenever dy = fdz, where f € L}, (RY).

loc
For a > 0, p > 1, the (I, p)-capacity, (G, p)-capacity of a Borel set O C RY are defined
by

Caplmp(O) = inf {/ lg|/Pdz : g € Lﬁ(RN),Ia[g] > XO} ,
RN

Capg, ,(0) =t { [ lgde: g€ 2R Garg 2 x0
RN

where G, = F ! ((1 + |§|2)*%> is the Bessel kernel of order o, see [1] (and F and F~! are

respectively the Fourier transform and its inverse).

The results we prove consist in obtaining sufficient conditions for the solvability of (1.1)
or (1.4) where A is of the form (1.2) in RV (or Q) expressed in terms of inequalities between



Wolff or Riesz potentials of . In order to obtain these inequalities we will develop a series of
sharp relations between these potentials and will connect them with some specific capacities.
We recall that a Radon measure g in RY (or Q) is absolutely continuous with respect to
some capacity Cap in RY (or Q) if for a Borel set E

Cap(F) =0= |u|(E) =0, (1.11)
and it is Lipschitz continuous (with constant ¢ > 0) if
|¢| (E) < cCap(E) for all Borel set E. (1.12)

The capacity associated to the Sobolev space WP(RY) is denoted by Cap; ,. It coincides
with Capg, p, [1, Th 1.2.3]. A measure is called diffuse if it is absolutely continuous with
respect to Capi p

Our first result deals with the equation in the whole space,

Theorem 1.1 Let ¢1,q2 > 0,q1 +q2 >p—1,0 < g2 < N(p 1) and € MRY). Assume

that A(z,€&) = A(€) for any (z,€) € RN x RN. If for some C’ > 0 depending on p, N, g;
and A; (j=1,2), there holds

||(K) < CCap; sty (K)  for all compact K C RY, (1.13)

qlp+q2’q1+q2 —p+1
q1+a2

then problem (1.1) admits a distributional solution u which satisfies
ul < CoWpllpll,  [Vul < CoW s, [|ul], (1.14)

if p>2, and
lul < Co (Lp[lul)™=T,  [Vul < Co (Lu[|pl]) ™=, (1.15)

) 3N 2<10<2 Moreover, if u > 0, then u > 0.

Notice also that if u > 0 the solutions u in Theorem 1.1 are nonnegative p-super-harmonic
functions.

When RY is replaced by a bounded domain €, we have the following general result.

Theorem 1.2 Let 1,42 > 0,1 + ¢ >p—1,0< g2 < N(p 1) Let € M(Q) be such that
dist (supp (u),9Q) > 0. If for some C > 0 dependmg on p, N g;j and A; (j=1,2), Q and
dist (supp (1), 092) there holds

lul(K) < CCapg atas  (K)  for all compact K C RY, (1.16)

Q1P+92 gy Fqp —pF1
q1+a2

then problem (1.4) admits a renormalized solution u satisfying
[ul < CoW sy flul]  and [Vl < CoW s [lul]. (117)

if p>2, and
lul < Co Mp[lul)™=,  [Vul < Co (Luflpl])»=, (1.18)

zf3N 2<p<2 Moreover, if u > 0, then u > 0.




The key-stone of our method which combines sharp potential estimates and Schauder
fixed point theorem is to reduce our problems (1.1)-(1.4) to a system of nonlinear Wolff
integral equations in the spirit of the method developed in [8] and [20]. The proof of
Theorem 1.1 (and similarly for Theorem1.2) is based upon the existence of a fixed point
obtained by Schauder’s theorem, of the mapping S which associates to

1 1.
ve By ={v: ol S AG sl ™7 st Vol < ATllunsl) 7T in Ba
the solution u = u, = S(v), of

—div (A(z, Vu)) = Xz, [o] 1=Vl + in Boy,

u=20 on 0By, (1.19)

where i,k is a smooth approximation of p with support in By := By(0) and A > 0, k,
n € N, are parameters. In order to prove that the set F, is invariant under S we use a
series of a priori estimates dealing with renormalized solutions of

—div (A(z, Vu)) =

u

in BQk)a

v
0 on 0Bsy, (1.20)

where v € 9M(Q2), and for our purpose v = XBk(O)|v|‘hflv|V’u|‘I2 + pnk. Then we use
pointwise estimates satisfied by a renormalized solution, e.g. in the case p < 2, there holds

a.e. in By
1

fu(@)] < € (T [, o1~ 0l T0l2 + il | (@) (1.21)

and 1

[Vu(z)| < C (11 [\xsk 0]~ Lo Vo|% 4 un,k\} (w)) e (1.22)

see Theorem 3.6 and Corollary 3.8.

Using the fact that v € E we derive

1

](gg))E . (1.23)

fu(@)] < € (AL, (T )T (Ol 77| @) + Tyl e

and

V(@) < € (AT |Gl Wl )™ ] @)+ Tillanpl)@)) . (1:24)

At this point we use the multplicative inequalities concerning the Riesz potential provided

the measures satisfies some Lipschitz continuity estimate with respect to Cap; 91 +ay
P91 +Bpa2 1 g1 fqa+1—p
q1+az
a1 az_
Lo [l )7 @llan )77 | < MLaflngl] fora=tlorp.  (1.25)

These multiplicative inequalities are the key of our construction, since they imply that for
suitable choice of A, Ej is invariant. The compactness of S being easy to prove we derive
the existence of a solution to (1.19).

One of the tools is a series of equivalence linking the Lipschitz continuity of u with respect
to some capacity with integral estimates of the Wolff' (or Riesz) potential of the measure
and even to a system of nonlinear Wolff integral equations as in [20]. In this spirit we prove
the following:



Theorem 1.3 Let 1 < p < N, 0 < 8 < 1, 1,92 > 0 such that ¢1 + g2 > p — 1 and

q2 < Jj\,(?j E)), If 11 is a nonnegative measure in RN, the following statements are equivalent:

(a) The inequality
WK) < C1Cap, ata  (K), (1.26)

P91+BP92 1 gy fqaF1—p
q1+4q2

holds for any compact set K C RY, for some C; > 0.
(b) The inequality
[ (Wl (Wi fu))* di < CaCap, i (K, (1.27)
K

Pa1+BP92 > gy +qa+1—p
q1+az

holds for any compact set K C RN and some Cy > 0.
(¢) The inequalities

Wi (W)™ (W lul) " | < CsWoplul

z ; (1.28)
W, (W)™ (W i) | < CoW lul,
in RN are verified for some Cs > 0.
(d) The system of equations
U=W_,|U1"V?2| 4+ W
U]+ W o

V=W, [UnVE]+ W [u],

in RN has a solution U,V >0 for e > 0 small enough.

Actually the full statement is more complete and the above Theorem is a consequence
of Theorem 2.10. Furthermore it has an analogue in 2, see Theorem 2.12.

2 Estimates on potential

In the sequel C' denotes a generic constant depending essentially on some structural constants
(i.e. the ones associated to the operator and reaction term) and the domain, the value of
which may change from one occurence to another. Sometimes, in order to avoid confusion,
we introduce notations Cj, j = 0,1,2.... We also use the notation =< to assert that the two
quantities linked by this relation are comparable up to multiplication by constants of the
previous type. The following result is a general version of results of Phuc and Verbitsky
[22, Th 2.3]. It connects the Lipschitz continuity of a positive measure in R with respect
to some Riesz capacity to various integral or pointwise estimates of Wolff potentials of this
measure.

Theorem 2.1 Let 1 <p < N/a, ¢ >p—1, p € ME(RY). Then, the following statements
are equivalent:

(a) The inequality

n(K) < CCapy,, o (K), (2.1)

apsg—p+1

holds for any compact set K C RY, for some C; > 0.



(b) The inequality

F1

[ (Wl dy < CaCan,,, s (K) (22)

holds for any compact set K C RY, for some Cy > 0.
(c) The inequality

/RN (me[XBt(z)M](y))qdy < Csu(By(z)), (2.3)

holds for any x € RN and t > 0, for some C3 > 0.
(d) The inequality

Wap [(Wap[u])?] < CsWo p[p] < oo, (2.4)

holds almost everywhere in RY, for some Cy > 0.

Proof. Step 1: Proof of (a) < (b). By [12, Theorem 1.1], (see also [7, Theorem 2.3]) we
have

/ (Lap[V)(y) 77 w(y)dy x/ (Wap V() w(y)dy for all v € MT(RY),  (2.5)
RN RN

where w belongs to the Muckenhoupt class A,. So, thanks to [21, Lemma 3.1] we obtain

/K (LplV] (9)) 7T dy /K (W p[)()" dy

sup = sup &)

for all v € MT(RY),
rex®yy  Capy (K) rex®myy Capy &)

—9 —q
P> q—p+1 P> q—p+1

where IC(RY) denotes the set of compact subsets of RY. Moreover, by [21, Theorem 2.1],

, (Lap V) ()77 dy
sup (K) = sup /

KekK(RN) CapI (K) Kek(RN) CapI _a (K)

Py g—p+1

for all v € MT(RM).

q
APy g—p+1

From this we infer the equivalence between (a) and (b).
Step 2: Proof of (a) < (c). By [21, Theorem 2.1] (a) is equivalent to

/]R . (Iap[xstmu](y)) o dy < Cu(By(z)),

for any ball B;(z) C RY. Tt is equivalent to (c) because of (2.5).
Step 3: By Proposition 2.4, we obtain (¢) = (d).
Step 4: Proof of (d) = (b). Set dv(z) = (Wa,p[pl(z))? dz. Clearly, (d) implies

.

(Wop[v](2)?de < Cdv(z).

Let M, denote the centered Hardy-Littlewood maximal function defined for any f € L} (R, dv)

by
1
M, ) = sup s [



If E c RY is a Borel set, we have
[ Washo) o< [ (M) 75 (Wayo) de <€ [ (M),
RN RN RN

Since M, is bounded on L*(RY, dv), s > 1, by the Besicovitch’s theorem, see e.g. [11], we
deduce that

[ (Waslxsr))"do < Ou(E)
RN
for any Borel set E. Applying the equivalence of (a) and (c) with u = v, we derive (b).

O

The next result is the analogue of the previous one when the whole space is replaced by
a ball. It can be proved in the same way, see also [23, Proof of Theorem 2.3].

Theorem 2.2 Let 1 <p < N/a,q>p—1,w€ W;(BR(xO)) for some R > 0 and o € RV,
Then, the following statements are equivalent:

(a) The inequality
w(K) < Cy Capg « (K), (2.6)

aprg—p+1

holds for any compact set K C RN for some C; = C1(R) > 0.
(b) The inequality

[ (WELl)" dy < CaCar,, s (). 27)

aprg—p+1

holds for any compact set K C RN, for some Cy = C3(R) > 0.
(¢) The inequality

[ (Wb el) dy < Cus(Bi(a), (28)

holds for any x € RN and t > 0, for some C3 = C3(R) > 0.
(d) The inequality

Wi [(WiR[w))'] < CiWik [, (2.9)

holds almost everywhere in Bog(xo), for some Cy = C4(R) > 0.

The following stability result of the Lipschitz continuity of a measure with respect a
capacity will be used several times in the sequel since we will approximate the initial data
by smooth and truncated ones; its proof is easy, see e.g. [24, Lemma 2.7].

Proposition 2.3 Let 1 <p < N/a and 0 < 8 < N/p, p € M (RY), w € M (Br(wo)) for
some R >0 and o € RN, Set du, (x) = (o * p)(z)dz, dw, () = (¢n *w)(z)dz where {©,}
is a sequence of mollifiers. Then,

(1) If inequality (2.1) in Theorem 2.1 holds with q > (= ig and constant Cy, then

N —

pn(K) < CC Capy o (K) forall KCRY, neN (2.10)

aPrg—p+1

for some C = C(N,a,p,q) > 0.



(ii) If inequality (2.6) in Theorem 2.2 holds with ¢ > p — 1 and constant Cy, then

wn(K) < CCyCapg,, o (K) forall KCRY, neN (2.11)

q—p+1

for some C = C(N,a,p,q) > 0.

The next proposition is crucial as it gives pointwise estimates of interates of Wolff po-
tentials of positive measures and connect them with the capacitary estimates of the Wolff
potentials of the same measures.

Proposition 2.4 Let 1 <p < N/a and 0 < 8 < N/p, p € MT(RY), w € M (Br(xo)) for
some Br(zo) C RN, Then,
(p—1)N

(i) The inequality (2.3) in Theorem 2.1 with q > *{—=

implies that
Wisp [(Waplu])'] < CrWp[p] < oo, (2.12)

holds almost everywhere in RY , for some C; > 0.

(i) The inequality (2.8) in Theorem 2.2 with ¢ > p — 1 implies that
Wi [(wg;[w])q] < CyWHE L], (2.13)
holds almost everywhere in Bag(xo), for some Cy > 0.

Proof. Assertion (i). First we assume that p has compact support. Let € RY and t > 0.
For any y € B(x),

b (u(&(z) n Br<y>>) = dr

WanlXs, @ #(y) = / N—ap .

2t

[ ()
zc(MBt(ﬂf))yil.

tN—ap
From (2.3) we have

w(Bi(x)) > C o) (Wa,p[xmmu}(y))q dy > Ct" <w> . ~

Hence, pu(B;(x)) < C+V =771, Therefore

/Too (;L(Bt(:c)))pll L — (2.14)

tN—ap



Since, B(y) C Bamax{t,r}(x) for any y € B,.(z), we have

/Brm (Woslul®))"dy < © B.(2) </o (M(Bt(ztlf)vmaljm(x))) . Cit>q dy
e, (7 (et ™y
< Cp(Bar(a)) + Cr (/‘” (u(ﬁ())) it)

Note that, in the last inequality, we have used (2.3). Thus,

* B (x Wa,p )qd P%l r
Wi (Wasli)") @) = | (f st W 110) y) i

0

1(Bay(x T dr < [ 1(Ba(x)) A
<C/ ( "N —Bp ) 7—1—0/0 re (/,« (tNap v dr.

Therefore, it remains to prove

q

[ < r (u(ﬁ(@)) Cf) < OWa (@),

- )T
</ (MBxte) ‘f) S 0as 10

- Ao\ 7 .
i </ (’W) 1 it) < Oritn = (u(RY)) 57 5 0
T

. X Bp _ N—oap q _ Bp _ N_
as t — oo, since 1 o1 o1 < poi T pT
inequality (2.14), we have

s ([ (Bale) )P )T
0 T tN—ap 3

q

_q /oo = /m p(Bar(x)\ 77 dt\ "
= — rp— —_ = 77 —

B Jo r tN=op t
< C/OOTPB%I (rfq—apil)ﬁ_l 'LL(B2T($)) ! ﬁ
= 0 rN—ap r

= CWpplul(2).

Notice that

and

< 0. Hence, using integration by parts and

- (M(Bzr(:v)))”ll dr

10



Next, we assume that p is not necessarily compactly supported. From the previous step,
q .
WB,P [(WQYP[XB,L(O)N]) ] < CWﬁYP[XBn(o)M] < CWBJD[M < oo aein RY.

Then we derive (2.12) by Fatou’s lemma.
Assertion (it). For any © € Bar(z9), 0 <t < R/2 and y € By(z),

in (w(&(z) n Br(y))) P dr

WL wl(y) > /

2t
1

2 o (YT

tN—ap

,,nN—ap T

From (2.8) we have

u@(w»)f{

G(B@) 2 C [ (Wil 0l) " dy = oo (U5

By (x)

Hence, w(By(z)) < CtN "7 511 for all t € (0, R/2) and x € Bag/(wo). It implies

4R =T
B P=T dt o
/ (W) = Cr=a» for all x € Byp(wo), 0 <r <4R. (2.15)

Since By (y) C Bamaxit,r}(x) for any 0 <r < 4R and y € B,(z),

frtrtsontase ], (] (C4E22)7)
+C (/41% (w(Bt(y])Vm Bgt(x))) = dt)‘l "
By (x) r tN—ap ;
=C By(x) (Wi{z[wa(m>w])qdy+ crN </T4R (W)pll ?)q
< Ch(Bar (@) + O™ </R (22D plﬁ it)

In the last inequality we have used (2.8). Thus, as above, we only need to prove that

R gy B (o Bay(x))\ 7T dt s
[ ( / (iﬁip”) ) < oW @),

Using integration by parts and (2.15)

4R 4R = 71
L w(Bar(x) \ 7T dt)
0 T tN—op t

q

([ ) ) ey

AR 2 ap ﬁfl B P%
S C/ T% (7"7 q7p+l) ((U(Qr(l'))) @
0

rN—ap r

< CW%{;‘,[w] (x) < CWéﬁ[w](m),

11



since W% [w](z) < OW T [w](z) for any 2 € Bag(xo), because suppw C Bag(zo). O

The next result is at the core of our construction since it connects the integral of product
of Wolff potentials to some power to the integral of a new Wolff potential. In this highly
technical construction, the role of Hardy Littlewood maximal function plays an important
role as well as classical tools from harmonic analysis such as the Vitali Covering Lemma.

N(p—1)

Theorem 2.5 Let o, 3, g1, g2 >0, a> 3,1 <p< %, G +a>p—1,q¢< N—Bp and
2P0 tBpa2 N Then, there holds
q1+q2
q;:? q1+q2
/ (M apay+Bpag [M}($)> dx < / (WQP(IIJFBP‘& p[M](ﬂf)) dx
RN a1 +a2 RN a1tez 7 (216)

< [ (Wil @)™ (W ()" o

for any pn € MH(RY), and

/]RN (M%“Rfff [w](x)) - /]RN (W%‘}zﬁifé’”m[w](x))qlm " (2.17)
< [ (WELul()" (WEful@) " do.

for any R > 0 and w € MT(RY) with diam(supp w) < R.

For proving this theorem we need several intermediate results. For any « € (0, N), s > 0,

R € (0, 00] we denote
R T s
vt = [ (M) % (2,19

and Lg [p] := L[] when R = oo. We notice that L is actually a Wolff potential since

a,s

L (1] =W, i) and Lofu] = W ae o [j: (2.19)

s+17 s s+1° s

Lemma 2.6 Letay, ag, s1, 82 > 0,0 < s < a1 < N. There exist C = C(N,ay, ag, $1,82) >
0 and g9 = £o(N, a1, a2, 81, 82) > 0 such that for any p € M (RY), R € (0,00], € € (0,20)
and A > 0, the inequality

1,81 2,52

HL2R (W] L2E [u]>€1/2)\}‘<oo, (2.20)

implies

S1+82
{LiﬁﬂﬂLiﬁmd>aA}ﬂ{(NEQ{g¢JM) SsA}| .

< Cemavw |{L2R | [WL2R (1] > e1/2\}|.

1,51 2,82

To prove this, we need the following two lemmas:

Lemma 2.7 Let 0 < aa < N and s > 0. There exists C = C(N,a, s) such that

(w(®Y))®

s(NN—a)
3 ) for all A >0, (2.22)

(ol > A <
for any w € MF (RY).

12



s(N s
Proof. Tt is easy to see that L, s[w](z) < C (M(w)(x)) ( (RM))% . Thus, thanks to
boundedness of the operator M from M (RY) to L1>(R?), we get (2.22). The proof is
complete. O

The next result is a consequence of Vitali Covering Lemma.

Lemma 2.8 Let 0 < ¢ < 1,R > 0 and B := Bg(xq) for some vg € RN. Let EC F C B
be two measurable sets in RN with |E| < ¢|B| and satisfying the following property: for
all x € B and r € (0, R], we have B,(z) N B C F provided |E N By(x)| > ¢|B,(z)|. Then
|E| < Ce|F| for some C = C(N).

Proof of Lemma 2.6. We only consider the case R < oo, the case R = oo being similar. Let
{Bgr(z;)} be a cover of RY such that, for some constant M = M(N) > 0,

ZXBR/4<z () <M for all = € RY.

It is sufficient to show that there exist constants ¢1,co > 0 and gy € (0,1) depending on
N, a1, az, 51, 82,p such that for any B € {Bg/4(z;)}, A > 0 and € € (0,0), there holds

s1+s2
BN {Lzz WL ] > aA} n {(MR w) < eA}

s1+s2

(2.23)
< Ce 252(NN7012)

@1,51 1,51

BO{L2R [WL2R []>51/2>\H,
where

2
a=1+ <81+82> + 2(N7a1)51+(]\77a2)s2+1.
s182(q1 — a)

10sysg(ay —ag)

Fix A>0and 0 < e <min{1/10,27 =12 }. We set

s1+S2
E=Bn {Lgl 51[ }Lfl 51[ ] > CL)\} N { (Ma151+a252 [N]) < 5)‘} )

it
and
F =B {L2R [L20 1] > e/}
Thanks to Lemma 2.8 we will obtain (2.23) provided we verify the following two claims:
|E| < CeTat=a3 | B, (2.24)
and, for any x € B and 0 <r < R/4,
|EN B,(z)| < Ce™0=3 | B, ()], (2.25)

whenever B,.(z) N BN F° # () and E N B,.(x) # 0.

13



Proof of (2.24): For any x € E, we have

R s1
_aysyitagsy o dt
Lgl-,sl [/L]((E) é / <t s1te2 * 1M2ﬂ}1%51+01252 [/‘L](x)> o
0

s1+s9 t

< Ss1+ 82 RSlsi(lTs;%) (eN) — '
8182((11 — OQ)

Hence, the inequality L%, , [u](z)LE, . [1#](x) > X implies
R 5132(a1 — 042) _sisgplag—ag) sy s
£ lpla) > 22 08) gt e

81 + 89

Clearly, L _ [u] = LE (X5, , (wo)tt] in B for any yo € B. Fix yo € E, we have

2,52

5152(041 — OQ)R_ sysg(ag —ag) s1 s2 }‘

|E| S ‘{Laz,sz [XB2R(y0),u] > 51 + P s1ts2 &‘_51+52 A51+32

Ss1+82
Using (2.21) from Lemma 2.7 and the fact that <M%¢}fsl+0252 [H](Z/O)) < e, we get

s1+sa

_s1sa(ag—ag) &1 s
s1+s2 I s1+s2 )\51+32

|E<C< (1(Ban(y0))* ><NN>
- \r

(eX) 7t (2R) =N~ O
< c _s1sa(ag—an) s s2
R s1tsy g sitsz \sits2
= CgSQ(NNﬂm) |B‘
< Cemii=am | B,
We obtain (2.24).

Proof of (2.25): Take x € B and 0 < r < R/4. Now assume that B,.(z) N BN F° # () and
ENB,(x) # 0, then there exists 21 € B, (x)NB such that L2F  [1](x1)L2E _ [u](z1) < /22X
We need to prove that

|EN B, (z)| < Ce¥2®=27| B, (z)). (2.26)

To do this, we can write

LE . @LE 1) = Ti(y) + Ta(y) + Ts(y) + Ta(y),

where
Ti(y) =Ly . (LY, ., [1)(y),

Taly) = L W) [ R C=Be

T - [ ’ (M) Lyl

- [ (S) [ (204"

14



For all y € EN B, (x), we have

4r S1
_agsitagsy dp
Tz(y)é/ (p e T 1Malsl+azsz[u}(y)> -
0

s1+s2 P
R _oqsytagsy 4 52 d
< (M ) )
Y e (2.27)
S1 + 89 (ay—ag)sysy _ (a3—ag)sysy s1ts2
S m r s1+s2 r s1t+s2 Malslio‘zsz [/,L}(y)
s1+so
- (W)ZA,
5132(061 - 042)
also R s R 5
T4(y)</ (M(B2p(ff1))> 1@/ <M(sz($1))> dp
" Jar A\ PN p S \ pNT2 p o8
< oV VeI 2 (L2 o) 229
< 2(1\/—041)81-"-(]\7—042)32)\7
and R D
U(BZP(xl )S dp 4r
T < —_ —L
3(2/) = Ar ( p]\],061 p QQ,SQ[M](y) (229)
< 20 WmeD 2R [ (20) L], (1] (),
Thus,
‘E N Br((E)| <Y1 +Ya+Y35+Yy,,
where
s1+s2
Yl = Eﬁ B ﬁ Tl > A} {(Mal 1104252 [M]) S E)\} 5
S1ts2

s1+s 2 s1+s2
Y. = |EN B, m{T 12) )\} {(Mammbz [u}) gm} ,
8152 Q] — 042) s1+s2
s1+S2
{T > gsi(N- alu} (Ma+ [M) <ardl,
s1+s2

S1+s2
Y4 - E N B m T4 > 2 N * Sl+(N a2)82>\} {(Ma1sl+&232 [M]) < 6)\}’ .

s1+s9

Y;=|ENB.(z)N

As in the proof of (2.24), it can be shown that
Y, < 17050 | B, (z)]. (2.30)
From (2.27)-(2.29), we obtain Yo = Y, = 0 and
Ys < |B.(z)n{Ly. .,

= |B:@) 1 {12 g 1) > A(Lil i)}

] >)\(L2R 1}!

a1 51
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since By, (y) C Ber(z1) for all y € B,.(x). Using (2.21) from Lemma 2.7, we get

(4B (1)) |2
Yo=C (A(Laff,i w(m)l)

< (LR (@)L, M(zo) SRR

b\ r
< Ce™™=7| B, (x)|.

Combining these inequalities, we infer (2.26). O
Proof of Theorem 2.5. Step 1: Proof of (2.16). By [7, Theorem 2.3|, we have

a1tas

:,,1 q1+q2
/ (M apg1 +Bpa2 [N}(x)> dx =< / <Wapq1+5pq2 p[/i](x)> dx.
RN q1+a2 RN

q1+a2 ’
Next, we prove

q1+4a2
p—1
Ly (Moo l@) 7 do= [ (W @) (Wi lula) "
RN q1+az RN
Since for all € RY there holds
q1+§2
GE
(Wo i) (Wi, )" = € (Masoma @)
W @ (L q1+4q2
(Wapli @)™ < C (Lo o [@)"
(Woplil@)® < C (Lo [ul@)" "
pplHt = B0 e ’
It is therefore enough to show that
q1+a2
L mi? W) ar<co [ (m W) d
. ( b, e FIHBr e TSV Jon ezt K r
(2.31)

Set dp, = X, o) A1, then we have

‘{Lap,(q1+q‘;1)(p71> [Mn]Lﬁp’(q1+q22)(p—l) [tn] > tH < oo forall t>0.

Hence, by Lemma (2.6), there exist positive constants C, €g, a such that for any A > 0, €

(Oa€0)7

L L )\H
‘{ ap <q1+q‘§1><p—1) [Hn] Bp, (<11+q(;2)(p71) ['un] - a

N(a1+a2)(p—1)
< (g 202(N=5p)

1/2
{Lamm‘q‘;(m [M"}Lﬁp’mlﬁ?ﬂp—l) [n] > € )\H

=
{ (Mapql:tﬂqu [/,L]) > E)\}

+
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Multiplying by A91+492~1 and integrating over (0,00), we get

o0
/ /\Q1+qz
0

N(aj+ap)(p—=1) [°
< O™ 2a2(N=5p) )\q1+q2
0

dX
{Lap’ (Q1+q;1)(1771) ['un]LBp’ (q1+q;2)(p*1) ['un] - a/\}’ 7

d\
1/2 -
{Lap’ <q1+q§1><p—1> ['un]Lﬁp’(thrqu)(Pfl) ['un] - € A}’ A

. =
+ / )\Q1+‘12 (MO‘P‘H*ﬁP‘IZ UA) > eA
0 a1+ta2

By a change of variable, we derive

N(q1+a2)(p—1) _a1+as
a—(h—‘h _ CE 2q2 (N —Bp) 2

o0
X / PRt +q2
0

oo
< g BT / /\Q1+fI2
0

dA

d\
{me“‘”]%nm[“n] - /\}’ By

7T X
{ (Mapqliﬁpqz [M]) > /\}

7.
Since Maita)(p—1) _ a1ta2 - () there exists ey > 0 such that for any 0 < € < g, there holds
2q2(N—pp) 2 ’ 0 Y = ©0s

N(qy+a2)(p—1) _a1+as
a 12 — (¢ 2¢2(N—5p) 2

> 0. Hence we obtain (2.31) by Fatou’s Lemma.
Step 2: Proof of (2.17). By [7, Theorem 2.3], we have

a1tas

p—1 q1tq2
L (M) T o= [ (Wi i) e
RN a1+az RN q1taz

Next, we prove

q1+ta2

L (M@)o [ (WERLI@)" (WESel(0) ™ d

q1+a2

Let 29 € RY such that supp(w) C Br(zg). Since for all z € RV,

(WA (] (2)) ™ (WA [u](2)) " > © (MR ] <x>) ,

q1+42

and for any y € BgR/Q(xO)a
Wi [w](y) < CW2R [w](y), WAE[w(y) < CWET[w](y),

we have,
2R s 4R @ AR 92
MaqurBMz [w] (CC) <C (Wa,p[w](x)) (Wﬁ,p[‘*}}(m)) dzx
RN a1taz Bsr(zo)
<C (Wii[w](x))ql (V\/%i[w](a:))q2 dx
B3R/2(1'0) q1+?2 (232)
w(®RM) -
+ CRN (M)
q1T42

<C (WQR [w](:v))ql (W%,I’";”, [w] (aﬂ))q2 dx.



On the other hand, since there holds almost everywhere,

(W2E[w)(@)" < © (L3

a1
P i Fa2)(p—1)

@) (W W @)™ < 0 (L3 w](a)

q2
BP, G e 5=D

it is enough to prove that

a1taz
p—1

q1+q2 2
/R i (L3R [w](z)L3E [w](x)) de < C . (Ma§q1+ﬁpq2 [w](z)

P, (q1+q(;1)(p71) Bp, (q1+q22)(p71) q1+az
(2.33)
By Lemma (2.6) there exist positive constants C, €g and a such that for any A > 0, € (0, &),

‘ {L3R [w]L3E [w] > a)\} ‘

a1 a2
P T Fa) =1 Bp, (q1+g92)(p—1)

{LGR W]LOR [w] > 51/2/\}’

q1 q2
APy ( Tan) = T) PP, T a2 =D

{ (MGa}Eerﬁpm [w]> > 6)‘}‘ .
q1+az2

Multiplying by A1792~1 and integrating over (0, cc), we obtain

q1+q2
—qi—qo L3R L3R ) d
¢ /]RN ( P, e =D [wI() BP, e Tas D w](=) o

N(q1+492)(p—1) _g1+a> q1+q2
< Ce 22N =pp) z (LgR @ [w x)LgR az [w :c)) dx
RN P larFaz)e—1) P laiFa) -1

N(q1+a2)(p—1)
< (g 2a2(N-8p)

+

q1+4a2

4N /N (Miqulwpqz [w](x))  da
R

q1+42

Similarly as (2.32), we can see that

q1+q2
LGR L6R ) d
/]RN ( P, (q1+ql;1)(p71) [w] (.73) Bp, (q1+q22)(p71) [w](x) *

cof (U _u WO _a W)
= ey P @D PP G Fad D ’

and

a1+t4as q1+4z
1

p—1 p—
L (M @) s [ (M @) T
RN q1+4a2 RN q1+taz

N(q1+4g2)(p—1)

— @t > 0, for some ¢ > 0 small enough we infer (2.33).

Therefore, since

2q2(N—pBp)
a2 P A
Lemma 2.9 Leta>0,p>1,0<ap < N and 0 < v < ]\va(fi;zlo). There exists a constant
C = C(N,a,p,v) such that for any u € M (RY),
Bo,(z))\ 7
/B " (W7 [u])" dy < Cr (W) for all z € RN and r > 0. (2.34)
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Proof. We have

. ol
[ W) < [ (Wal, nl) do
B () B ()

= [ XTI Waplin, b > A} N B (@)l

By Lemma 2.7, we obtain

/BT(w) (W plul) " dy < v (W) a |B,(z)]

+ /( . X WaplX, ] > A} 1A

rN—ap

. N(p—1)

<o (u(Bzrm))* o /°° e <<u<B2r<x>>>p—1> A

rN—ap (u<52r<z)>)ri1 A
rN—ap

—orN (u(Bz(x))>

rN—ap

which is the claim. O

The next result is fundamental inasmuch it shows the equivalence between the capacitary
estimates, the potential inequalities used in our construction and the solvability of the system
of nonlinear integral equations connected to (1.1).

Theorem 2.10 Let o, 8,q1,92 > 0, a > B, 1 < p < min{N/a,N/S}, ¢1 + 2 > p — 1,
ga < 1\;\;11;;) and apgiiqﬁf% < N and pp € M (RN). Then, the following statements are
equivalent:

(a) The inequality
,LL(K) < CCLPI 91+92 (K)a (235)

Pa1+BPa2 > q a3 —pF1
q1+a2

holds for any compact set K C RY, for some C; > 0.
(b) The inequality

[ W@ (W@ do < CoCany |, | vy (), (236)
ity o AteTr

holds for any compact set K C RY, for some Cy > 0.
(c) The inequality

q1+42

q1+q2
L (Wessson o oll)) do < Catn(o), (2.37)

holds for any ball By(x) C RY, for some C3 > 0.
(d) The inequality

[ (Wl )" (Waslvs, o) ™ dy < ContBitan). (239)

holds for any ball Bi(z) C RY, for some Cy > 0.
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(e) The inequalities
Wap (Wapli)™ (Waplu])?] < CsWa p[1] < o0 (2:39)
CsW

Wi [(Wap[ul)™ (Wapul)™] <

hold for some C5 > 0.
(f) The system equation

poln] < oo (2.40)

U=Wqu, [UBVae] + eEWap (1] (2.41)
Vi=Wg, [UBVE]+eWg, (4], '

in RN has a nonnegative solution for some € > 0.

Proof. By Theorem 2.1 we have (a) < (c), by Theorem 2.5, (¢) < (d). We now assume (e).
Put T[u] = (Wap[u] (@)™ (Wsp[u](x))® for any p € MH(RN). Tt is easy to see that

v(q1+a2)

(T[p)(x))” > C/OOO (‘W> " d—; = CWg[u](z) forallz e RY  (2.42)

_ aq1pt+Basp
p q1+aq2

_ p=1 , p=1 _ 7(aqip+Bgz2p) _ y(q1+g2)+p—1 1
Where vy = qT + - 75 = W and S = W < 1 + ; Frorn (239) and
(2.40), we have

T [T[y]] < CT[u] < co almost everywhere.

Using (2.42), we obtain

(Wg s [T[MH)% < CT[p] < oo almost everywhere.

Applying W ; to both sides of the above inequality and using Theorem 2.1 with o = 8,p =

$,q = % , we derive

/1.( T[u](z)dx < C’Caplﬁsﬁlﬂl_ws (K), (2.43)

for any compact set K C RY, which implies (b). So, (e) = (b). Next, assume (b), using
(2.42) again, we derive from (b) that

| (Walu@)? do < CCapy,, o (),
K

for any compact set K C RY. Thanks to Theorem 2.1, we get (a). So, (b) = (a).

It remains to prove that (i): (f) = (a), (#): (e) = (f), (#i): (a)+(c)+(d) = (e).

(i): Assume that (2.41) has a nonnegative solution for some € > 0. Set dv(z) = UTV2dx +
edu(z). Clearly

(Wap[W])" (Wpp[v])* < Cdv(z) in RY.

If E C RY is a Borel set, we have

a1+taz

/ (Wa,p[XEV])ql (Wﬁ,p[XEV])qZ dz < / (M, x ;) 71 (Woap[VDql (Wﬁ,p[’/])qQ dx
RN RN

<0 (Mx,)5 v
RN
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Since M, f is bounded on L*(R" dw), s > 1, we deduce from Fefferman’s result [11] that
[ Weslar) (Wi o)™ da < Co(E),

is verified for any Borel set E C RY. Applying (a) < (c) to pu = v, we derive that
v(K) < C Cap; a+a  (K), (2.44)

apq1+BP92 1 g1 Fq3 —p+1
q1+az

holds for any compact set K C RY. Since v > u, we obtain (c).
(#): Suppose that (2.39) and (2.40) hold with constant C5 > 0.Take 0 < £ < L

2(2C5) q1+52771p+1 ’
Consider the sequence {U,y, Vi, }m>0 of nonnegative functions defined by Uy = W, ,[pu], Vo =
W p[u] and
Unt1 =W, [ULVIE] + W, [1]
Vi1 = Wpp [ULVE2] +eWg , [1] .-

It is easy to see that {U,, Vin}m>o0 is well defined and satisfies
U <2eWq plul, Vi < 2eWy p[p] for all m > 0.

Clearly {U,,}, {Vin} are nondecreasing. Using the dominated convergence theorem, it follows
that (U(x),V(z)) := li_r>n (Um(x), Vin(x)) is a solution of (2.41).

(#3): Assume that statements (a), (¢) and (d) hold true. We first assume that p has compact
support. From (a) we have

apqy +Bpaz

((Bo(z)) < CrN " ate—t1 for all z € RN and r > 0. (2.45)
From (b)

q1+q2
/ ( Tea1 484z p[u](y)) dy < Cyp(Bay(x)) for all z € RY and r > 0.
B, (x)

q1+agz

_ _(a=B)pgs .
Using Hélder’s inequality and W7, 5., p[,u] > 7 -Dte) W7 [u], we obtain,

q1+q2

a1
(a=B)pa1aa+(P—=1)Naa+(N—=Bp)(p—1)ay ,U/(B2r(x)) q1+a2
Wg [u] (y) a dy < (Cr (p—1)(a1+a2) ( , (246)
[, (Waslil) (e

again for all z € RN and r > 0. From (c),

/B o (W(Z’p[u}(y))ql (Wg’p[u](y))q2 dy < C3pu(Bar(z)) for all z € RN and r > 0. (2.47)

By Lemma 2.9,
a2
r q ~ [ #(Bar(x))\ 77" N
/B,‘(x) (W5 [u])® dy < Cr <7‘Nﬂp for all x € R™ and r > 0. (2.48)
We have, with n = a or n = j,
4 1
(A, r)\? " dr
Wop [(Wap[)™ (Wpp[u))*] (2) < CZ/O < rN—np > 7 (2.49)

i=1
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where

Ayer) = / (W)™ (W5, 1l ()™ dy,
B, (x)

As(z,7) = /Br(x) (Wi li)™" (/OO (W) f)qg dy,
A= [ ( | ("t(f(y”) Cff) (W, li))*

Adar) = [ B < / h (’W) o ?)q (/w (W) o ?)q dy.
Thanks to (2.47) we get
Aq(z, 1) < Cu(Bar(z)),

which implies

[ (5 T oW, ). (2.50)

rN=np T

Since Bi(y) < Bai(x) for any y € B,(x), t > r and thanks to (2.46), (2.9) we deduce

feln )= /Brm (Woplilt))™ dy </°° <N(t]13v2—t/(3f))> : it>%

_a 1 q2
< CT(afﬁ)P‘H<12+Ez:i;é\;32+t;1;7*51))(1’*1)Q1 (M(BQ,.(Q:))) a1 +az (/00 (M(B%(l"))) 1 dt)
T

rN—Bp tN—6p t
. gt q1(p—1)
(x=B)pg192+(P—1)Nga+(N—-Bp)(p—1)q o0 B p-1 dt ez
>~ Cr ! 2+(P71)(q12~:12) ! (/7: (W) t> )
then
* (p(Bau(x))\ 7 dr )"
1% z v r
Aj(z,t) < </ <tN2_tap> t) /B . (Wﬁ,p[ﬂ](y))qz dy
) 1 q1 492
cof [ (P B\ 7T A\ ((Bas @)\ P
- , tN—ap t rN=68p
_1 q1 00 _1 q2
<o * ((Bat(x)) \ 7T dt (Bt (x)) \ 7~ dt
- , tN—ap t , tN—8p ¢ ’
and finally

s [ (024 ([ (2”2
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I- From the estimate of Ay we derive

1
0 p—1 O (a=B)pa1a2+(P—1)Nag+(N—Bp)(p—1)a1 _ N—mnp
/ (Ag(.’l},’f)) % < C/ r (p—1)2(q1+42) T p1
0 0

rN—np r =

1 %+Q1$qz
([ (M) dr
- tN—Pp t r’
Since %*‘qﬂf‘“ < N, it follows that

(= Bpgrg2+ (p—DNga + (N = Bp)(p—Dax N —mp
(p—1)*(q1 + q2) p—1

N_
- Bp(qz L@ >
p—1 \p—-1 ¢ +¢q

0< k:=

Hence,

(BT )
m(/ </JtNQ—t[3p) t) —0 ast— 0,

and therefore

q2 q1

0o 1 ﬁ+111+(12
" p(Bae(x)) \ 7" dt
, tN—8p t

< CT"_NP%‘?(%‘FH%Q) (N(RN)) TR ERRCE TRy 7

a quantity which converges to 0 when t — 0. Hence, by integration be parts, we obtain

g2 a1
p—1 + q1+ag
dr

[O) se ([T (5R) 7).

a2 a1

o[ ([ ()" o) ey
0 r —PP rN—Bp r

X (a—B)pg1a2+(P—1)Nga+(N—Bp)(p—1)q1 _ N—Bp
= O T 1
0

(p—1)2(a1+az2)

0 1 %+q1q+lq2 -1 T
" p(Bay(x)) \ 771 dt ((Bar(x)) \ P~T dr
r tN=pp t rN=np "

Observing that we have from (2.45),

1 DT T g das
(a—B)pa192+(P—1)Naa+(N—-Bp)(p—1)q1 _ N—Bp o Bo:(x r=1 dt P
r (p—1)2(q1+32) p—1 </ (’u<2t()> _ S C’
r

we derive

/0°° <A2(M) - @ < CWop[p] (). (2.51)
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II- From the estimate of A3 and A4, we have, as above, by integration be parts,

[
<o [ (7 (e

“tN_af)))pll ?) </°° (

=1 dr

mwm)i

rN=np T

p(Bat(x))

tN—PBp

rN—np

n(Bor(a ))>;1 dr

>;

M(th(x))>

a7
t

Y
r

tN—op t

dr

1
=1 dt

)“

a2

o Ba, P d
:C/ D1(x,7’)<ﬂ(1\,2(x))) ’ C/ Dy( xr(
0 riN—np
where
D oo Bgt )) P— 1 dt Bgt
1( " {N-ap ~tN-Bp
oo BQt )) P 1 dt BQt
Do(z 77"17 ( “N-op —N-Fp ﬂp
Clearly,
oo pw(Bai(z i < T_L;@P % (Ba(z))
tN— Bp t - tN—ap
OO apqg Pra
(” Ba()) ) R e e
N—ap t —
We derive
(Ba@)\ 7T e\ " (e
_ap_ > 1Y 2t \ T r—1 dt _(«=B)p o
Dl(x;r> S Crr-1 (/7: (M) t> (T p—1 /T (
1 q1+ziz 1
_ oo — P
_ oypii- e < [ (M(th(a?))>P 1 dt)
thozp t
T
_ap _ (a=B)pag ap apg1+Bpas (1;7%32_1
< Corr=t  -1? (rp—l (P*l)(41+Q2*P+1)) = (4.
Next, we estimate Do(z,7). If qul > 1, similarly as for estimate of Dj(z,r) we obtain

Do(z,r) < C. If qul < 1, we have

q1

Bp_ e
p—lrpfl/r (

Do(z,7) =

thap

gp [
<reT
s

) ([

(Bt (x)

e
(1
(1
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((Bai(x)) )

SNfap

H(B2s($)))

u(st(m))>

SN*ﬁp

M(st(x))>

1
=1 (s

S

1
=1 (s

S E—
TTds\ T dt
s t
g2__
A
T
a1
)H

p-1 1
s> t



On the other hand,

92

_az_ 1— 92

1 p—1 1 p—1
oyt (% (p(Bay (1) \ 7T ds  ((Bas() \ 7 ds
- . sV—op s . sN—Fp s ’
therefore,
1 q;)th{Q_l
Bp. [ (e=B)p(rp—1-4a3) o0 Bo.(x =1 (s B dt
Dy(z,7) < C’I”P—Pl/ t @7 / HBas (7)) st( ) = =
t sh—ap s t
/oo (a=B)p(p—1—g3) ap apqy +Bpas q{:?*l dt
(p—1)2 (rpfl (P*l)(Q1+(I2*P+1)) _
t
Hence,

[ (AN()> o TR o oW, i), (252

Combining (2.49) with (2.50), (2.51) and (2.52) we obtain

W [(Wap )™ (Wsp[u])®] < OW, p[u] < oo,

for n = a or B, provided p has compact support in RY. Next, we assume that ; may not
have compact support. Since the above constants noted C' are independent of u, for n € N*|

we set tn = Xp, (o) M
W [(Waplpn])™ (W plin])®] < OWy p[in] < OWy ] < 00 < 7,

for n = « or 8. Then we infer (e) by Fatou’s lemma. O

An important step for proving relative compactness in nonlinear problems is the conver-
gence of the nonlinear terms and their equi-integrability is one of the key tool for such a
task.

Lemma 2.11 Let p be satisfying (2.35) with compact support in RN. Set p1,, = o * p.
Then,

(Waplin] (@)™ (W plpn] (2))* (2.53)
is equi-integrable in B(0) for all t > 1.

Proof. Since supp p,, C By, (0) for some ¢y > 0 and

(Wil m])" < 0 (L2, )" (W)™ < € (T3] )"

Py G a7 B, G Fass =D

it suffices to show that

2(to+1) 2(to+1) e
L a1 [Mn]L a3 [Nn]

P G Fa) =T BP @ Fa oy
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a1tas Q1+lm

p—1 p—1
is equi-integrable in B;(0). Since (Ii(,f;’lt?sqz [Mn}) <C (Ii(jq“ﬂfm (] * <pn) S0
q1+4a2 a1+a2

a1+4a2

p—1
( i(jg’lttp)ﬁm [ten] is equi-integrable in B;(0) for any t > ty,. Thus, by [3, Proposition

q1+q
1.27] we can find a nondecreasing function ® : [0,00) — [0,00) such that ®(\)/\ — oo as
A — 00, and ¢(27)) < jo(\) for all A > 0,5 € N and /() = ¢(\)

q1+ta2
00 5 p—1
e {(Iizslttzm [m) >A}
0 q1+42

On the other hand, by Lemma 2.6, there exists C' > 0 and g > 0 such that

T
L2000 LY (] > e, (TR (] ) <e
P g1 Faz)(p—1) Pl Ta)p—1)

dx < 1.

q1+42

N(g1+a2)(p—1)
< Cg 202(N-5p)

LA T - I T B Y T

2
P, (a1 PP, T =D

for any € € (0,e9) and ¢t > 0, for some a > 1. This gives

2(to-+t) 2(to-+t) Dt 2(to-+t) et
<Lap0f11 [Nn]Lﬁpoqiz [#n]) > al, (I apd1 +p8a [Nn}> <e
’(g1+a2)(p—1) ’(q1+q92)(p—1)

q1+az

Ottt Ittt q1t+q2
L ( O—Hqil [,U,n]Lﬁ( O+)<172 [ﬂn] > 51/2A
AP (g1 Fa2)(p—1) P a1 ta) (-1

(2.55)

for any € € (0,g9) and ¢t > 0, for some a > 1. It is easy to obtain from the above two
inequality that

1,2(t0+0) 2(to-+t) it
© L3\ > A
/ (A ( P, G TG yin] BP: a0 [Mn]>
N(p—1) o0 2(to+t) 2(to+t) nae —1_1/2
SC’szqz(N—Bz»)/ d(N) L o [ ] L 2 (i) >a e /A
0 Pl Fa) -1 P a1 Taz)(e—1)
r11+tiz
2(to+t P
{ <I 01(!)21+3qu [:u“n]> > 6)‘}
q1+az
q1+q2
< cemmttn 12 [ graezy || (L2 [ L0 ] > A
Lon. @i D BP, e Tas D

a1taz
w0 [ o {(%ﬁsﬁ?ﬂm[un}) >A}
q1+4a2

Since ¢(eN), plas~/2\) < C|log(e)|¢p(N) for any A > 0, ¢ << 1 and % —1/2>0, so
it is easy to get that

< 2to+t) 2to+t) ara
[Tom [§ (R e ) >
0 P i ta) (-1 L TR )
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N(p—1)
< (Cg2a2(N=5p)

dA

X

+Cﬁmam A

Npl

X

dA

drx<C




Hence,

2(to+t) 2(to+t) nta
L a1 [11n] L [11n]

a2
P G Fa) =T BP @ Fay oy

is equi-integrable in B;(0). The proof is complete.

Theorem 2.12 Let a,(,q1,¢2 > 0, a >, 1 <p< X q1+q@>p—1, ¢ <

The next statement is the analogue of Theorem 2.10 in a bounded domain.

«

N(p—1)
N—Bp ’

w € M (Br(x0)) for some Br(zg) C RN, extended by 0 in Bé(xo). Then, the following
statements are equivalent:

(a)

(b)

(c)

(d)

(e)

The inequality

w(K) < Cy Cap (K),

41142
G apa; +6pay - q1+taz—p+1

q1+42

holds for any compact set K C RY, for some C; = C1(R) > 0.
The inequality

/K (WAR [w)(2))™ (W [w] () dar < Cy Capg e (K,

apq1+Bpa2 1 gy fq3 —p+1
q1+4a2

holds for any compact set K C RN, for some Cy = C3(R) > 0.
The inequality

q1+q2
L (Wi fel)) iy < CanlBito)

q1+42

holds for any ball B;(x) C RY, for some C3 = C3(R) > 0.
The inequality

L (Wi, e) " (WhB b, 1)) d < Cus(Bla),

holds for any ball B;(z) C RY, for some Cy = C4(R) > 0.

The system of inequalities
(i) Wi [(WiR )™ (WhW]) ] < cs Wikt
1 g2
(i) WR [(WiE )™ (W) | < CsWAR L),

holds in Bag(xg) for some Cs = C5(R) > 0.

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

Proof. By Theorem 2.2 we have (a) < (c); by Theorem 2.5, (¢) < (d). As in the proof of
Theorem 2.10, we can see that (e) = (a) and (e) = (b). Since

(W) (WELI@) ™ 2 0 [ (“ﬁﬁiﬁ”)ﬂ (5

= CW2  [w](z) forall 2 € Bap(wo),

@0,P0
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[e] —1 . .
where v = q% + q%, ap = % and py = %, then, (b) implies that
4R % = 1
/K (Wl wl(z))” da < C'CaquCwqﬁﬁpq2 ot (K) = CapGa 4 (K), (2.61)
q1+az oPo ;—p0+1
is verified for any compact set K C RY. Therefore (a) follows by Theorem 2.2.
It remains to prove (a)+(c)+(d) = (e). From (a) we have
N— apq1 +Bpas N
w(Byr(z)) < Cr” " @mte—rp+1 for all z € RY and r > 0. (2.62)

From (b)

q1+q2
/ < a1 45as [w](y)) dy < Cow(Bag,(x)) for all z € RN and 0 < r < 8R.
B, (z)

q1+aqg

___(a—B)pag .
Using Hélder’s inequality and Wy, s, [w] > 7" D@2 W] [w], we get
q1+a2

a1
(a—B)pg192+(P—1)Nao+(N—Bp)(p—1)q; w(BQT(x)) a1+a2

W, Ty < C CERICTERTY (263

/| Vo) dy < o o Dol (2.63)

for all z € RY and 0 < r < 8R.
From (c),

/B . (W wl)™ (W [w](1))™ dy < Caw(Ba,(x)) for all = € RY and 0 < r < 8R.
' (2.64)

By Lemma 2.9,

a2

Bay(2))\ 7T
/B . (W) dy < crV <W> for all z € RN and 0 < r < 8R.  (2.65)

Next we have for n = a or n = 8 and almost all x € Bog(xg),

Wit [(Wsiu)" (WES) "] () < €3 /04R (3=2) . T em
i=1

Mafer) = [ (W )" (W5, )™ do

Aer) = [ (W )" ( [ (M o Cff) .
()™ ) i
= [ (17 (82) )" ([ (222) ™ 4)
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Thanks to (2.47) there holds
Ay (z,7) < Cp(Bar(x)),

which implies
4R A 71
/ (M) W < OWSEl(2) < CWIE[pl(2) for all 2 € Bag(ro).  (2:67)
0

rN—np r

Since By(y) < Bai(z) for any y € B,(z) and ¢ > r , and thanks to (2.46) and (2.9) we deduce
that there holds, for 0 < r < 4R and x € Bag(zo),

AR _1_ q2

. o p(Bae(x)) \ 77T dt

As(z,7) < /Br(m) (W7 o lul(y)™ dy </r (tNﬁP T
CT(afﬂ)pruqz+§£:3Zcﬁt(21)vfﬁp)<pfl)q1 w(Bay x)) ‘H?‘U 4R ,LL(B%(:L‘)) ﬁ@ o

- rN—Bp , tN—=Bp t

a1 (p—1)
(a=B)pg192+(P—1)Nao+(N—Bp)(p—1)a;
<(Cr (p—1)(a1+a2)

(Bar(
)

Next
(2,r) < ( ﬁztap))yll Cit>(h ~/Br(w) (W [ul())™ dy
= </ (W) ‘f)q PN (‘ﬁ%_éii”)
con ([ () ) (17 () )
and

4R = a 4R i1 a2
N p(Bai(x)) \ P~ dt (Bay(x)) \ 71 dt
Aglz,r) < Cr (/ (tzv_ap T S 7o )
As in the proof of Theorem 2.10, we easily obtain

4R A z,r P— T dr
/O (2()> < CWﬁff,[u] () for all z € Bag(xo),

TN*UP
and
4R = 4R
As(x,r)\ P T dr Ay(z,r)\ P 71 dr AR
/0 <M) 7 +/0 (M , CW [ ](.’L‘) for all x € BQR(IO).
Combining these inequalities with (2.66) and (2.67), we get (e). O
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3 Renormalized solutions

Let Q be a bounded domain in RY. If ;1 € 901,(Q), we denote by pu* and p~ respectively
its positive and negative parts in the Jordan decomposition. We denote by 9,(€2) the
space of diffuse measures in Q and by 9,(Q2) the space of measures in {2 which are singular
with respect to the Capg, , which means that their support is set of zero Capg, ,-capacity.
Classically, any p € 91,(Q2) can be written in a unique way under the form p = po+ ps where
to € Mo(2) NM(NQ) and ps € M(Q). It is well known that any po € M) NML(2) can
be written under the form po = f — div g where f € L*(Q2) and g € s (Q,RN).

For k > 0 and s € R we set Ti(s) = max{min{s, k}, —k}. If u is a measurable function
defined in €, finite a.e. and such that Tj(u) € WoP(Q) for any k > 0, there exists a
measurable function v : Q — R such that VT (u) = Xjuj<x ¥ @€ in  and for all k > 0.
We define the gradient of uw by v = Vu almost everywhere. We recall the definition of a
renormalized solution given in [9)].

Definition 3.1 Let A: RN — RY satisfy (1.2). Let pu = po + ps € Mp(Q). A measurable
function u defined in Q and finite a.e. is called a renormalized solution of

—div(A(z,Vu)) = p in Q,

u=20 on 0N, (3.1)

if Te(u) € WyP(Q) for any k > 0, |Vu|P~' € L™(Q) for any 0 < r < -, and u has the

property that for any k > 0 there exist )\z and A, belonging to zm; N M (), respectively
concentrated on the sets u = k and u = —k, with the property that ,uz = pk, o = A in
the narrow topology of measures and such that

/ A(x,Vu).Vgpdx:/ <pduo—|—/ <pd)\;—/<pd)\,;,
{lu|<k} {u|<k} Q Q

for every ¢ € Wy P(Q) N L®(Q).
Proposition 3.2 [26] If u € M(2), then problem (3.1) has a unique renormalized solution.

We recall the next two important results which are proved in [9, Th 4.1, Sec 5.1].

Theorem 3.3 Let {pn} C Mp(Q) be a sequence such that sup,, |pn|(2) < 0o and let {uy}
be renormalized solutions of

—divA(z,Vuy)) = pin in Q
Uy =0 on 0N. (32)
Then, up to a subsequence, {un} converges a.e. to a solution u of —div(A(z,Vu)) = p
in the sense of distributions in 2, for some measure u € Mp(Y), and for every k > 0,

k=Y VT, (w)h, < M for some M > 0.
The following fundamental stability result of [9] extends Theorem 3.3.

Theorem 3.4 Let = po + pd — py; € Mp(Q), with po = f — divg € Me(Q), pt,u; €
MH(Q).  Assume there are sequences {f,} C LY(Q), {gn} < (L"(Q)N, {nL}, {2} C
9312'((2) such that f, — f weakly in L*(Q?), g, — g in Lp/(Q) and divg, 1is bounded in
My (), nt — uf and n2 — ug in the narrow topology. If pn = fn — divg, +nL —n% and
Uy, @8 a renormalized solution of (3.2), then, up to a subsequence, u, converges a.e. to a
renormalized solution u of (3.1). Furthermore, Ty(un) — Ty (u) in WyP(Q) for any k > 0.
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The next result is proved in [6, Th 3.2]. Therein it plays an important role in study the
stability of the renormalized solutions of the following problem with absorption,

—div(A(z, Vg, ) + [tn, |97 tn, = tin, in €,

3.3
Up, =0 on 0f. (8:3)

Theorem 3.5 Let {n;}r be an increasing sequence in N, ¢ > p — 1, {un, }r be a sequence
in M(RY) such that

sup |fin, | (B"k-o (0)) < +oo for all ko€ N.
k>ko

Let u,, be a renormalized solution of (3.1) with data fin, and Q = B, (0) such that
{tny |7} k> ko s bounded in L' (B, (0)) for any ko. Then, there exist subsequence of {un, }r,
still denoted by {un, r a measure p and measurable function w such that pi,, — p in the
weak sense of measures, un, — u, Vu,, — Vu a.e in RN. Moreover, |Vup, [P72Vu,, —
|VulP=2Vu in L, (RN) for all0 < s < 25 and u satisfies (3.1) in the sense of distributions
in RV,

Theorem 3.6 [22, 7] Let Q be a bounded domain of RN. Then there exists a constant
C =C(N,p,A1,A2) > 1 such that if u € Mp(QL) and u is a renormalized solution of problem
(3.1) there holds

lu(z)| < CW%I;HMH(J:) a.e. in ), (3.4)
where R = diam(Q)). Moreover, if 4 >0 and u > 0 then,
1 dw.om
u(z) > éwl,,f [1](z) a.ein Q. (3.5)

Theorem 3.7 [10, 14, 17] Let Q be a bounded domain of RY. Then there erists a constant
C = C(N,p, A1, Aa, diam(Q)) > 0 such that if p € Cp(Q) and u is a solution of problem
(3.1) there holds

L 1/70
[Vu(z)| < C (@ [|ul](z)) =7 +C <fB ( )IVUI”Odﬂf) ; (3.6)

N(p—1) ; —
r = 0 ) — . ) ) -
for any B.(x) C Q and for some o € (0, =7=2). Moreover, if A(x,&§) = A(§) for any

(z,&) € RN x RY | then the constant in (3.6) does not depend on diam(2).

Corollary 3.8 Let Q be a bounded domain of RY, R = diam(Q), u € 9My(Q). Then there
exists a constant C' = C(N,p,A1,A2) > 0 and a renormalized solution u of problem (3.1)
such that

N 1
vl < (§) @) (3.7)

for any x € Q such that d(x, Q) > & with 6 € (0, R/2). Moreover, if A(xz,£) = A(§) for any
(x,€) € RN x RN then the constant in (3.7) does not depend on R.

Proof. We can choose p,, € C°(£2) such that p, converges to p in the sense of theorem 3.4
and |,| < @ * ||, where {p,} is a sequence of mollifiers in RY. Let u, be solutions of
problem (3.1) with data pu,. Fixed § € (0, R/2), by Theorem 3.7, we have

Vun(@)] < € (B all@) ™"+ [Vunlda,
§5/2\T
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for any « € Q,d(x,09) > §. Notice that (see e.g. [9])

N

H{|Vu,| > s} < CW# for all s > 0.
s N-1
It leads to
pal(Q)\ 7
/ Vi (2)|dz < CRY (RN(l)) .
Q
Thus,

N 1
Vool < () @ )

1

N
<o (%) (e BAuDE) ™.

for any x € Q,d(z,9Q) > 4.
On the other hand, by theorem 3.4, there exists a subsequence of {u,} converging to a
renormalized solution u of (3.1) with data yi,,. Therefore, u satisfies (3.7) since o, *I2%[|u|] —

I22[|u|] almost everywhere.
O

4 Proof of the main results

Proof of Theorem 1.1.

Step 1: Case ;’%:f <p <2 Let pp € CX(B2(0)) for k € N such that p,  converges

t0 X5, (o) K IN the sense of theorem 3.4 with Q = By (0) and |, x| < ¢p * (XB,C(O) |ee]), where

»} is a sequence of mollifiers in RY. Thanks to Proposition 2.3,
2

|ttn k| (I) < C"CCapy stey  (K) for all compact K ¢ RY (4.1)

a1P+42 > gy gz —p+1
q1+42

We will prove that if C' in (4.1) is small enough, then for any k > 1,n € N the problem

_diV(A(vun,k)) = X5, (0) ‘u",k|ql_lu|vun,k|q2 + Hnk in BQk(O)v

4.2
Up = 0 on 0By (0), (42)
has a renormalized solution satisfying
1 1.
[tn k] < Co Tpllpn k)7, [Vun k| < Co (Lflpnkl)) = in B (0). (4.3)

By Theorem (2.10), we need to prove that there exists M > 0 such that, if for « = 1 and p,
the following inequalities hold,

I, [(Ip[\un7k|})fjl (L[|t k) P77 | < MIy[|pnk]] < oo almost everywhere, (4.4)

then problem (4.2) has a renormalized solution satisfying (4.3).
For any k € N, we set

Ex = {u: ul S A@uar)7T IVal <A@l ™7 in Bi(0) ).
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Since i, 1 € C°(Bax(0)), Ex C Wy (Bay(0)). Clearly, E, is convex and closed under the
strong topology of W' (Bgx(0)). Moreover, if u € Ey, then |u|? |Vu|® € L'(By(0)).

We consider the map S : Ep +— W, '(Q) defined for each v € E by S(v) = u, where
u € Wy'' (Q) is the unique renormalized solution of

—div(A(Vu)) = XBk(O)|v|‘h’1v\Vv|Q2 + fon k in Bag(0),

u=0 on 9Ba(0). (4:5)

1

Notice that Wi ,[|tin.k]] < C (Ip[|ten,x]])?~ ", this is due to the fact that, since 1 < p < 2,
then

= = 1) p(B(x,2"))
Wpll() ~ 3Dk < (S an) ™~ (plu) V07 with an = SR
By Theorem 3.6 and Corollary 3.8, we have

1
p—1
[ul < € (TP o1 Vol #da + 1 al]) 7

_1_
p—1
’

V] < € (L[ 017 Vel 2 + 1]

in By (0). By the definition of v we get
1
a1 a2 1
ul < € (AP FT [0, )77 (Bl 7]+ T, ) 7
1
a1 _92_ —1
IVl < C (AP 2L )™ allne )77+ Tallnel])
in By(0). Using (4.4), we obtain

1

lu| < C (A2 MIL[|pn k] + Lpllpnkl]) 75 = C (AT M + 1) 77 (L[|pnkl]) 77,
[Vu| < C (AP M (| k] + T [[pn k]]) 77 = C (AT M 4+ 1) 7" (L[| i) 77

in By (0). We choose

A:C( ¢+ g ) M= Aaee ( @+ g ) 1),
g+g—p+1 g+qg—p+1

then C (A11F92 )M + 1)ﬁ = A and u € E). Hence, S(Ep) C E,.

Next we show that S : Ep — E, is continuous. Let {v,} be a sequence in E, such that
v, converges strongly in Wl’l(ng (0)) to a function v € Ej. Set u,, = S(vy,). We need to
show that u,, — S(v) in W' (Bax(0)). We have

—div(A(Vum)) = Xz, o) [0 |7 00 V0|92 + p i in By (0),
U, = 0 on 0Bs(0),

and

1 L.
[wmls [vm| < A@pllpn k)T [Vum|, [Vop| < A(Lif|pnkl]) 77 in Bg(0).

Since (L[| i) 7T (I[|tnkl]) 77 € LL _(RN), we obtain

loc
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XBM())Iva"l_lvaWml‘“ — XBkm)|v|’11_1v|Vv|q2 as n — 00.

Applying Theorem 3.4, we derive that u, — S(v) in Wy'' (B (0)) as n — co. Similarly, we
can prove that S(E,) is pre-compact under the strong topology of Wol’l(BQk (0)).

Thus, by Schauder Fixed Point Theorem, S has a fixed point on E,. This means that
for any k,n € N, problem (4.2) has a renormalized solution w,, j satisfying (4.3).
By Lemma 2.11, {(Ipuun,kn)zf’fﬂ (L[|t s ])%} is equi-integrable in Byy,(0). Thus, by a

standard compactness argument, we get that w, , converges to a renormalized solution uy
of

*diV(A(vuk)) = X5, 0 |uk‘m71uk|vuk‘(h + X, o) H in BQk(0)> (4 6)
up =0 on 0By (0), '
which satisfies
1 T
luk| < Co (Lp[lpl) ™", [Vur| < Co (L[|pl])** in By(0). (4.7)

Finally, thanks to Theorem 3.5, there exists a subsequence of {uy}, still denoted by {ug}
and u € Wzlocl (R™) such that uy, converges to u and Vuy, converges to Vu almost everywhere.
Since

1

_1 _1
X, 0 [ur] < Co p[lul) 77T X, o[ Vur] < Co (Lf[ul]) =7 for all &,

a1 a2

and (Lp[|ul]) =T (Lflul]) 7T € Li, (RY), thus X, o [uk® ™ k] Vug|® — [ul® ™ |Vl in

loc
L} (RN). This implies that, u is a solution of problem (1.1) with g(x, u, Vu) = |u|% u|Vu|®

in the sense of distributions in RY and it satisfies

lul < Co Tp[lpl) 7=, [Vul < Co (Luf|pl]))™=" in By(0). (4.8)
Step 2: Case p > 2. In order to obtain the result, we will use

@ q2
W, {(Wlmﬂun,kﬁ) (W%pﬂunku) ] < MW, plltinkl] < oo almost everywhere,
with & = 1 and o = 1/p, instead of (4.4); and
Fa = {u e Wi (Baw(0)) ¢ [u] < AW llasll, [Vl < AW, il in Bi(0)}

instead of E5. We omit the details. The proof is complete. O

Proof of Theorem 1.2.

Step 1: Case g%j < p < 2. Let p, € C(Q) such that p, converges to p in the sense of
theorem 3.4 and |, | < ¢, * (|u|), where {,} is a sequence of mollifiers in RV. Thanks to

Proposition 2.3,

|un|(K) < C"CCapg atey  (K) for all compact K ¢ RY (4.9)

41P+92 >qy +ap —p+1
q1+4a2

We will prove that if C' in (4.9) is small enough, then for any n € N the problem
—div(A(z, Vuy)) = |un|? " 1u|Vu, |2 + py in Q

4.10
U, =0 on (), ( )
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has a renormalized solution satisfying

1 1
lun| < Co (L [lual) 77, [Vua| < Co (T |ual]) " in Q. (4.11)
By Theorem (2.12), we need to prove that there exists M > 0 such that, if for « = 1 and p,
the following inequalities hold,

a1 g2
o [ (T )7 (U () 7| < MIER (i ] < 00 almost everywhere,  (4.12)

then problem (4.10) has a renormalized solution satisfying (4.11).
We have to prove that there exists M > 0 such that if & = 1 and p, there holds
T [T ) (T ]]) 7] < T[] < 00 almost everywhere in By(xo),
(4.13)

For n € N fixed, we set
1 1
B = {ue WEQ) : ul < A |a) 77 [Vul < A (1 )7 in 0}

Clearly, E, is closed under the strong topology of Wy"! (Q), convex and |u|? |Vu|% € L>(1)
for any u € Ep. We consider the map S : Ey — Wol’l(Q) defined for each v € Ej by
S(v) = u, where u € W' (Q) is the unique renormalized solution of
—div(A(z, Vu)) = |[v|2 " |Vo|®2 + p, in Q
u=0 on 09,

We will show that S(E,) is subset of E5 for some A > 0 small enough.
For v € Ep and u = S(v), we have

o] < A (L pal]) 777 [Vl < A (T lula])

In particular,

_N-p _ _N-1 _
1011 Loe (€242) < C1AL™ 7= (|| ()P [[[V0][| 10 (2,/0) < CrAd™ 77T (|| (2)) /P,

Qay2
where Qg0 = {z € Q: d(z,00) < d/2}.
From (4.13) with @ = 1 and p we derive
a1 _az_
Lo~ ol Vol + ] < AR ) 770 (T lal]) 7]+ T [l
< (Afh-‘rsz + 1) I;R[|Mn‘]a
and
a1 _az_
Lol ol Vol® 4 g [] < AP l]) 7 (G | l]) 7]+ T ]
< (A‘Il“l‘(IZM + 1) I%RHMnH-

By Theorem 3.6 and W2[|1,,[] < (If)RHunH)ﬁ in Q, we have

~

_1
Jul < Cy (T3F[|[v]1 = 0| V|22 + p,[]) 7

e o (4.14)
< Oy (ADHe M 4 )7 (T8, []) 7 in Q.
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From Corollary 3.8, we derive

N 1
V()| < Cs <§) (LR llo] 0| Vol® + o () 7
< Oy (AR 4 1) 7T (L) () 7 (4.15)

for any x € Q verifying d(z,9Q) > d/4. By the standard regularity results for quasilinear
equations, we deduce

) 1 1
190l 2@ < s (INulliea o) + ol Vol 050 Y.,

where 05 = C5(N,p, Q)

a lJSlimale ()f v 1 v 1 oo . IIOIH 1:; 5 we ave ,“'IL < 6 q1+a2—p+1
V l/( (5] 12) 4 h Q C M .
Illus

1 1
ol Vel 050 < 11oll3 g IVl 2,

< (Cohd™ 3 (ual (@) Y0-D) T (CradF () () 0)

a1ta
< CoAPT T (| ()

Q2

o ) 1
< T To-T M 7-T i i T
< CgAr-T TMp—T ;Ielg (11 [|Mn|]($)) ’

where 08 = CS(Napa «a, 41,42, d7 R)
(b) Estimate of [|ul[z(q,,,)- By (4.14) we have

1

1 =T
||’U,HL00(Qd/2) < 02 (A’11+sz+ 1) p—1 (|‘I;17RHM7I|]||LOC(Q<1/2)>
_1 N—p 1
< Cp (APHEM 4+ 1) 7T 45 (fun ()7
1 1
< Cyo (AQ1+Q2M 4 1) p—1 Helg (I%RH/’[’TL”(x)) =T
Therefore,
_1 _1
V|| Lo, < Cni (AP THE M 4 (ABFRN 4 1) P*l) inf (TR {1} (2)) 7

where Cll = Oll(Napa &, 41,42, d7 Ra Q)
Combining this with (4.15) we get for all z € Q,

V()] < Ca (A7 920 4 1) 7T () (@) 7
+ Ch1 (AIJ 1+p IMTJ T+ (Aq1+Q2M+ 1) ) (I4R[|‘Ll,n”(£€))p%l ) (416)

We can find M, A > 0 such that

Ch (A41+Q2M+1)fil <A,
C,y (AII1+Q2M+1)1J T+ Cp (Ap T+ 52T N[ 5eT +(AQ1+q2M—i— ) 7T )SA
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Thus, from (4.14) and (4.16) we obtain S(E,) C Ej. Moreover, it can be shown that the
map S : Eyx — E, is continuous and S(E,) is pre-compact under the strong topology of
Wy (€2). Then by Schauder Fixed Point Theorem, S has a fixed point on Ex. This means
problem (4.10) has a renormalized solution satisfying (4.11).

Step 2: The case p > 2. To obtain the result, we will use

q2
Wi}; [(W%g[mn”)ql (W%J)HM”H) } < MWi{%HM] < 0o almost everywhere in {2

with @« =1 and « = 1/p, instead of (4.4); and
Fi = {ue W@ s jul < AW lall, Vel < AW [na]] in @},

instead of E5. We omit the details. The proof is complete. O

References

[1] D. R. Adams, L.I. Hedberg, Function Spaces and Potential Theory, Grundlehren der
Mathematischen Wisenschaften 31, Springer-Verlag (1999).

[2] D. R. Adams, On the ezistence of capacitary strong type estimates in RN Ark. Mat.
14 (1976), 125-140.

[3] L. Ambrosio, N.Fusco, D.Pallara, Functions of bounded variation and free discontinuity
problems, Oxford University Press, 2000.

[4] M. F. Bidaut-Véron, Local and global behavior of solutions of quasilinear equations of
Emden-Fowler type, Arch. Ration. Mech. Anal. 107 (1989), 293-324.

[5] M. F. Bidaut-Véron, Necessary conditions of existence for an elliptic equation with
source term and measure data involving p-Laplacian, in: Proc. 2001 Luminy Conf. on
Quasilinear Elliptic and Parabolic Equations and Systems, Electron. J. Differ. Equ.
Conf. 8 (2002), 23-34.

[6] M. F. Bidaut-Véron, Removable singularities and existence for a quasilinear equation
with absorption or source term and measure data, Adv. Nonlinear Stud. 3 (2003), 25-63.

[7] M. F. Bidaut-Véron, Q. H. Nguyen, L. Véron, Quasilinear Lane-Emden equations with
absorption and measure data, J. Math. Pures Appl. 102 (2014), 315-337 .

[8] M. F. Bidaut-Véron, Q. H. Nguyen, L. Véron, Quasilinear and Hessian Lane-
Emden systems with reaction and measure data, Potential Anal., to appear,
doi.org/10.1007/s11118-018-9753-z.

[9] G. Dal Maso, F. Murat, L. Orsina, A. Prignet, Renormalized solutions of elliptic equa-
tions with general measure data, Ann. Sc. Norm. Sup. Pisa, 28 (1999), 741-808.

[10] F. Duzaar, G. Mingione, Gradient estimates via linear and nonlinear potential, J. Funct.
Anal. 259 (2010), 2961-2998.

[11] R. Fefferman, Strong differentiation with respect to measure, Amer. J. Math 103 (1981),
33-40.

[12] P. Honzik and B. Jaye, On the good-\ inequality for nonlinear potentials, Proc. Amer.
Math. Soc. 140 (2012), 4167-4180.

[13] N.J. Kalton, I.E. Verbitsky, Nonlinear equations and weighted norm inequality, Trans.
Amer. Math. Soc. 351 (1999), 3441-3497.

37



[14]
[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]
[23]

[24]

T. Kuusi, G. Mingione, Linear potential in nonlinear potential theory, Arch. Rat. Mech.
Anal. 207 (2013), 207-246.

Q. H. Nguyen, Potential estimates and quasilinear parabolic equations with measure
data, arXiv:1405.2587, pp. 1-120, submitted

Q.-H. Nguyen and N. C. Phuc, Good-\ and Muckenhoupt- Wheeden type bounds in quasi-
linear measure datum problems, with applications, Math. Ann. 374 (2019), 67-98.

Q.-H. Nguyen and N. C. Phuc, Pointwise gradient estimates for a class of singular
quasilinear equation with measure data. J. Funct. Anal. 278 (2020) Issue 5, 108391.

Q.-H. Nguyen and N. C. Phuc, Existence and reqularity estimates for quasilinear equa-
tions with measure data: the case 1 < p < gz:f Submitted for publication.

Q.-H. Nguyen and N. C. Phuc, Quasilinear Riccati type equations with oscillatory and
singular data. to appear in Advanced Nonlinear Studies, (arXiv:2003.03724).

Q. H. Nguyen, L. Véron, Quasilinear and Hessian Type Equations with Exponential
Reaction and Measure Data, Arch. Rat. Mech. Anal. 214 (2014), 235-267.

V. G. Maz’ya, 1. E. Verbitsky, Capacitary inequalities for fractional integrals, with
applications to partial differential equations and sobolev multipliers, Arkiv Mat, 33

(1995), 81-115.

N. C. Phuc, 1. E. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type,
Ann. Math. 168 (2008), 859-914 (2008).

N. C. Phuc, Quasilinear Riccati type equations with super-critical exponents, Comm.
Part. Diff. Equ. 35 (2010), 1958-1981.

N. C. Phuc, Nonlinear Muckenhoupt- Wheeden type bounds on Reifenberg flat domains,
with application to quasilinear Riccati type equations, Adv. in Math. 250 (2014), 378-
419

N. C. Phuc, 1. E. Verbitsky, Singular quasilinear and Hessian equation and inequalities,
J. Funct Anal. 256 (2009), 1875-1906.

N. S. Trudinger, X. J. Wang, Quasilinear elliptic equations with signed measure data,

Discr. Cont. Dyn. Syst. 23 (2009), 477-494.

L. Véron, Local and Global Aspects of Quasilinear Degenerate Elliptic Equations, World
Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2017).

38



