N

N

Quasilinear elliptic equations with a source reaction
term involving the function and its gradient and
measure data

Marie-Frangoise Bidaut-Véron, Quoc-Hung Nguyen, Laurent Véron

» To cite this version:

Marie-Francoise Bidaut-Véron, Quoc-Hung Nguyen, Laurent Véron. Quasilinear elliptic equations
with a source reaction term involving the function and its gradient and measure data. 2018. hal-
01775096v1

HAL Id: hal-01775096
https://hal.science/hal-01775096v1

Preprint submitted on 24 Apr 2018 (v1), last revised 17 Mar 2020 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01775096v1
https://hal.archives-ouvertes.fr

Quasilinear elliptic equations with a source reaction term
involving the function and its gradient and measure data

Marie-Francgoise Bidaut-Véron*
Quoc-Hung Nguyen'’
Laurent Véron!

Abstract

We study the equation —div(A(z,Vu)) = g(z,u,Vu) + u where u is a measure and either
g(x,u, Vu) ~ |u|"u|Vu|? or g(z,u, Vu) ~ |u| u + |Vu|*2. We give sufficient conditions for exis-
tence of solutions expressed in terms of the Wolff potential or the Riesz potentials of the measure.
Finally we connect the potential estimates on the measure with Lipchitz estimates with respect to
some Bessel or Riesz capacity.

key-words: Quasilinear equations; Wolff and Riesz potentials; renormalized solutions; Bessel and
Riesz capacities.

2010 Mathematics Subject Classication: 31C15, 35J62, 35J92, 35R06, 45G15.

1 Introduction and main results

This article is devoted to the study of existence of solutions of some second order quasilinear
equations with measure data with a source-reaction term involving the function and its
gradient. First we consider the problem with a Radon measure ; in RY in the whole space

—div(A(z, Vu)) = g(x,u, Vu) 4+ in RV, (1.1)

In this setting, (z, &) — A(xz, &) from RY xRY to RY is a Carathéodory vector field satisfying
for almost all z € RY the growth and ellipticity conditions

(7) |A(x, &) < Ay]¢|P~1 for all ¢ € RY,

(i1) (A(z,8),€) > As¢[P for all €€ RN, (1.2)
(u44) (A(z,€) — A(z,n), 6 —n) >0 forall £#neRN xRV, '
(iv) Az, NE) = [AP720A(z,€)  for all (A, &) € R x RV,

where Ay > Ay > 0 are constants and 28=2 < p < N, and where g : RY x RxRY — Ris a

Carathéodory function. We also consider the homogeneous Dirichlet problem with measure
data in a bounded domain Q C RY

—div(A(z, Vu)) = g(z,u, Vu) + p in Q, (1.3)
u=0 on 01, ’
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where A : (z,€) = A(x, &) is a Carathéodory vector field defined in Q x RY satisfying (1.2)
(i)-(iv) in @ x RY, and g : @ x R x RY + R is a Carathéodory function. The functions g
under consideration are be of two types: either a product

g(z,u, V) ~ |u|™ " u | V|, (1.4)
with g1,q2 > 0 and q; + ¢2 > p — 1 or like a sum
lg(x,u, Vu)| ~ |ul™ + |Vu|*?, (1.5)

where s1, 82 > p — 1. The ~ sign means that the g(x, u, Vu) is comparable to, but it could
be only one side comparison. The model examples,

—div(A(z, Vu)) = [u|"  u+ in O (16)
u=0 in 09 '
and
—div(A(x, Vu)) = |[Vul® + p in Q (17)
u=0 in 00 '

have been studied thouroughly in the last decade. Each of these equations carries a critical
exponent ¢§: qf = %:;) for equation (1.6) and ¢5 = N]S[p:ll) for (1.7). These critical
thresholds mean that if 0 < p— 1< g, < ¢f for (1.6) and 1 — & <p—1 < g < ¢f for (1.7)
any nonnegative bounded measure is eligible for the respective equation, provided it is small

enough. Concerning

—div(A(z, Vu)) = |u|™ " u|Vu|? + 4 in Q (L8)
u=0 in 0Q '
the criticality is expressed by a linear relation 0 < g1 (N —p) +¢2(N —1) < N(p—1). Then,
ifp>2-— % and g1 + ¢2 > p — 1, problem (1.8) any Radon measure small enough, see
[23, Chap 6-2] and references therein. The treatment of the supercritical case for equations
(1.6) and (1.7) have been treated more recently. In these cases not only the measure p has
to be small enough, but also it cannot be too concentrated with respect to some Bessel
capacity, specific to each problem. It is proved in [18] that if p is a nonnegative Radon
measure with compact support in €2, a necessary and sufficient condition for the existence of
a renormalized solution to (1.6) is that there exists some ¢; > 0 depending on the structural
constants and ||u|gy such that

WE) <erCapg o (K) forall compact set K C Q, (1.9)

91 +1-p

where C’apGp,q - denotes some Bessel capacity. Concerning (1.7), assuming 1 < p—1 <
—=

q,, it is proved in [19] that there exists a structural constant c2 > 0 as above such that if

[ul(K) < e2Capg, o (K) for all compact set K C €, (1.10)

’q;+1-p

there exists a renormalized solution to (1.6) with the property that

/ |Vu|” dz < csCapg, o (K) for all compact set K C Q, (1.11)
K :

9, +1-p
for some c3 > 0.

The complete expression of these results as well as the ones we will state below neces-
sitates the introduction of several definitions and notations from harmonic analysis such as
Wolff potential, Riesz potentials, Bessel spaces and maximal functions. The role of these op-
erators has appeared to be a key-stone for conducting a fine analysis of quasilinear equations



with measure data; this is very well presented in the introduction of the seminal paper [18].
If D is either a bounded domain or whole RY | we denote by 9(D) (resp. M;(D)) the set
of Radon measure (resp. bounded Radon measures) in D. Their positive cones are 9™ (D)
and 9)?2' (D) respectively. For R € (0, 00], we define the R- truncated Wolff potential Wg,p
(a € (0,N/p),p > 1) and the R-truncated Riesz potential If (6 € (0,N)) of a measure
p € M (RY) by

R e R
pB@\ P dp u(B,(x)) dp
wk ,u(x):/ (p — and Ig[u](z) = — (1.12)
717[ ] 0 prap p B[ ] 0 pr,B p
for all z in RY. If R = oo, we drop it in expressions of (1.12). We write Wf}p[f],lg[f] in
place of W[ 1], Ig (1] if dp = fdx, where f € L} (RM).
For a > 0,p > 1, the (I, p)-capacity, (G4, p)-capacity of a Borel set O C RY are defined
by

Caplmp(O) = inf {/ lg/Pdz : g € Lﬁ(RN),Ia[g] > XO} and
RN

Cape, ,(0) = in { [ loPde:g e (). Gy > xO} |
RN

where G, = F ! ((1 + |§|2)_%> is the Bessel kernel of order o, see [1] (and F and F~! are

respectively the Fourier transform and its inverse).

The results we prove consist in obtaining sufficient conditions for the solvability of (1.1)
or (1.3) where g is of the form (1.2) or (1.4) expressed in terms of inequalities between Wolff
or Riesz potentials of y. In order to obtain these inequalities we will develop a series of sharp
relations between these potentials and will connect them with some specific capacities. We
recall that a Radon measure p in RY (or Q) is absolutely continuous with respect to some
capacity Cap in RN (or Q) if for a Borel set E

Cap(E) = 0 = |u| (E) =0, (1.13)
and it is Lipschitz continuous (with constant ¢ > 0) if
|u| (E) < cCap(FE) for all Borel set E. (1.14)

The capacity associated to the Sobolev space W1?(R™Y) is denoted by Capi . It coincides
with Capg, p, [1, Th 1.2.3]. A measure is called diffuse if it is absolutely continuous with
respect to Capy p

Our first result is the following

Theorem 1.1 Let q1,q2 > 0,1 +q2 > p—1,0 < g2 < % and p € MRY). Assume
that A(z,€) = A(€) for any (z,£) € RN x RN, If for some C > 0 depending on p,s, N, q;
and A; (j=1,2), there holds if
|| (K) < CCapIq ey 2 L1T2 (K) for all compact K C RY (1.15)
41PT4d2 0 qq

+aq2—p+1
q1+4q2 2

then problem (1.8) in RY admits a distributional solution u which satisfies
ul < CoWpllpl]  and [Vu| < CoWr [[ul], (1.16)
if p>2, and
1 1
ul < Co @p[lp))7=7,  [Vul < Co (Lflpl)>=", (1.17)

r 3N—2
if s <p <2




Notice also that if ;1 > 0, then solutions u in Theorem 1.1 are nonnegative p-super-harmonic

When RY is replaced by a bounded domain © we have the following general results.

Theorem 1.2 Let q1,q2 > 0,1 +q2 >p—1,0 < g2 < % and Q@ C RN be a bounded

domain with a C*#° boundary for By € (0,1) and such that Q C Bgr(xo) for some R > 0 and
xg € Q. Let pp € M(Q) be such that dist (supp (), dN) > 0. If for some C > 0 depending
onp,s, N, gj and A; (5=1,2), Q and dist (supp (1), Q) there hold

if
lu|(K) < CCapg wta  (K)  for all compact K ¢ RY (1.18)

41442 >qy Fap—p+1
q1+4a2

then problem (1.8) has a renormalized solution u satisfying
lul < CoWp[lpll  and [Vu| < CoW [[ul], (1.19)

ifp>2, and
lul < Co @[l [Vul < Co (L[|pl])>, (1.20)

zf3N 2<p<2 Moreover, if u > 0, then u > 0.

2 Estimates on potential

In the sequel C denotes a generic constant depending essentially on some structural constants
(i.e. the ones associated to the operator and reaction term) and the domain, the value of
which may change from one occurence to another. Sometimes, in order to avoid confusion,
we introduce notations Cj, j = 0,1,2.... We also use the notation =< to assert that the two
quantities linked by this relation are comparable up to multiplication by constants of the
previous type. The following is a general version of results of Phuc and Verbitsky [18, Th
2.3].

Theorem 2.1 Let 1 <p< N/a, ¢ >p—1, up € ME(RYN). Then, the following statements
are equivalent:

(a) The inequality

w(K) < C1Capy (K), (2.1)

APy g p+1

holds for any compact set K C RY, for some C; > 0.
(b) The inequality

[ Waslidw) iy < CoCam, s (). (2.2)
holds for any compact set K C RY, for some Cy > 0.
(¢) The inequality
[ (Wosln,opl )" dy < Can(Bi(a), (23
holds for any x € RN and t > 0, for some C3 > 0.
(d) The inequality
Wap [(Wa,p[u))] < CaWo plp] < o0, (2.4)

holds almost everywhere in RY , for some Cy > 0.



Proof. Step I: Proof of (a) < (b). By [12, Theorem 1.1}, (see also [7, Theorem 2.3]) we
have

/ (Lap V) ()77 w(y)dy = / (Wapl](9)  w(y)dy for all v € MH(RY),  (2.5)
RN RN

where w belongs to the Muckenhoupt class A .. So, thanks to [17, Lemma 3.1] we obtain

| Gl )7 dy [ (Wl dy o
sup = sup for all v € M™(R™Y),
rex@y) Capy,, o (K) rex®y) Capr,, ¢ (K)

where KC(RY) denotes the set of compact subsets of RY. Moreover, by [17, Theorem 2.1],

Ly [v)(y)) 7 dy

v(K) /K (Lo N
sup = sup for all v € M (RY).

KeK(RN) CapI (K) KeK(RN) CapI (K) ( )

—a R E—
“Prq—p+1 aPrq—p+1

From this we infer the equivalence between (a) and (b).
Step 2: Proof of (a) < (c). By [17, Theorem 2.1] (a) is equivalent to

|, (sl o) 7 dy < CuBu(o)).

for any ball B;(z) C RY. Tt is equivalent to (c) because of (2.5).
Step 3: By Proposition 2.4, we obtain (¢) = (d).
Step 4: Proof of (d) = (b). Set dv(z) = (Wa[p](z))? dz. Clearly, (d) implies

.

(W V() de < Cdv(x).

Let M, denote the centered Hardy-Littlewood maximal function defined for any f € L}, C(RN ,dv)

by .
M, f(@) = sup s [ 1l

If E c RY is a Borel set, we have

/ (M, x5) 7 (Wapv])!de <C (M, xp)7 Tdv.
RN RN

Since M, is bounded on L*(RY dv), s > 1, we deduce from Fefferman’s result [11] that

[ ey < oo,
RN
Moreover,

(M, x5) 7T (Wapv])! 2 (Wa[xev])”.

Hence
/ (Woplxev])?de < Cv(E),
RN

for any Borel set E. Applying the equivalence of (a) and (c) with p = v, we derive (b).
O

The next result can be proved in the same way, see also [19, Proof of Theorem 2.3].



Theorem 2.2 Let1 <p < N/a, ¢ > p—1,w € M (Br(z0)) for some R > 0 and xo € RV,
Then, the following statements are equivalent:

(a) The inequality
w(K) < Cy Capg « (K), (2.6)

Prg—p+1

holds for any compact set K C RY, for some C; = C1(R) > 0.
(b) The inequality

/K (WA w](y)) " dy < CyCapes. 4 (K), (2.7)

aPrq—p+1

holds for any compact set K C RN, for some Cy = C2(R) > 0.
(¢) The inequality

/R (W b @©] ()" dy < Csw(Bi(w)), (2.8)

holds for any x € RN and t > 0, for some C3 = C3(R) > 0.
(d) The inequality

WA (Wi LW])] < CoWiR L, (2.9)

holds almost everywhere in Bag(xo), for some Cy = C4(R) > 0.
The proof of the following stability result is easy, see e.g. [20, Lemma 2.7].

Proposition 2.3 Let 1 <p < N/a and 0 < 8 < N/p, p € M (RY), w € M (Br(xo)) for
some R >0 and o € RN . Set du, (z) = (o * p)(z)dz, dw, () = (¢n *w)(z)dz where {©,}
is a sequence of mollifiers. Then,

1) If inequality (2.1) in Theorem 2.1 holds with q > (pil)N and constant C1, then
N—ap

[0

wn(K) < CCy Capy (K) forall KCRY, neN (2.10)

op THFT
for some C = C(N,a,p,q) > 0.
(i) If inequality (2.6) in Theorem (2.2) with ¢ > p — 1 and constant Ca, then

wp(K) < CCyCapg (K) forall KCcRY, neN (2.11)

q
AP g—p+1
for some C'= C(N,«a,p,q) > 0.

The next proposition is crucial as it gives pointwise estimates of interates of Wolff po-
tentials of positive measures and connect them with the capacitary estimates of the Wolff
potentials of the same measures.

Proposition 2.4 Let 1 <p < N/a and 0 < 8 < N/p, p € M (RY), w € M} (Br(xo)) for
some Br(zo) C RN, Then,

(i) The inequality (2.3) in Theorem 2.1 with q > % implies that
Wi [(Wap[u])'] < CrWi p[u] < oo, (2.12)

holds almost everywhere in RY, for some C; > 0.
(ii) The inequality (2.8) in Theorem 2.2 with ¢ > p — 1 implies that

Wi {(Wﬁ[w])q} < CyWET W], (2.13)

holds almost everywhere in Bagr(xo), for some Cy > 0.



Proof. Assertion (i). First we assume that p has compact support. Let x € RY and ¢t > 0.
For any y € B,(z),

,,nN—ap

Wo sl > [ o <M<Bt<r) ma@)))ﬁ dr

Foo B (x T dr
=, ()%
Bt X ﬁ
s o(MBA )™
From (2.3) we have
WB) = C [ (Waglu, )= 0¥ (A

Hence, (B (x)) < CtV =751, Therefore

/TOO (%) o ‘ff < Or— T, (2.14)

Since, Bi(y) C By max{t,r} (z) for any y € B,.(x), we have

fraatemorarse [, ([/(42522)7 4] o
e ([ () )
< C/Br(x) (Wap[XBo (oytt]) dy + Cr </r°° (w)ﬁ Clltt)q

< Cp(Bar(z)) + CrY (/TOO (W) . Oit>q

Note that, in the last inequality, we have used (2.3). Thus,

> B, (x Woz,p qd ﬁ '
Wi [(Wa,pw])’] (2) = / (f @ ( TN/EA:](@J)) y) dr

0 T

o [ (M) o [ ([ () )

Therefore, it remains to prove

—q_

[ (/m (") . Cf) S OW o)

q

p o0 %1 "
(/ (MBxte)” dt) S0 50
i, tN—ap t

Notice that



and

o =

; Bp _ N—ap g Bp _ N ine i i
as t — oo, since P T T < o1 o1 < 0. Hence, using integration by parts and

inequality (2.14), we have

1 p(Bae(x)) \ 7" dt dr
0 - thap t

q

1 =11 1
=4 (T [T (M Ba@)\ T AT (B (@) \ T dr
_%/0 re (/T ( tN—ap ) t) ( pN—ap ) r

® o (en T (p(Bay () \ T dr
C p—1 q—p+1 ’u(2> -
< /0 r (7“ ) (

rN—ap 7
= COWg [ ().

Next, we assume that p is not necessarily compactly supported. From the previous step,

Wi [(Waplxs,on])!] < CWg,lxa,on < CWg,lu] < oo aein RY.

Then we derive (2.12) by Fatou’s lemma.
Assertion (ii). For any x € Bag(z), 0 <t < R/2 and y € Bi(z),

/‘“* (w(&(w) nBT@)))p“ dr

TNfap r

W X B, (yw](y) > t

/23 (w<B<>>> e
ot rN—ap r

C(w(%»)ﬁ

%

v

tN—ap
From (2.8) we have

w<Bt<w>>)p“,

w(By(z)) > C (Walk s, wl(®) " dy > OtV < tN—ap

By (x)
Hence, w(By(xz)) < CtN "7 541 for all t € (0, R/2) and = € Bag(xo). It implies

4R T
B “Tdt =
/ (W) ” 7S Cr=a»T for all @ € Byp(wo), 0<r <4R. (2.15)

Since Bi(y) C Bamax{t,r}(x) for any 0 <7 < 4R and y € B,.(z),

ftetsmrase ] ([ (C4022)75) o
o, ([ (e ',
- C/Br(z) (Wl [xBa,@e]) " dy +Cr™ </r43 (W) o ?) g

< Cu(Bay(x)) + CrY (/;R (W) - C:lst>q




In the last inequality we have used (2.8). Thus, as above, we only need to prove that

4R 4R Lo o1
bp g w(Bae(z))\ P dt R
fo </ (w 7) A= OWE k).

Using integration by parts and (2.15)
/ /4R w(Ba(@) \ 7T dE) "
0 r tN—op t
. FE it 1
:q/“RT,fa /“ w(By(@))\ 7T dt w(Bar(x)) \ T dr
ﬂp 0 r tN—ap t pN—ap r

AR g op \ 521! (w(Bor(z)) 1 dr
< ﬁ 7q7p 1 e _
< C/O r (r + ) ( TN—op ) .
< CW%{;‘,[w] (x) < CWéﬁ[w](m),

since ng";[w] (x) < CW%{‘;[w] (z) for any x € Bag(zg), because suppw C Bag(xo). O

Theorem 2.5 Let o, B, q1, g2 > 0, a > 3, 1 < p < min{N/a,N/B}, ¢1 + @2 > p— 1,

g2 < (pﬁl) and apgiigfq"’ < N. Then, there holds

a1+taz

Mo 0l@)) dox [ (Wemsn @) s
/RN ( e > -/RN < IREE ) (2.16)
< [ (Wil (W) o

for any p € MH(RYN), and

q1+ta2

=1 q1+q2
/ <M apq+Bpaz [w](x)) = / <W apqy1+Bpag P [w](a:)) dz
RN q1+az RN a1+a2 (217)

= Jon (W2 L](@) ™ (WHR () do

for any R > 0 and w € MT(RYN) with diam(supp w) < R.

For proving this theorem we need several intermediate result. For any o € (0, N), s > 0,

R € (0, 00] we denote .
LY [ul(x) =/O (W) % (2.18)

and L, ¢[p] := L%, [u] when R = co. We notice that

a,s

ij’s[ | = Wi, [0] and Lgs[p] = W s stafy]. (2.19)

SIS SFI0 s

Lemma 2.6 Letay, ao, 81, 82 > 0,0 < ag < a1 < N. There exist C = C(N, oy, as, $1,82) >
0 and g9 = eo(N, a1, az, 81, 82) > 0 such that for any p € M, (RY), R € (0,00], € € (0,20)
and A > 0, the inequality

HL?R WL2E | [n] > al/ﬂx}‘ < o0, (2.20)

1,51 2,52



implies

s1+s2
HL&& WILE, o 1] > aA} a {(MR W) < eA}
s1+sg

< CeTth=am [{L2R, [WL2R (4] > eV/2)}|.

1,81 Q2,52
(2.21)
To prove this, we need the following two lemmas:
Lemma 2.7 Let 0 < a < N and s > 0. There exists C = C(N, «,s) such that
RN s\ s(N—a)
{Laslw] > A} <C ((w(}\))) for all A >0, (2.22)

for any w € M (RY).

s(N—a) as
Proof. It is easy to see that L, s[w](7) < C (M(w)(z))” ¥ (w(RY))¥. Thus, thanks to
boundedness of M from 90,1 (RY) to L1 (R?), we get (2.22). The proof is complete. ~ m
The next result is a consequence of Vitali Covering Lemma.

Lemma 2.8 Let 0 < e < 1,R > 0 and cylinder B := Bgr(xo) for some xg € RN. let E C
F C B be two measurable sets in RN with |E| < €|B| and satisfying the following property:
for all z € B and r € (0, R], we have B,(x) N\ B C F provided |E N By.(z)| > ¢|B(z)|. Then
|E| < Ce|F| for some C = C(N).

Proof of Lemma 2.6. We only consider the case R < oo, the case R = co being similar. Let
{Bgr(z;)} be a cover of RY such that, for some constant M = M(N) > 0,

> XBrju@p@) <M forall zeRY.
J

It is sufficient to show that there exist constants ¢1,co > 0 and gy € (0,1) depending on
N, a1, a9, 51, 52, p such that for any B € {Br/4(x;)}, A > 0 and € € (0,&0), there holds

s1+82
B0 L L, b > 0 b {(MR ) < eA}

s1ts2

(2.23)
< ezl |50 {128, WLEE. b > /7 § .
where
2
o1+ ( §1+ 82 ) 1 g(N—an)si+(N—az)ss+1
5152(011 — Oég)
. . _ 10sysg(oy—ap)
Fix A > 0 and 0 < ¢ < min{1/10,2 sits2 4 We set
s1+82
B= B0 {LE WL 1> 0 0] (M b]) <20y,
R
and
F=Bn {28, W2, 1] > £/20 )
Thanks to Lemma 2.8 we will obtain (2.23) if we verify the following two claims:
|E| < Cem=a37| B, (2.24)

10



and, for any € B and 0 < r < R/4,

|EN B,(z)| < CeT20=21 | B, (z)), (2.25)

provided that B,(z) N BN F¢# () and FE N B,(z) # 0.
Proof of (2.24): For any x € E, we have

R R _ajsytoagsy Tog 2R 51 dt
Lahsl [H’](l‘) < o t s1tez Mﬂ151+0252 [H’](l‘)

s1 T2 t

S1+ s s1sa(ag—ag) s1
< #R s1+sg (6)\) s1tsg |
s182(a1 — )

Hence, the inequality LE _ [u](z)LE . [u](x) > X implies

1,51 2,52

R () > 152000 T 00) pooissisen o s

a2,52 81 Jr 52
Clearly, LY, . [1] = LE, ., [XBar(yo)#] in B for any yo € B. Fix yo € E, we have
8182(a1 — 042) _sisglag—ag) s s
|E| < La2’52 [XBQR(yO),LL] > WR s1+s2 £ s1ts2 \sits2

Using (2.21) from Lemma 2.7, we get

|E<C< (1(Bar () )w)

_ s1sa(ag—ag) s1 52

s1+s2 £ s1ts2 A.<1+52

_ s1sg(ay—ag) s1 s2
s1+s2 £ s1ts2 \s1t+s2

N
_s2 N—g, 215179259 \ 55(N—ag)
(eN)si5z (2R)™7 7% it )
< c(
= Cemap |B|
< 05282(1{’\:&2) ‘B‘

We obtain (2.24).

Proof of (2.25): Take x € B and 0 < r < R/4. Now assume that B,.(z) N BN F° # () and
ENB,(z) # 0, then there exists z; € B,.(x)NB such that L2 _ [u](x1)L2F | [1](x1) < el/2 ).
We need to prove that

|EN B,(z)| < Ce™0=3 | B, ()]. (2.26)

To do this, we can write

L . [W@LE , [1(y) = Ti(y) + T2(y) + Ts(y) + Taly),

where
Ti(y) =Ly . (LY, ., [1(y),
R S2
Ta) = L, i) | <’f§@)’) L
R S1
T = [ (M) )
and

o [ (5% [ ()%
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For all y € EN B, (x), we have

4r S1
_oasytansy 4 dp
Tz(y)é/ (p IS I 1Ma131+a252[u}(y)> —
0

s1ts2 P
R [ _ajsitagsy = dp
X / (P s1ts2 +Q2MI@ [H](y)) ?
ar e (2.27)
$1 + s9 2 (o] —ag)sysg _ (aj—ag)sysy R s1te2
< (Gombon ) (M )
5182(0&1 — 042) T os1ts2
2
- (W) ex,
s182(a1 — Qo)
also R s R .
ri < [ (MBL) " e [ (B
T Jar X PN p Jar \ pNTO p (2.28)
< oW N e L2 () JL2R () |
< 2(N—oz1)51-&-(1\7—0@)82)\7
and R L
u(sz(rcl)))s dp ar
T < — —L] .
() = Ar ( pN = p Lol (2.29)
< 251(N Oél)LiIfsl [/,(,](],‘1)1122,82 [/J:](y)7
Thus,
IENB(7)] <Y1+ Y2+ Y3+ Yy,
where
s1+s2
Y, = EmBr(x)m{T1>/\}m <MW[/A> <edel,
s1+s2
2 s1+s2
Y2 =|EN Br(m) N T2 > (W) A (Ma151+0252 [/4) S e )
s182(@1 — a) Teiten
s1+s2
Y, = EmBT(x)ﬁ{T3>2sl(N_“1))\}ﬂ (MW[MQ <ar b,
s1+s2
and
s1+s2
Ys=|ENB.(z)N {T4 > 2(N_O‘1)31+(N_a2)82)\} N (MW[M]> R
s1+s2

As in the proof of (2.24), it can be shown that
Y, < cpemt-an | B, (z)). (2.30)
From (2.27)-(2.29), we obtain Yo = Y, = 0 and

Y3 < |B.(x) N {LE ] > AL2E | 1}|

a2, 52 @l 51

= |B7 € m {Lozz,az X351(931)M] > )‘( ozl 31 1))_1}|

12



since By, (y) C Ber(z1) for all y € B,.(x). Using (2.21) from Lemma 2.7, we get

(u(Ber(21)))°? o)
Yo=€ (A(La?,slwzl))l)

N
<c (LiﬁslwuoLéﬁsQ wm)) AR

A
N
< Ce?2=22) | B,.(x)|.
Combining these inequalities, we infer (2.26).

Proof of Theorem 2.5. Step 1: Proof of (2.16). By [7, Theorem 2.3], we have

a1taz

p—1 q1t+q2
/ (M apqq+B8pas [[L}(JJ)) dr < / <W0pq1+ﬁpq2 p[,u](a:)) dr.
RN q1+a2 RN a1+az2

Next, we prove

q1+42

[y (M b)) 7 o= [ (Wil (W) do

Since for all z € RY there holds

a1+4a2
p—1

(W 1] (@)™ (W () > C (M W)

q1+a2

and

IA

)"

)Q1 +q2

(Wl (@)™ < C

(Waplul(@)® < (

Loy, et
L 1] (x

a2
ﬁp’(q1+q2)(p*1) ’

it is therefore enough to show that

q1+q2
) dx

/RN (Lap’(tnﬂzzl)(p*l) [M](-’L‘)Lﬁp,m [M] t

a1taz
1

<cf (Mwwmw@) e
RN

q1+42

Set djn, = X B, (0)dp and we have

{Lap st lallg, o ] > t}| <00 forall ¢>0.

(2.31)

Hence, by Lemma (2.6), there exist positive constants C, €g, a such that for any A > 0,¢ €

(0750)7

HL“P’W[M]LB%W[W] > W‘H

N(q1+a2)(p—1)
< (g 202(N-5p)

1/2
{Lap’ (<11+q;1)(p71) Lun}L/BP’ (Q1+q22)(11*1) [N'n] - € A}’

+

13

pil
{ (M apqy +B8pas [,u]) > 6)\}
q1+4a2




Multiplying by A91+492~1 and integrating over (0,00), we get

(o]
/ PRt +q2
0

N(g1+a2)(p=1) [°
< (g™ 2a2(N=5p) 221 ta2
0

dA
{Lap’ (Q1+qz1)(p71) [Mn]LBP’ (41+qg2)(r'*1> ['un] - a)\}’ 7

[ken] > 51/2/\}’ %

L a1 L a2
{ o =y P Lop, oy

- =1 dA
+ / Aq1+¢12 { (Mapql+5pqz[/d> > 5)\}
0 q1+4a2

7.
By a change of variable, we derive

N(a1+a2)(p—1) ai1+az
a*‘h*QQ _ Cé‘ 2q2 (N —Bp) 2

o0
X / A7 +q2
0

o0
< gThTR / )\qﬁ-qz
0

d\
{LO‘%W[“”]LWW[“"] = )‘}’ by

=
{ (M apg1 +Bpas [N]) > )\}
q1+az

Since NMwita)lp=1) _ 011492 > (), there exists €9 > 0 such that for any 0 < € < €, there holds

7.

2q2(N—pp)
N(qyta2)(p—1)  a1+az A
a” N2 — Ce™ 202(N=5p) 2~ > (. Hence we obtain (2.31) by Fatou’s Lemma.

Step 2: Proof of (2.17). By [7, Theorem 2.3], we have

q1+ta2

2R e 2R e
/ <M apqi+Brag [w}(x)> dr = / (W apq1+Bpag [w](x)) dz.
RN a1+az RN ataz P

Next, we prove

q1+42

L (M) T o= [ (W)™ (WEE) "

q1+a2

Let 79 € RY such that supp(w) C Br(wo). Since for all x € RV,

(WAR ] (@) (WA L] (@)™ > C (MR ® <x>) ,

a,p
q1+a2

and for any y € BgR/2($O)7

W wl(y) < CW2Ew](y), WET[wl(y) < CWEE w](y),

14



we have,

2R qét({z 4R q1 4R q2
[y (M) 7 <0 [ (W)™ (W)™ o
=C (WEE[w](@) " (WEE [w](2))* do
Bsr(xo)
<C (Wgﬁ, [w](:zc))q1 (Wéﬁ[w] (gc))q2 dx
Bar (o)

e (Wi Lul()" (WiEl(e) do (232
Bsr(20)\Bar/z2(z0)

<C (Wi@ [w] (x))q1 (W%@ [w](a:))q2 dx

Bsry2(zo) N
a1tay

+CRN< w(RN) ) o
R

N_ ora +Bpaz
q1+42

<C - (Wgﬁ)[w](x))ql (W%ﬁ,[w] (gc))q2 dx.

On the other hand, since there holds almost everywhere,

2R @ 3R q1+q2
<
(Wa,p[w] (-T)) <C (Lap, (q1+qt;1)(p71) ) )
9R q2 3R q1+q2
<
(Wiwl@) ™ <O (L w  [Wl@)"
it is enough to prove that
L3R LSR q1+4q2 d c M2R q;t? d
< . .
/RN ( op, (q1+q(;1)(p—1> [w] ($) Bp, (Q1+<122>(p—1) [w](x)> r= /]RN ( %«ZPQ [w}(‘r)) v
(2.33)
By Lemma (2.6) there exist positive constants C, £ and a such that for any A > 0,¢ € (0,&¢),
L3R L3R > )\} ‘
‘{ aps (41+qg1)(1371) [w] Bp, ('J1+q(;2)(p*1) [W] @

N(g1+492)(p—1)
< (e 202(N-5p)

{LGR [w] LR [w] > 51/2/\}’

a1 a2
P i Ta2) (=1 Bp, (g1+a2)(p—1)

1
{ <M6a§q1+ﬂp@ [w]> > 6/\}’ .
q1+a2

Multiplying by A2+49~! and integrating over (0, oc), we obtain

q1+q2
—q1—q2 L3R L3R ) d
¢ /RN( P, G Tas =D [w]() BP G Tan D w](=) *

+

N(q3+a2)(p=1) _a1+az q1+q2
< Ce o T (LgR v [W@LE (] x)) dz
RN P larFa2) (-1 Pt Fa2)(p—1)
q1taz
—q— 6R Pt
+€ a“ q2/ <MC¥P111+BP‘12 [w]('r)) d'r'
RN q1+az

Similarly as (2.32), we can see that

q1+q2
LGR . L6R ) d
/]RN ( op (<11+<1;1)(p71) [OJ] (.Z‘) B, (q1+q;2)(1)*1) [W](!L‘) “

9 9 q1+q2
<o (L R [w] () L2E [w](m)) de,

q1 a2
P G Fa) =) BP @i Tas =D
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and

a1tas a1+4a2

p—1 p—1
[ (M) s [ (M @) s
RN q1+as RN q1+ag

Ngf}jﬁflgp;” — @t > 0, for some € > 0 small enough we infer (2.33).

O

Therefore, since

Lemma 2.9 Leta>0,p>1,0<ap < N and 0 < v < J}’V(Iii;;). There exists a constant
C = C(N,a,p,v) such that for any u € M (RY),

B T
/ (W;p[,u])v dy < or™ (W) for all z € RN and r > 0. (2.34)
B, (x)

Proof. We have

/ (W7 [ul) dy = / (W2 X oy a]) "y
B, (x) B, (x)

< / (Wa,p [X}32r(ﬂb)r’“‘])’Y dy
B, (z)

= 7/ N AW o o [X By (o] > A} N Br(2)|dA.
0

By Lemma 2.7, we obtain

/BT(I) (Weplul)” dy <~ (W) o |B, ()|

o0
! /(u<32,.<m>>)pi1 AWl @ul > At dA

Y 1 %
B pT > B 1 o
<o (HB2 @\ et (B () I
rN—ap (mgz_,v(z»)pfl A
o (BB (@) \
- rN—ap !
which is the claim. O

The next result is fundamental inasmuch it links the capacitary estimates and the po-
tential inequalities used in our construction. It also give a criterion for the solvability of the
system of nonlinear integral equations connected to (1.8).

Theorem 2.10 Let o, 3,q1,92 >0, a >, 1 <p <min{N/a,N/B},q1 + ¢ >p— 1,02 <

J\][V(’_?;) and apgi_tipqz < N. Then, the following statements are equivalent:

(a) The inequality

n(K) < € Caplapq1+ﬁpqg ,7414{:}1;11?,“ (K), (2.35)
T artaz

holds for any compact set K C RY, for some C; > 0.
(b) The inequality

/K (W 1] (2))™ (W ) (2))% dir < O Cap, pin (K, (2.36)

apq1+BPa2 1 gy Fqu—pF1
q1+a2
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holds for any compact set K C RY, for some Cy > 0.
(¢) The inequality

q1+42

q1+q2
L (Wesson o)) do < CanlBi)

holds for any ball By(x) C RY, for some C5 > 0.
(d) The inequality

/R . (Wanlxs, )il ®)" (Waplxp,@r®)* dy < Cau(Bi(z)),

holds for any ball By(x) C RY, for some Cy > 0.
(e) The inequalities

Wap [(Wa,p[ﬂ])ql (Wﬁ,p[U])qQ] < C5Woz,p[.u] <0
Wi [(Wap 1) (Wgp[u])®] < CsWigp[u] < 0o

hold for some C5 > 0.
(f) The system equation

U=Wgu, [UnVe] 4 eWap (1]
V=Wg, [UnV®2]+eWg, [u],

in RN has a nonnegative solution for some ¢ > 0.

(2.37)

(2.38)

(2.39)
(2.40)

(2.41)

Proof. By Theorem 2.1 we have (a) < (c), by Theorem 2.5, (¢) < (d). We now assume (e).
Put T[w] = (Wa,[ul (@)™ (Wg,[p](2))? for any w € MH(RY). Tt is easy to see that

~(a1+a2)

_ aq1pt+Basp
p q1+42

(Tl]())" > C/OOO <;(Bf(‘””))> 7 % — CW . [pi)(x) for all 2 € RN

where v = pq—_ll +
(2.40), we have

q v(q1+g2)+p—1 v(q1+42)

T [T[u]] < CT[u] < oo almost everywhere.

Using (2.42), we obtain

(Wg [T[MH)% < CT[p] < oo almost everywhere.

(2.42)

p=1 p _ ~(@q1p+Bq2p) — (aitaz)+p—1 1
=B = St e and s = U ETE— < 1+ =, From (2.39) and

Applying Wg ¢ to both sides of the above inequality and using Theorem 2.1 with o = 8,p =

$,q= % , we derive

/ T[u](z)dz < CCapy,, 1 (K),
K

(2.43)

for any compact set K C RY, which implies (b). So, (e) = (b). Next, assume (b), using

(2.42) again, we derive from (b) that

| (Wi lul@)? do < CCapy,,, (),

for any compact set K C R, which implies (a). So, (b) = (a).
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It remains to prove that (i): (f) = (a), (i): (e) = (f), (#4): (a)+(c)+(d) = (e).
(i): Assume that (2.41) has a nonnegative solution for some ¢ > 0. Set dv(z) = ULV %dx +
edu(z). Clearly

(WaplV)" (Wsyp[v])® < Cdv(z) in RY.

If E c RY is a Borel set, we have

a1+tas q1+92
/ (Myxe) 78 (Wa,[v)" (Wpp[v)* de < C (Myxg) » " dv.
RN RN

Since M, is bounded on L*(RY,dw), s > 1, we deduce from Fefferman’s result [11] that

/ (MVXE)%CZV < Cv(E).
]RN

Moreover,

q1+a2

(Muxg) 77 (Wap)™ (Wapl)® = (Waplxer)" (Wapxev]))®.
Thus,

[ (W lxev)® (W, [xev))® do < Cu(B).

is verified for any Borel set E C RY. Applying (a) < (c) to pu = v, we derive that
V(K) < Clcapl 1+a2 (K), (244)

q
apq1+BP42 1 gy fq3 —pF1
q1+4q2

holds for any compact set K C RY. Since v > u, we obtain (c).
(#): Suppose that (2.39) and (2.40) hold with constant C5 > 0.Take 0 < £ < L

.
Consider the sequence {U,y, Vi, }m>0 of nonnegative functions defined by Uy = W, ,[p], Vo =
W, [p] and

Un+1 = Wap [UL V2] +eWq p 1]

Ving1 = Wﬁ,p [Ur%l V’I’(IZLZ] + EW@P [/‘] )

It is easy to see that {Uy,, Vin}m>0 is well defined and satisfies
Unm <2eWq ], Vi, <2eW,, p[u] for all m > 0.

Clearly {U,,}, {Vin} are nondecreasing. Using the dominated convergence theorem, it follows
that (U(x),V(x)) = lim (Un(x), Vin(x)) is a solution of (2.41).

m—r o0
(#3): Assume that statements (a), (c) and (d) hold true We first assume that p has compact
support. From (a) we have

apqi+Bpaz

((Byo(z)) < CrN w1 for all z € RN and r > 0. (2.45)
From (b)

q1+q2
/ ( a1+ B4 p[u](y)) dy < Cou(Bay(z)) for all z € RY and r > 0.
B, (x)

apt+az ’
. .. , . . - —(azfpay .
Using Hélder’s inequality and W', 45, [0 > 7 @ D@Fa) W Tu], we obtain,
q1+a2 7
a1
q (a—B)pg1a2+(P—1)Nga+(N—-Bp)(p—1)g1 'u(Bz (gj)) q1+492
[, (Waslul)" dy < v N )N (2a6)
(T

18



again for all z € RN and r > 0. From (c),

/B » (WQP[M}(y))ql (Wg,p[,u](y))q2 dy < Csp(Bay(z)) for all z € RY and 7 > 0. (2.47)

By Lemma 2.9,
a2
r q ~ [ (Bap(z))\ 777 N
/B,‘(x) (W7 (1)) dy < Cr (M for all z € R™ and r > 0. (2.48)
We have, with n =a or n = j3,
4 1
(A (x, )\ P dr
W [(Wap[1)™ (W p[u])®] (z) < CZ/O < rl\g—mo)> 7 (2.49)
i=1

where

A7) = /B o (Ve lil)™ (W5, i)™ du,

Aot = [ (W li)” ( [ (e c?) @,
an= [ ( | (“t(f(y”) df) (W, ()™ dy.

w7 (ER) ([ () T
Thanks to (2.47) we get

Aq(z,1) < Cp(Bar(z)),

which implies

G = T oW, ). (2.50)

rN—n1p r

Since B¢(y) < Bot(x) for any y € B.(x), t > r and thanks to (2.46), (2.9) we deduce

00 _1 q2
g p(Bai(x)) \ 771 dt
Aalat) < [ (W )" dy ( [ ()
Br(ﬂ?) T
(a—B)pg192+(p—1)Nga+(N—Bp)(p—1)g (B ( )) ’11(:}‘12 o0 (B ( )) ﬁ dt QQ

Cr e ey iz L[ H\ D2\ X)) / D2t \x)) @

= rN—Bp . tN=6p t
+11(1(P—1)

CT(w—fi)ml(12+((§:Bé\(flrii-z;l)\f—ﬁp)(p—l)m o ,LL(BQt(fE)) 1 ﬂ RETRED

= . tN—6p t ’

then

oln= </m (“(ﬁ”)) f)ql /B,,m (W5, 1) (1)) ™ dy
o (MRt ) v (i)
e ()
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and finally

o[ (5

I- From the estimate of Ay we derive

> /A = (e=B)pa1a2+(P—1)Nag+(N—Bp)(p=1)q1 _ N—
xT.r p— d’l“ 192 2 1_ np
/ (2(’)> C/ (p—1)2(q1+42) p—1
0

rN*nP

qz 4 a1
e} H(BQt(l')) e 1 dt a1+a2 dr
“\ /L tN=Fp t e
Since 220tfpe2 N it follows that

q1+q2
(@ —B)pq1g2 + (p —1)Ng2 + (N — Bp)(p —D)ar N —mp
(p—1)*(q1 + q2) p—1

N_
- ﬂp( © @ )
p—1 p—1 q+q

0< k:=

Hence,

a2 q1

B =T gt p—1 " q1+az
2( ))) > —0 ast —0,

b2

tN Bp

and therefore

p(Ba(x)) ﬁdt Tt arE
( tN—Bp > t>
<C

% (pq21+<11+<12) (,LL(RN)) (pzzl)’-’ + (P*l)?;1+q2) ,

a quantity which converges to 0 when ¢t — 0. Hence, by integration be parts, we obtain

[ () oo [ o[ ()" 2) "
el A () ) enimyne

X (a—B)payao+(p—1)Nag+(N—Bp)(p—1)ay _ N—fBp
=C r
0

(p—1)2(q1+492) r—1

([ (HBae) @ T (e e
</7" ( tN=or ) t) ( rN=mp ) r

Observing that we have from (2.45),

a—B) b _ 1) _ %) % p—1 " q1+az
etmte oo st ([ p(Baa)) |7 e
, tN-Bp t -
we derive
1
© (Ay(z,r)\ Pt dr
/0 <TN—np . < CW, (1] (2). (2.51)
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II- From the estimate of A3 and A4, we have, as above, by integration be parts,
> [ As(z,T) T dr [ Ay(z,T) T dr
0 TN_np 7 * 0 TN—??]D 7
1 2y 1 o2t
co [T [T (#Baulx)\ T dt X 1(Bae(x)) \ 77T dt dr
—Jo r tN=op t . tN—Bp ¢ ,

:C/OOODl(:c,r) (W) = dr C/ Dy(x, ( (%rﬁp))y&?

where
[ u(Bau(x)\ 7T dt N (1(Bay(2))\ 7T dt =
po1 2t ’ 2t P
Dy (z,r) = rv=1 (/T (tzv_ap) t) (/T <tN_gp> t) ;
and
— o
Bp (BQt( )) =1 (¢t P o] M(BQt(,’E)) o 1 dt
Paler) = </r ( tN—ap t .\ NP t
Clearly,
(Ba¢(z))\ 7 * @ <T,<ap:rsl>p (Bai(x))\ T @
+N—Bp t - , tN—ap £
and
1
We derive
[e%e] _1 ;,711—1 . e %
D;(z,r) < Cro-1 (Bay()) \ »~* dt e (Bai(2))\ 77 dt
1 ) = . tN—ozp t i, tN—ap 7
e q1tq2_l
_oprt e [T (pBule) )7 d)
r tN—ep t
op _(«-Bpay  ap ___aptipay N\ BEE1
< Crer-? (r—1)? (’I“T’ 1 (Pfl)(ﬂJrqz*PJrl)) =C.

Next, we estimate Do(z,r). If ;25 > 1, similarly as for estimate of Di(z,r) we obtain

Dy(z,r) < C. If ;15 <1, since we can write

([ (™)
R ()T
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we derive

q1

Dz(x,r)—cmfi"l/rm (W)( OO(W)F T Cis)lit
(Ba(

J
()™
grﬁ/rc” (W) </too <w> . Cis)ﬂll

()

On the other hand,

- N 1o 122
p(Ba(2))\ 7T Cemmmtesimi [ By () \ T\ T (p(Bar(@) \ T\
tN_ap - tN—ozp tN—ﬁp
1 sy 1 1-32
< oyt (% (p(Bay (1) \ 7T ds  ((Bas() \ 7 ds
- ¢ sN—ap s ¢ sN—Fp s ’
therefore,
Q1+?2 1
Da(er) < ot [T ([T (1) 7T ds dt
. sN—op s t
/OO (a— B)p(p (@=Bp(P=1=4d3) s ap ____ apa+Bpas 2%({2—1 dt
<C (p—1)2 (rpfl (p—l)(q1+q2—p+1)) -
- t
Hence,

) [T () o e

Combining (2.49) with (2.50), (2.51) and (2.52) we obtain
Wop [(Wapl])™ (Wep[u) ] < OW, p[u] < oo,

for n = o or B, provided p has compact support in RY. Next, we assume that p may not
have compact support. Since the above constants noted C' are independent of y, for n € N*,

we set fin = X o) M
Wop [(Wapln])™ (W p[n])] < OWy plpin] < CWyp[n] < 00 < 7,

for n = e or B. Then we infer (e) by Fatou’s lemma. O

Lemma 2.11 Let pu be satisfying (2.35) with compact support in RN. Set p, = @, * p.
Then,

(Waplin] (@)™ (W plpal(z)* (2.53)

is equi-integrable in B(0) for all t > 1.
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Proof. Since supp p,, C By, (0) for some ¢ > 0 and

[:un}

(Wb )" < € (L3 75

B et 5D

)

(Wiﬁ[un])ql < C ( )Q1+q2

P (G Fas =T

it suffices to show that

1,200 +1) 1,2(t0+1) ata
a1 [Nn] [Mn]

R 5 S— 492
P G Fa) =T BP, @ Fas =D

a1+az a1ta2
p—1

p—1
is equi-integrable in B;(0). Since (Ii(;;)ﬁ?ﬁqz [un}> <C (Ii(ﬁglttgﬁm (1] * <pn> , SO

q1+az q1+a2

a1taz

p—1

(Ii(ﬁglttgng [ten] is equi-integrable in B;(0) for any ¢ > tg. Thus, by [3, Proposition
q1+a2

1.27] we can find a nondecreasing function ® : [0,00) — [0,00) such that ®(A)/A — oo as

A — oo, and ¢(27)) < je(A) for all A > 0,5 € N and ®’'(\) = ¢())

a1+4a2
/ d)(/\) { (I%x(zfgﬁtzﬁqz [Hn]) > A}
0 q1+4a2

On the other hand, by Lemma 2.6, there exists C > 0 and €9 > 0 such that

=
‘{LZ(tOH) AT [’U’n]Lz(tOH) a2 [M"] > a)\’ (I"(Ii?:—tgﬁqz [/J,n]) p S 8)\}

P g1 Fa2)(p—1) Bp, (a1 +a2)(p—1) q1+4a2

dx <1.

N(a1+az)(p—1)
< Cg 202(N-5p)

L2t [Mn]LZ(tOH) o [ua] >N
P (g1 Fa2)(p—1) Py taiTa) (=1
(2.54)

for any e € (0,e9) and ¢t > 0, for some a > 1. This gives
2(to+t) 2to+t) D 2(to+t) e
Lo e [Nn]LB gy [l > al, Iapl(1)1+1)5'q2 (2] <eA
P g Fa2) =1 P larFa)(e—1) q1+az

2(to-+1) 2(to-+1) wrE
L a1 [ | L a2 [11n] >e /7 A

N(p—1)
< Ceg22(N=3p)
P i Fa2)(p—1) Bp (q1+4q2)(p—1)

——

(2.55)

for any ¢ € (0,¢0) and t > 0, for some a > 1. It is easy to obtain from the above two
inequality that

1+4q2
o0 |{( L20+) [ML““%MY Y

P> g1 Fa2)(p—1) (Q1+qz)(p 1) Bp, (q1+a2)(p—1)
_Ne-1 [ 2(to+1) 2(to+1) q1+4q2 L1
SC&MU\’*BP)/ o(N) Lo, [ L2 0 o) [1n] >a e /2N G| dX
0 P G Fa) =) S8 Ty )
q1+a2
[2(to+0) Pt
+ C (b |{ apgy +pBag +pﬁQ2 [/’Ln] > 8/\}|d/\
q1+4a2
Ne-D g9 1/2 1,200+ 1,200+ e
< Cemtiim / olas /20 { (L2 ) ma)) > A}
S ey [y BP o 5D
q1+<i2
2¢ +t) P
0 [ o (P lunl) T > Ao
T q1taz
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Since ¢(eM), ¢(ac~/2\) < C|log(e)|() for any A > 0, e << 1 and 5o E=D5 —1/2 >0, s0
it is easy to get that

q1+q2
20ttt 2(to+t
| oL A ul) > A< C
(Q1+q2>(P 1) *(g1+4q2)(p—1)
Hence,
2(to+t) 2(to+t) nhae
L Lo
( “Pvmd%[un] 5Pvm+£%n[ﬂn]>

is equi-integrable in B;(0). The proof is complete. [ ]

The next statement is the analogue of Theorem 2.10 in a bounded domain.

Theorem 2.12 Let o, 3,¢q1,92 >0, a >, 1 <p <min{N/a,N/B},q1 + g2 >p— 1,02 <

]\1[\,(’:;3[1)), w € 93?2’(33(:00)) for some Br(xg) C RYN. Then, the following statement are
equivalent:

(a) The inequality

w(K) <Cy CaPG pay 4 Bpan "Ilfq;q?H»l (K), (2.56)
T a1taz

holds for any compact set K C RN for some C; = C1(R) >0
(b) The inequality

4R q1 4R q2
[ (W) " (W) o < Co o (), (250
q1+as

holds for any compact set K C RY, for some Cy = C3(R) > 0.
(¢) The inequality

q1+q2
[ (Wi fnoel)) iy < CanlBito)) (259)

q1+q92

holds for any ball Bi(z) C RY, for some C3 = C3(R) > 0.
(d) The inequality

/R N (W2 X, ()" (WEE X B (1) ™ dy < Caw(By(x)), (2.59)

holds for any ball By(z) C RN, for some Cy = C4(R) > 0.
(e) The system of inequalities

(i) Wi [(WiR) ™ (WH[W]) ] < cs Wik
o (2.60)
(i) WAL [(WAR )™ (WERL]) | < CoWAR L],

holds in Bag(xo) for some Cs = C5(R) > 0.

Proof. By Theorem 2.2 we have (a) < (c); by Theorem 2.5, (¢) < (d). As in the proof of
Theorem 2.10, we can see that (e) = (a) and (e) = (b). Since

(W) " (W) > 0 [ (HEE )T () H

r

— OCWAR [ ](a:) for all z € BQR(-TO)’

@o 7100
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_ 1 1 _ (apqi+PBpg2) _ 2(q1t+g2)+p—1 : ;
where v = ot =T rn i and pg = ity then, (b) implies that
1
Wik Tde < ‘ =
/K (Wi, (@) do < CCapg, s (K)=Cop 5 (K). (261
q1+a2 0PO %—p0+1

is verified for any compact set K C RY. Therefore (a) follows by Theorem 2.2.
It remains to prove (a)+(c)+(d) = (e). From (a) we have

apq)+Bpag

w(By(z)) < CrN " aFe=r+1 for all z € RY and r > 0. (2.62)

From (b)

q1+q2
/ ( a1+ B [w](y)) dy < Cyw(Bag,(x)) for all z € RY and 0 < r < 8R.
By (x)

q1+q2

_ _(e=B)pas
Using Hélder’s inequality and W, 1sq, [w] > 7 @ D@t WT 0], we get
q1+a2 7

a1

. (a—B)payg2+(pP—1)Nago+(N—Bp)(p—1)aq W(B2r($)) q1+42

; [UJ] (y) « dy <Cr (p—1)(a1+492) ( , (263)
/B oy Waslelw) e

for all z € RY and 0 < r < 8R.
From (c),
/B . (W, [w] )™ ( g’p[w](y))q2 dy < Csw(Ba,(z)) for all x € RN and 0 < r < 8R.
(2.64)

By Lemma 2.9,

a2

B, p-L
/B o (W plu))™ dy < Cr <W> for all z € RN and 0 < r < 8R.  (2.65)

Next we have for n = a or n = 8 and almost all x € Bog(xg),

W {(Wiﬁ[u])ql (Wéﬁ[u])ﬂ (z) < Ci/o4R ( T]'Vi; )pll % (2.66)

where

Ay(er) = /B (WLl w)" (W, i)

Aatar) = [ (W) ( [ (s ‘ff) ay
an= [ ( [ (mn) 8 Cff) (W, lil() " .

A4($’T)Z/BT(1) </T~4R (W)A?yl </T4R (W>vilﬂf>q2dy.

Thanks to (2.47) there holds

Ay(z, 1) < Cp(Bar(z)),
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which implies

/4R <A1N(_M> ~ dr < OWHE[u)(z) < CWE[u)(z) for all z € Bag(xo).  (2.67)
0 r np r 7

Since Bi(y) < Bai(z) for any y € B,.(z) and t > r , and thanks to (2.46) and (2.9) we deduce
that there holds, for 0 < r < 4R and x € Bag(zo),

Aslonn) = /Br(m) (Wi plil()" dy </T4R (W) = Cit)‘”

a1 (p—1)

4 1 Q2+
Or (afﬂ)i"ll‘12+E£:3€\;ziﬁ;(21)\7*ﬁp)(13*1)q1 R M(B%(J;)) p—1 ﬂ a1 +a2
= , tN—pp t ’
T dt
t

(a=B)pg192+(P—1)Naa+(N—Bp)(p—1)a;
r (p—1)(a1+4a2)

Next
As(z,r) < </T ((ﬁ?tw 71 dt Wgw[u](y))% N
<[ () ) : (<B<>>)
o ([ ()2 ey )
and

ez ([ ()2 ([ () 2)

As in the proof of Theorem 2.10, we easily obtain

/04R (A=) T W) o all 5 € Banfeo)

rN—np

r
and
4R =T 4R
As(x,r)\ P T dr Ay(x,r)\ P 71 dr AR
/0 (T‘an) 7 +/0 (M , CW [ ](l‘) for all x € BQR(Z‘()).
Combining these inequalities with (2.66) and (2.67), we get (e). O

3 Renormalized solutions

Let Q be a bounded domain in RY. If 1 € 9,(Q), we denote by p and p~ respectively
its positive and negative parts in the Jordan decomposition. We denote by 9t,(Q2) the
space of diffuse measures in Q and by 9t,(€2) the space of measures in {2 which are singular
with respect to the Capg, , which means that their support is set of zero Capg, ,-capacity.
Classically, any p € M,(92) can be written in a unique way under the form p = po+ ps where
to € Mo(2) NIM(Q) and ps € M (Q). Tt is well known that any pg € Mo(2) NM(2) can
be written under the form po = f — div g where f € L'(Q) and g € o (Q,RN).
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For k > 0 and s € R we set Ti(s) = max{min{s, k}, —k}. If u is a measurable function
defined in 2, finite a.e. and such that Ty(u) € VVllof(Q) for any k£ > 0, there exists a
measurable function v : @ — RY such that VT}(u) = xju<xv a.e. in Q and for all k& > 0.
We define the gradient of u by v = Vu almost everywhere. We recall the definition of a

renormalized solution given in [9)].

Definition 3.1 Let A : RY — R satisfy (1.2). Let p = po + ps € Mp(). A measurable
function u defined in Q and finite a.e. is called a renormalized solution of

—div(A(z, Vu)) = u in Q

u =0 on 0, (3.1)

if Ti(u) € WoP(Q) for any k > 0, |VulP~' € L"(Q) for any 0 < r < =, and u has the

property that for any k > 0 there exist )\ﬁ and A\, belonging to fm;‘ N Mo (L), respectively
concentrated on the sets u = k and u = —k, with the property that ,u; = pb, o = Ay in
the narrow topology of measures and such that

/ A(x,Vu).Vgpdx:/ <pdu0+/ cpdA;f/ pdA,;,
{lu|<k} {lul<k} Q Q

for every o € Wy (Q) N L®(Q).
Proposition 3.2 [22] If i € My(82), then problem (3.1) has a unique renormalized solution.

We recall the next two important results which are proved in [9, Th 4.1, Sec 5.1].

Theorem 3.3 Let {pn} C Mp(Q) be a sequence such that sup,, |p,|(2) < oo and let {u,}
be renormalized solutions of

—div A(z, Vuy)) = un in Q
Uy, =0 on 0N. (32)
Then, up to a subsequence, {u,} converges a.e. to a solution u of —div(A(z,Vu)) = u
in the sense of distributions in ), for some measure p € Mp(Y), and for every k > 0,

k=Y VT, (w)h, < M for some M > 0.
The following fundamental stability result of [9] extends Theorem 3.3.

Theorem 3.4 Let u = po + pt — py € Mp(Q), with po = f — divg € M(Q), ul,u; €
MH(Q). Assume there are sequences {f,} < LY(Q), {gn} < (X (Q)N, {ni}, {2} C
M (Q) such that f, — f weakly in LY(2), g, — g in L (Q) and divg, is bounded in
My (Q), nt — uf and n2 — pg in the narrow topology. If p, = f, — divg, +nL —n2 and
Up 18 a renormalized solution of (3.2), then, up to a subsequence, u, converges a.e. to a
renormalized solution u of (3.1). Furthermore, Ty(un) — Ty (w) in WP (Q) for any k > 0.

Theorem 3.5 Let {n;}r be an increasing sequence in N, ¢ > p — 1, {un, }1 be a sequence
in M(RN) such that

sup |fin, | (Bnk0 (0)) < +oo for all ko€ N.
k>ko

Let uy, be a renormalized solution of (3.1) with data pn, and @ = By, (0) such that
{[ttny |} >k, s bounded in L' (B, (0)) for any ko. Then, there exist subsequence of {un, }r,
still denoted by {un, }r a measure p and measurable function u such that pi,, — p in the
weak sense of measures, u,, — u, Vu,, — Vu a.e in RN. Moreover, |Vuy,, |P~2Vu,, —
[VuP=2Vu in Lj, (RYN) for all0 < s < i~ and u satisfies (3.1) in the sense of distributions
in RV,
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Its proof can be found in [6, Th 3.2].

Theorem 3.6 [18, 7] Let Q be a bounded domain of RYN. Then there exists a constant
C =C(N,p,A1,A2) > 1 such that if p € Mp(Q) and u is a renormalized solution of problem
(3.1) there holds

lu(z)| < CW%I;HMH(Q:) a.e. in ), (3.3)
where R = diam/(S2). Moreover, if 4 > 0 and u > 0 then,
1. dwon
u(zx) > awl,p4 [1](z) a.ein Q. (3.4)

Theorem 3.7 [10, 14, 16] Let Q be a bounded domain of RN . Then there exists a constant
C = C(N,p, A1, Ao, diam () > 0 such that if p € Cp(Q) and u is a solution of problem
(3.1) there holds

[Vu(@)| < C (T]|ul)(2)) 7 + C]é » Vulda, (3.5)

for any B,.(z) C Q. Moreover, if A(z, &) = A(€) for any (x,¢) € RN xRN, then the constant
in (3.5) does not depend on diam(€2).

Corollary 3.8 Let Q be a bounded domain of RY, R = diam(Q), u € My(Q). Then there
exists a constant C = C(N,p,A1,Az) > 0 and a renormalized solution w of problem (3.1)
such that
R\" op =
vl < () @ @) (3.5
for any x € Q such that d(x,0Q) > & with 6 € (0, R/2). Moreover, if A(xz,§) = A(§) for any
(r,€) € RN x RN then the constant in (3.6) does not depend on R.

Proof. We can choose u,, € C2°(2) such that pu, converges to p in the sense of theorem 3.4
and |,| < @ * |u|, where {p,} is a sequence of mollifiers in RY. Let u, be solutions of
problem (3.1) with data u,. Fixed § € (0, R/2), by Theorem 3.7, we have

Vual@)] < O (B all@) ™" +Cf [Vualda,
5/2(%

for any « € Q,d(x,09) > §. Notice that (see e.g. [9])

N

Vuy| > s SCM for all s > 0.
{l NG-1)
S N-—-1
It leads to
W97
/ |Vaun (z)|dz < CRY <’;%N(_1)) .
Q
Thus,

N 1
[V (2)| < € (?) (B llaa ) () 7T

N 1
< (%) (B u@) ™

for any x € Q,d(z,9Q) > 4.
On the other hand, by theorem 3.4, there exists a subsequence of {u,} converging to a
renormalized solution u of (3.1) with data y1,,. Therefore, u satisfies (3.6) since o, *I2%[|u|] —

I2%[|u|] almost everywhere.
O
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4 Proof of the main results

Proof of Theorem 1.1.

Step 1: Case g%:f < p <2 Let pin € CX(Bai(0)) for k € N such that py,  converges
to X B, (o)# in the sense of theorem 3.4 with Q = Box(0) and || < @, * (X B, (0)|1]), Where

{n} is a sequence of mollifiers in RV. Thanks to Proposition 2.3,

|ttnk|(K) < C"CCapy ate  (K) for all compact K C RY (4.1)
<1q11p;rqc122 ’q1+taqz —p+1

We will prove that if C' in (4.1) is small enough, then for any k > 1,n € N the problem

—div(A(Vun k) = )(Bk(o)|un’k|‘11_1u|Vun’;€|q2 + Lnk in Bsg(0)

4.2
Up =0 on 0B (0), (42)
has a renormalized solution satisfying
1 1.
[tn,k] < Co (Tp[lpn k)75 [Vun k| < Co (Tiflpnkl])?~ in B (0). (4.3)

By Theorem (2.10), we need to prove that there exists M > 0 such that, if for &« = 1 and p,
the following inequalities hold,

I, [(IpHMn,k”)% (L[H,unk”)”% < MI,[[|ptnk|] < oo  almost everywhere, (4.4)

then problem (4.2) has a renormalized solution satisfying (4.3).
For any k € N, we set

Ex = {u: ful <A@, IVal <A@ sl)™ in Bi(0)}.

Since i, x € C°(Bax(0)), Ex C Wy ™°(Bai(0)). Clearly, E, is convex and closed under the
strong topology of W' (B (0)). Moreover, if u € Ey, then |u|? |Vu|® € L' (By(0)).

We consider the map S : Ep +— Wy (Q) defined for each v € Ej by S(v) = u, where
u € Wy' (Q) is the unique renormalized solution of

—div(A(Vu)) = X, (o) [v]" 10| Vo| 22 + py, 4, in Ba(0)

u=0 on 0By (0). (45)

| < C@p[lpn i l))7=T, we have,

By Theorem 3.6 and Corollary 3.8 and since Wi p|n, &

lul < C(L[xp, 00| V| dz + |pnkl]) P
[Vul < C (Lilxp,(0)0]" [V|Zda + |pnkl]) P

in By(0). By the definition of v we get

ol < € (AL )T (Tl ) 77] + T il ])

[Vul < C (AT (T, )7 (Tl )P+ T i)™

in By (0). Using (4.4), we obtain

1

Jul < C (AT MI (|t k] + L[l ) 7 = C (ATT2M + 1) 7 (L[| i [) 77

[Vl < C (A" T2 M| k] + L[l 1) 77 = C (AT T2 M+ 1) 77 (L[| k]]) 777
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in By (0). We choose

e e
A:C( q1 + G2 > M =AT < q1+ qe > ~1),
g1+q—p+1 g1+q—p+1

then C (A11F92 )M + 1)ﬁ = A and u € E,. Hence, S(Ep) C E,.

Next we show that S : Ep — Ej is continuous. Let {v,} be a sequence in Ex such that
U, converges strongly in qu’l(ng (0)) to a function v € Eu. Set u,, = S(v,,). We need to
show that u,, — S(v) in Wy (Bax(0)). We have

—div(A(Vum)) = XB,(0)|Vm| " 0m|VUm|® + pin e in Ba(0)
Uy, = 0 on 0B (0),

and

[l [vm] < AWl k)P [V, [Vom| < ALl k]])7=7 i B (0).

Since (L [|ttn.kl]) 7T (I [|tnk]]) 7T € LL_(RY), we obtain

loc
X B (0)| V| ™ 0 | VUm | = X B, o) 0|7 0| Vo|® as n— oo.
Applying Theorem 3.4, we derive that u, — S(v) in Wy'' (Bgx(0)) as n — co. Similarly, we

can prove that S(E,) is pre-compact under the strong topology of W' (Ba(0)).

Thus, by Schauder Fixed Point Theorem, S has a fixed point on Ej. This means, for
any k,n € N, problem (4.2) has a renormalized solution u, j satisfying (4.3).

By Lemma 2.11, {(Ip[|,unk|]):%1 (IIHMnkH)%} is equi-integrable in Bgy(0). Thus, by a

standard compactness argument, we get that w, ; converges to a renormalized solution uy

to
—di’U(A(Vuk)) = XBk(O)‘uH'h_lu‘V’quQ + X By, (0) 1 n ng(O)

4.6
Un, k. = 0 on BB%(O), ( )
has a renormalized solution satisfying
1 1,
luk| < Co Mp[lplD»=*, [V < Co (Lu[lul])»=" in Bg(0). (4.7)

Finally, thanks to Theorem 3.5, there exists a subsequence of {ug }, still denoted by {ug }
and u € Wlicl (R™) such that uy, converges to u and Vuy, converges to Vu almost everywhere.
Since

Xy lun] < Co Mp[lu) ™, XBy0)|Vuk| < Co (L[|pf))7="  for all k,
and (L)) 77 (Ti[|ul])) T € L}, (RY), thus xp, (o) [we|® " uk [ Vug|% = [ults~1u|Vult= in
L} (RN). This implies that, u is a solution of problem (1.1) with g(x, u, Vu) = |u|%u|Vu|
in the sense of distributions in RY and it satisfies

1

Jul < Co @)™, [Vul < Co (L[|ul)7 in By(0). (4.8)

Step 2: Case p > 2. To obtain the result, we will use
q2
Wy [(Wapllitn )™ (W yltnil]) | € MWyl el] < oo almost everywhere,

with @« =1 and « = 1/p, instead of (4.4); and

Fy={ue Wy (Ba(0) : lu] < AW p[lpnpll, [Vl S AW lluagl] in Bi(0)},
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instead of E5. We omit the details. The proof is complete. O

Proof of Theorem 1.2.

Step 1: Case 3%:% < p < 2. Let p, € C(Q) such that p, converges to p in the sense of

theorem 3.4 and |pn| < @, * (|p]), where {p,} is a sequence of mollifiers in RY. Thanks to
Proposition 2.3,

|pn|(K) < C'"CCapg s+e  (K) for all compact K ¢ RY (4.9)

91P+42 > gy +q3 —p+1
q1+a2

We will prove that if C' in (4.9) is small enough, then for any n € N the problem

—div(A(z, Vug)) = [un]~ u|Vu, |2 + w, in

4.10
Uy =0 on £, ( )

has a renormalized solution satisfying
lun| < Co (L ual]) ", [Vual < Co (11 [|pal]) " in Q. (4.11)

By Theorem (2.12), we need to prove that there exists M > 0 such that, if for « = 1 and p,
the following inequalities hold,

a

91 92
L, {(IﬁRHun,kH)’”’l (T ([l k1) 7 } < MTY[|pn kl] < 00 almost everywhere, (4.12)

then problem (4.10) has a renormalized solution satisfying (4.11).
We have to prove that there exists M > 0 such that if for « = 1 and p there holds

IiR [(I;Rﬂ,un\])’%l (I%RHM”H)"%I} < MIiR[|MnH < oo almost everywhere in Byg(zo),
(4.13)

Fixed n € N, we set
1 1
By = {ue Wy () Jul < A (T|al)) ™, [Vl < A (TFpa])) 7T i 0}

Clearly, E, is closed under the strong topology of W' (€2), convex and |u|?|Vu|? € L>(Q)
for any u € Ey. We consider the map S : By — W, (Q) defined for each v € E5 by
S(v) = u, where u € W,"' (Q) is the unique renormalized solution of

—div(A(x, Vu)) = [v|2 " |Vo|?2 + p, in Q
u=0 on 99,
We will show that S(E,) is subset of E; for some A > 0 small enough.
For v € Ey and u = S(v), we have
1 1
o] < AL (lkal]) 75 V0l < A (T ula]) 7

In particular,

_N-p _ _N-1 _
1011 Loe (©242) < C1Ad™ 7= (|| ()Y P70, [[[V0][| 10 (2,0) < CLAd™ 77T (|| (2)) /P,

Qay2

where Qg9 = {z € Q: d(x,00) < d/2}.
From (4.13) with & = 1 and p we derive

a1 a2
R e O (L T N L T S S )
< (Aq1+q2M —+ 1) IéR[|M7l‘]?
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and

TR [o 0| Vo] ) < AT FETRL TR f]) 7T (T ) 7] + T
< (ATFEM + 1) T[],

1
By Theorem 3.6 and W% [|u,|] < (I3 [|pnl]) *~" in ©Q, we have

_1
[ul < Gz (L {llo* = ol Vol + pal]) 7

o (4.14)
< Oy (AB+R M +1)7 (KB, []) 7 in Q.
From Corollary 3.8, we derive
R\ 1
[Vu(w)| < Cs <d) (T Il oIV ol + pral () 7
< Cy (AT M 4+ 1) 7 (T |pn ] (2)) P77 (4.15)

for any x € Q verifying d(z,99Q) > d/4. By the standard regularity results for quasilinear
equations, we deduce

) 1 1
IVl @, < Cs (Ilullzs gz + o Vol G0,

where C5 = C5(N, p, Q).
(a) Estimate of |||v|m|vU|qz||;{§’92 ;- From (4.13) , we have |p,[(©2) < Co M iFi=7T
Thus

ol [Tl [LED < (ol 7, IVol7
L>°(Qq/2) L°° (Qay2) L (Qq/2)

a2

< (Crad = (@ ))1/@-”)%(01Ad P (|l () 0)

q1+4a
< CP AT (g () 7

T - R T T
< CsAr T M inf (T[] (2)) 7

where CS - CS(NJ?, «a, 41,42, d7 R)
(b) Estimate of ||u[|L~(q,,,)- By (4.14) we have

1

_1_ p—1
lull e 20,1 < Co (A% 520+ 1) (IR laal e )
_1 N-p 1
< Co (ATTEM 4+ 1)7 1 d™ vt (|| ()7
1 1
< q1+q2 p—1 3 4R p—1 .
< Crp (A"H=M + 1) 7 inf (1| ] (2))

Therefore,
a1 q 1 1
H‘VUH‘LoemdM) < (O (AﬁJrT—leﬁ + (A‘I1+Q2M + 1) p—l) Hel£ (I4R[|UnH( )) T

where C11 = C11(N,p, a, q1, g2, d, R, Q).
Combining this with (4.15) we get for all z € Q,

Vul@)| < Ca (AWM +1)7T (18|, | () 7
+Cu (AP M 4 (e 1)) (B ) (2) 7T (4.16)
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We can find M, A > 0 such that

Cy (AZI1+Q2M+1)p7i1 < A,
1

o (AQ1+(I2M_|’_1)P7£1+011 (A%+%Mﬁ +(Aq1+sz+1)p ) < A.

Thus, from (4.14) and (4.16) we obtain S(E,) C Ej. Moreover, it can be shown that the
map S : Eyx — E, is continuous and S(E,) is pre-compact under the strong topology of
WO1 1(Q). Then by Schauder Fixed Point Theorem, S has a fixed point on E,. This means
problem (4.10) has a renormalized solution satisfying (4.11).

Step 2: The case p > 2. To obtain the result, we will use
q
Wgﬁ) [(W‘fﬁ[lunl])ql (W%pﬂun\]) 2} < MWi’;HMH < oo almost everywhere in 2

with « = 1 and « = 1/p, instead of (4.4); and

Fo={ue Wy (9): ul < AWiT[luall, [Vul < AW [lnl] in 03,

instead of E5. We omit the details. The proof is complete. O
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