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Abstract—Bluetooth Low Energy (BLE) has been designed as
a power efficient protocol for small portable and autonomous
devices, showing its efficiency for connecting these devices with
smartphones to periodically and frequently exchange data, like
heart rate or notifications. Additionally, BLE is present in almost
every smartphone, turning it into perfect ubiquitous remote
control for smart homes, buildings or cities. Nevertheless, there
is still room to improve BLE performance for typical IoT use
cases where battery lifetime should reach several years. In
this paper we propose an extension to a model for evaluating
BLE performance, latency and energy consumption, in order to
provide realistic results based on various scenario conditions. In
addition, we propose a parameter optimization of the BLE Neigh-
bor Discovery process, in order to obtain the best performance
possible depending on the constraints of specific use cases. Our
results on two typical IoT test-cases show that advertiser battery
lifetime can be increased up to ≈ 89× (9.55 days to 2.32 years)
for a first case, and ≈ 281× (9.55 months to 7.36 years) for a
second case.

Index Terms—Internet of Things; Bluetooth Low Energy;
Neighbor Discovery; Discovery Latency; Energy Consumption;
Battery Lifetime; Testbed; Measurements.

I. INTRODUCTION

BLE has two communication modes according to its spec-
ification: Neighbor Discovery or ND and Connected Mode
or CM. ND is the first phase, where two devices discover
each other to establish a link. CM is the second phase, where
devices can exchange data over their connection, which is
teared down once the session is over. While in ND, the
central device is the scanner and the peripheral device is the
advertiser. When reaching CM, the central device becomes the
master and peripheral the slave. During ND, communication
is asynchronous and devices transit through 4 of the 5 BLE
states [1]: standby, scanning and initiating for
scanners, or standby and advertising for advertisers,
using only the 3 advertising channels. When in CM, a device
transits through connection and standby using the 37
data channels. The time spent in CM depends on the size
of the data and/or the duration of the session, whereas the
time a BLE transceiver will spend transmitting, receiving or
in standby mode during ND is determined by the parameters
given in Table I. The values assigned to these parameters
determine two important and interdependent characteristics of
the ND phase for BLE devices that have a huge impact on
user experience and device lifetime: Discovery Latency (DL)

and energy consumption. DL is the time it takes for a device
to discover or to be discovered, in other words the time to
establish a communication.

Table I: BLE Neighbor Discovery parameters

Name Notation Value according to the standard

Scan Interval TSI ≤ 10.24 s
Scan Window TSW ≤ TSI

Advertising Interval TAI 20 (or 100) ms ≤ TAI ≤ 10.24 s
integer multiple of 0.625ms

Advertising Delay ρ pseudo-random value in [0, 10]ms
Advertising Event TAE = TAI + ρ
Adv. Indication interval TAW ≤ 10ms (low duty cycle)

BLE is suitable for a very wide range of application
scenarios, but to maximize the lifetime of the devices while
guaranteeing the user experience expected for a given appli-
cation, it is necessary to find a suitable set of parameters that
are specific to the type of communication patterns being used
and the constraints specific to the application. In this work,
we propose a method to find optimal sets of parameters to
minimize the energy consumption for a wide range of BLE
applications, thus maximizing battery lifetime.

In previous work [2]–[6] authors have proposed models
for energy consumption during ND from the advertiser’s per-
spective and considering that the scanner is already listening
when the advertiser starts advertising. These models are based
on quantitative models of the physical layer via BLE SoC
measurements of current consumption [2], and probabilistic
models of the Link Layer of the protocol [3]–[6]. For certain
use cases the role of the devices might be reversed, for example
in the case where there are fixed advertisers and scanners are
passing by. In this situation, the advertiser is waiting for a
scanner, which is not taken into account in existing models.

In this paper, we present an extension and optimization of
the model proposed by Kindt et al. [4] in Section III. Then we
propose a method for parameter optimization in Section IV.
The objective is to obtain the best BLE performance possible
during ND, with respect to two important metrics: Discovery
Latency (DL) and energy consumption. Based on our parame-
ter optimization, we give DL, energy consumption and battery
lifetime results for two IoT use cases in Section VI. These
results are compared with performance obtained when using
configurations recommended by the Bluetooth SIG Profiles



[7]. DL model and parameter optimization, are validated via
testbed experiments in Section V.

II. OPTIMIZING BLE FOR A WIDE RANGE OF SCENARIOS

The BLE standard supports a wide range of parameter
values for ND. The choice of these parameters directly af-
fect the performances of BLE devices. Therefore, it is of
capital importance to use an optimal parameter configuration
in order to ensure a fair tradeoff between DL and energy
consumption. According to the BLE specification, before
establishing a connection, the scanner must first listen to the
advertising channel during the ND in order to synchronize
with the advertiser. The scanner/master is the initiator and is
responsible for establishing a connection with one or several
advertisers/slaves. Once in Connected Mode, or CM, master
and slave will periodically exchange application data. From the
point of view of BLE communication, the scanner/master is the
central device whereas the advertiser is the peripheral which is
typically at the sensor side. However, for certain use cases, the
scanner may play the peripheral role at the application level.

Applications based on proximity sensing are an example
where the advertiser is configured to broadcast data to adver-
tise periodically. Multiple scanners in range can receive data
without the need for a connection establishment. From the
application level point of view, the advertiser and the scanner
would play the central and the peripheral role respectively, and
furthermore, the scanner is at the user side, meaning that for
such use cases, DL and energy consumption criticality are at
the scanner side. This shows that efforts to improve perfor-
mance should be focused on one side or another, depending
on constraints that are imposed by the use case.

The Bluetooth SIG has given a list of profiles [7] intended to
provide efficient configurations for BLE devices for different
applications, such as collecting sensor information, health,
sports and fitness, environmental sensing and proximity. These
profiles define the behavior for both central and peripheral
devices, and they include recommended scanner/advertiser
configurations to ensure optimal DL and energy consumption
during ND. There are 24 profiles in total, where the same
configuration is recommended for 10 different profiles and
it is depicted in Table II, 4 profiles recommend different
configurations, 6 profiles state that devices should be config-
ured with consideration for user expectations of connection
establishment, and the rest state that connection establishment
requirements are defined by a higher layer specification.

To the best of our knowledge, there is no performance evalu-
ation using these profiles and there is no evaluation considering
the scanner as a peripheral device with constrained DL and
energy consumption. The analytical model proposed by Kindt
et al. [4] can be used to determine the right configuration
depending on application constraints. But results from this
kind of model are very general and might require very long
computation time. Getting results from Algorithm 1 can take
from minutes to several hours when evaluating configurations
that uses large parameters. Furthermore, this model is not

suitable when the scanner behaves as the peripheral device
at the application level.

We extend and optimize this model to estimate BLE perfor-
mance, DL and energy consumption, regardless of the role of
the devices. In addition, we propose a parameter optimization
method based on this model, in order to obtain the lowest
BLE energy consumption possible, while taking into account
use case requirements such as maximum acceptable Discovery
Latency. Finally, we evaluate the Bluetooth SIG Profiles for
some typical IoT use cases and compare with the results we
find with our new model. We present the results in terms of
battery lifetime based on the battery model presented in our
other work [8].

Table II: Recommended Advertising Interval, Scan Interval
and Scan Window Values (Table 5.1 and 5.2 in [9])

Advertising/Scan Duration Parameter Value

First 30 seconds (fast connection) Adv. Interval 20ms to 30ms
After 30 seconds (reduced power) Adv. Interval 1 s to 2.5 s

First 30 seconds (fast connection) Scan Interval 30ms to 60ms
Scan Window 30ms

After 30 seconds (reduced power) Scan Interval 1.28 s
– Option 1 Scan Window 11.25ms
After 30 seconds (reduced power) Scan Interval 2.56 s
– Option 2 Scan Window 11.25 ms

III. MODEL OPTIMIZATION

We based our work on the more complete and precise model
available in the literature [4]. The model considers that the
advertiser starts at a given phase offset called φ after t = 0,
moment at which the scanner starts scanning on channel 37 as
shown in Figure 1a. In order to determine scanner performance
when constrained DL and energy consumption is at the scanner
side, we propose to consider the case where the advertiser
starts advertising at a given phase offset φ before t = 0.
In other words, in this case, the scanner starts scanning at
a random time within one advertising cycle as illustrated in
Figure 1b.

Algorithm 1 from [4], is used to estimate the advertiser DL.
It is the elapsed time between the start of the first advertising
event, until the start of the advertising event received by the
scanner. The duration of an advertising event successfully
received by the scanner tadvEvnt(ch) is added to obtain the
total advertiser DL. It depends on the channel over which
reception takes place, which is estimated at line 9.

The condition to consider a successful reception is that the
starting point of an advertiser event n falls into a region within
a scanner interval called effective scanning window which
goes from tsemin(k) to tsemax(k). The effective scanning
window is different for each of the advertising channels and
depends on four parameters: scanning interval TSI , scanning
window TSW , duration of an advertising packet transmission
Tapk and the duration of hopping to the next channel tch (see
Figure 1, where TAW = Tapk + tch). The effective scanning
window is estimated as seen in Table III, where tearly is the
time with respect to each advertising channel from which, if
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Figure 1

an advertising event n begins, the packet can be succesfully
received even if tearly is not within the scanning window.
tlate is the time with respect to each advertising channel
from which, if an advertisign event n begins, the packet can’t
be successfully received, even if tlate is within the scanning
window. For more details we refer the reader to the paper [4].

The probability of an advertising event having started
between tsemin(k) and tsemax(k) is called Phit, it is
calculated at line 10 of Algorithm 1, where n and k are
the current evaluated advertiser and scanner events which are
considered according to lines 13 and 6 respectively. PcM is
the probability that the nth advertising events don’t lead to
a successful reception (cumulative miss probability). With in-
creasing values of n, the probability that one of the advertising
events is received successfully, grows. Thus, PcM shrinks
with growing n. The algorithm terminates if (1 − PcM) is
smaller than a lower bound ε = 0.9999. The expected DL for
a given φ offset is calculated at line 11. It is considered for
the expected value of ρ to be 5ms and the error is neglected.
Then the average DL for a given TSI , TSW , TAI configuration
is obtained [4] by integrating the expected DL results over all
possible values of φ. A numerical integration is then performed
by multiplying the results with ∆ and computing the sum of
these values.

For calculating the probability Phit of whether an adver-
tising event is successfully received, the probability density

function (PDF) of the start of an advertising event over time
t (which depends on both n and φ) is required. The shape of
the distribution depends on n. For more detail on the shape
of the distribution we refer the reader to the paper [4].

Then the consumed charge in Coulombs during DL can be
calculated knowing the current and voltage of the circuit for
each event. The current and voltage vary from one manufac-
turer to the other and are extracted from quantitative models of
the physical layer which are based on SoC measurements [2].
Finally, knowing the charge and DL, energy consumed during
DL can be estimated. Quantitative models of physical layer in
our work are based on TI CC2540 and ST BlueNRG current
consumption measurements extracted from technical literature
[10], [11].

Table III: Effective Scanning Window

Ch tearly tlate

37 0 Tapk
38 Tapk + tch 2Tapk + tch
39 2Tapk + 2tch 3Tapk + 2tch

Ch tsemin(k) tsemax(k)

37 0 (k − 1)TSI + TSW − tlate
38 (k − 1)TSI − tearly (k − 1)TSI + TSW − tlate
39 (k − 1)TSI − tearly (k − 1)TSI + TSW − tlate

In order to evaluate DL from scanner perspective when it is



Algorithm 1 BLE Average Advertiser DL
1: DLadv ← 0
2: for φ = 0 to 3TSI step ∆ do
3: n← 0 , DLexp ← 0, Phit ← 0, PcM ← 1, ch← 37
4: while 1− PcM ≤ ε do
5: tideal ← φ+ nTAI , Phit ← 0

6: Kmin = b tidealTSI
c , Kmax = b tideal+n5ms

TSI
c

7: for K = Kmin to K = Kmax do
8: ch← mod(j, 3)
9: (tsemin(k), tsemax(k))← getInterval(ch))

10: Phit ← Phit +

pk(treal, n, ρ
√

n
12 , tideal, tsemin(k), tsemax(k), ρ)

11: DLexp ← DLexp+pk.PcM(n(TAI+5ms)+tadvEvent(ch))
12: end for
13: PcM ← PcM(1− Phit) , n← n+ 1
14: end while
15: DLadv ← DLadv +DLexp
16: end for
17: DLadv ←

DLadv
3TSI

∆

peripheral at the application level, we propose an optimization
as depicted in Algorithm 2. Unlike in Algorithm 1, the phase
offset φ is within a negative range, that is the case where the
advertiser starts advertising before the scanner starts scanning.
We consider the advertiser starts a maximum of TAI + ρ
time before t = 0 which is a full advertising cycle plus the
maximum value of ρ as shown in Figure 1b. Before t = 0 any
advertising event n has 0 probability of being received by the
scanner, so PcM is increased to its maximum value and the
next event n is evaluated as shown in line 5 of Algorithm 2.
The average DL has been computed such that all data related
a specific event can be accessed once the algorithm has been
executed as seen in line 18 of Algorithm 2. The foregoing aims
to evaluate not only average but also worst case for parameter
optimization purposes, as it will be discussed in Section IV,
so we don’t make use of DLadv and DLexp variables shown
in Algorithm 1. Finally, average DL is calculated at line 19.

Algorithm 2 can be used for both cases: when analyzing
BLE performance from the advertiser or scanner perspective.
The main difference between these two cases lies in the defi-
nition of φ. When analyzing performance from the advertiser
perspective we use φ = [0, 3TSI ] and when analyzing perfor-
mance from the scanner perspective φ = [−(TAI + 10ms), 0]
accordingly with Figure 1. For the sake of simplicity, hence-
forth when we refer to the performance from the advertiser
point of view, we will refer to Algorithm 1, and we’ll refer
to Algorithm 2 when analyzing from scanner perspective. As
it has been stated in [4], the model must be calibrated. Its
precision lies in the choice of ∆ (φ step). We have adjusted
∆ for Algorithm 1 according to Eq. 1 and for Algorithm 2
according to Eq. 2. The accuracy of the estimated advertiser
and scanner DL, for both average and worst case values, are
experimentally validated as explained in Section V.

∆ =

{
1ms if 30ms ≥ TSI ≤ 100ms
5ms if 100ms < TSI < 640ms
93.6ms if TSI ≥ 640ms

(1)

∆ =

{
10µs if 20ms ≥ TAI ≤ TSW + ρ
19.9µs if TSW + ρ < TSI < 6s
29.9µs if TSI ≥ 6s

(2)

Algorithm 2 Proposed BLE Average Scanner DL
1: for φ = −TAI + 10ms to 0 step ∆ do
2: n = 1 , PcM = 1, ε = 0.9999
3: while 1− PcM ≤ ε do
4: tideal = φ+ (n− 1)TAI , treal = tideal + (n− 1) ρ2
5: if tideal < 0 then
6: PcM = 1 , n = n+ 1
7: continue
8: end if
9: Kmin = b tidealTSI

c , Kmax = d tideal+n5ms

TSI
e , Phit = 0

10: for K = Kmin to K = Kmax do
11: tsemin(k, TSI ,TSW , Tapk, tch) ,

tsemax(k, TSI ,TSW , Tapk, tch)

12: pk(treal, n, ρ
√

n
12 , tideal, tsemin(k), tsemax(k), ρ)

13: Phit = Phit + pk
14: end for
15: PcM = PcM(1− Phit) , n = n+ 1
16: end while
17: end for
18: advtreal = treal(max(pk)) + abs(φ) , scantreal = treal(max(pk))

19: advDL = mean(advtreal ) , scanDL = mean(scantreal )

IV. BLE PARAMETER OPTIMIZATION

BLE parameter optimization is achieved using a look-up
table based simulation in Matlab using Algorithm 2. For eval-
uation of DL, the typical procedure is to fix two parameters,
usually TSI and TSW , and to vary the other one, TAI . As
mentioned previously, this procedure can take a lot of time.
We have executed the algorithm for typical BLE parameter
values and all their possible combinations and stored them in a
look-up table in order to save computing time when evaluating
use case.

We sweep into the look-up table to determine the
(TSI , TSW , TAI) configuration whose worst DL is no longer
than a critical latency (CL) given by the use case: the
maximum communication latency that guarantees acceptable
operation or user experience. We have set up the simulation
such that, the worst case DL has a maximum difference of
5 ms below the desired value (CL). Several configurations may
satisfy a given latency requirement, for example, for a required
advertiser DL of 200 ms at least a dozen of configurations can
be found, with a scanner duty cycle ranging from 65% to
100%, using TSI ≤ 400 ms and an advertiser duty cycle of
up to ≈ 5%. In this case, we select the configuration that pro-
vides the smallest energy consumption on the advertiser side.
Similarly, several configuration may satisfy a given latency
requirement when constrained DL is at the scanner side, and
we selected the configuration that provides the smallest energy
consumption for the scanner.

In Table IV we give a set of parameters (TSI , TSW , TAI)
obtained for a required latency CL between 200 ms and 1 s,
when evaluating BLE from the advertiser perspective (advCL)
and from scanner perspective (scaCL).

V. EXPERIMENTAL MODEL VALIDATION

A. Testbed Setup

We have validated the proposed model on a real testbed
developed on top fo WalT. WalT is a cheap, reproducible and
highly configurable platform for network experiments devel-
oped at Univ. Grenoble Alpes [12]. It is basically composed



Table IV: Parameter Optimization Respect to CL

Respect to advCL Respect to scanCL

CL TAI TSI TSW TSI TSW

200 ms 190 ms 400 ms 300 ms 400 ms 300 ms
300 ms 290 ms 500 ms 400 ms 600 ms 400 ms
400 ms 390 ms 60 ms 50 ms 800 ms 500 ms
500 ms 490 ms 500 ms 500 ms 900 ms 600 ms
600 ms 590 ms 300 ms 300 ms 1.28 s 640 ms
700 ms 690 ms 200 ms 200 ms 2.56 s 1.28 s
800 ms 790 ms 70 ms 60 ms 3.2 s 1.28 s
900 ms 890 ms 2.56 s 1.92 ms 3.84 s 1.28 s
1 s 990 ms 1.92 ms 1.28 ms 4.48 s 1.28 s

of 6 different elements: clients from which to access the
server and the nodes, the server which is the brain of the
platform, which interacts with nodes on which we run or drive
experiments, interconnected with PoE switches to manage
the network and restart nodes, and finally the docker hub
on which we store WalT images containing full reproducible
experiments. In our case, nodes are Raspberry Pis with one
Asus USB-BT400 Bluetooth device attached, compatible with
Bluetooth 4.0 Core, running Debian with the Linux BlueZ
stack.

We have configured two nodes to play advertiser and
scanner role. They both have a set of scripts that drive the
communication between the two BLE devices. One task runs
on the advertiser and starts the scanner through the wired
network with a delay, before or after it itself starts advertising,
depending on the scenario. The advertiser contains all the
data related to TSI − TSW − TAI configurations and iterates
over TAI with a given step, repeating every measurement a
configurable number of times (100 in this case). While running
the experiments we capture all the timestamped Bluetooth
traffic with tshark for further analysis, mainly extracting the
discovery latency. Docker images containing all the software
to run the exact same experiment will be made available.

B. Experimental Results

Figure 2 and 3 show the results obtained on the testbed
compared to results obtained by simulation, using respectively
Algorithm 1 with the modifications mentioned in Section III
and Algorithm 2, for TSI = 400 ms and TSW = 300 ms.
For the sake of legibility, we show detailed statistics only for
testbed results and only the mean for simulation. In Figure 2
the advertiser is peripheral, and in Figure 3 the scanner is
peripheral. High average DL is obtained near the values of TAI
that are multiples of TSI , corresponding to the peaks observed
in both figures, as it was observed in previous work too [4].
Around these values, if an advertising event starts between
the end of the scanning window and the beginning of the next
scanning event, then the next advertising event is very likely to
be missed, as the random delay ρ is not enough to compensate
the difference between TSI and TSW . The peaks should be
avoided in configurations, as very large average and worst case
DL are obtained for these configurations, resulting in higher
energy consumption and bad user experience. Experimental

results show the same pattern as the results obtained from
simulations of the model. As said earlier, details statistics
for simulation results were omitted, since they fit perfectly
to experimental results, except for extreme mean and max
values at the peaks, they are just more regular as you would
expect since they were obtained from an ideal system, with
a very large number of trials. In both cases, the peaks are
exactly at the same location, which means that the model and
experimentation behave similarly. However, we can see that
there is a significant difference in the extreme values. This
can be explained easily by the fact that we drive experiments
from user space, where high precision timing is impossible
to achieve. This introduces a high variability in the results
where the curve is very steep since a small imprecision in the
timing, can result in a large variation in the measured delay.
We notice on the graph that the distribution of values is very
asymmetric, the median stays low, but the mean grows very
quickly at the peaks, the 1st and 3rd quartiles are close, but
the 0.05 and 0.95 quantiles show much more variability: there
are few occurrences where the DL is very large but they have
a very big impact. Also, these occurrences are catastrophic for
the user experience, we reached a worst case scanner discovery
latency of 255 s in our experiments, more than 4 min!
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Figure 2: Advertiser Discovery Latency with Algorithm 1
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Figure 3: Scanner Discovery Latency with Algorithm 2

Once the model has been validated we proceed to vali-
date our parameter optimization method. We have tested the
configurations contained in Table IV which, as mentioned
in Section IV, are based on the worst DL of a TAI -TSI -
TSW configuration, such that it does not exceed a specific
CL. Table V and VI show the resulting worst DL obtained
from both simulation and experiments, corresponding to the
configurations that provide best energy consumption on the
advertiser side (Table V) and scanner side (Table VI). As it
can be seen, results are very accurate with a maximum error of
≈ 3% of our simulations compared to the experimental results.
This validates our DL model and parameter optimization, and
thus energy consumption for any BLE manufacturer.



Table V: Parameter Optimization respect to advertiser CL

CL TSI TSW TAI simul. expe. error

200 ms 400 ms 300 ms 190 ms 198.1 ms 204.40 ms 3.08 %
300 ms 500 ms 400 ms 290 ms 298.1 ms 303.51 ms 1.78 %
400 ms 60 ms 50 ms 390 ms 398.1 ms 406.02 ms 1.95 %
500 ms 500 ms 500 ms 490 ms 498.1 ms 505.82 ms 1.53 %
600 ms 300 ms 300 ms 590 ms 598.1 ms 596.31 ms 0.30 %
700 ms 200 ms 200 ms 690 ms 698.1 ms 706.19 ms 1.15 %
800 ms 70 ms 60 ms 790 ms 798.1 ms 803.81 ms 0.70 %
900 ms 2.56 s 1.92 ms 890 ms 898.1 ms 905.61 ms 0.83 %
1 s 1.92 ms 1.28 ms 990 ms 998.1 ms 1.006 s 0.79 %

Table VI: Parameter Optimization respect to scanner CL

CL TSI TSW TAI simul. expe. error

200 ms 400 ms 300 ms 190 ms 204.2 ms 200.76 ms 1.68 %
300 ms 600 ms 400 ms 290 ms 304.2 ms 306.76 ms 0.83 %
400 ms 800 ms 500 ms 390 ms 404.2 ms 403.79 ms 0.10 %
500 ms 900 ms 600 ms 490 ms 504.2 ms 504.82 ms 0.12 %
600 ms 1.28 s 640 ms 590 ms 604.2 ms 601.83 ms 0.39 %
700 ms 2.56 s 1.28 s 690 ms 704.2 ms 688.89 ms 2.17 %
800 ms 3.2 s 1.28 s 790 ms 804.2 ms 801.84 ms 0.29 %
900 ms 3.84 s 1.28 s 890 ms 904.2 ms 892.81 ms 1.26 %
1 s 4.48 s 1.28 s 990 ms 1004.2 s 987.87 ms 1.63 %

VI. APPLICATION TO REALISTIC SCENARIOS

In order to provide results for typical IoT scenarios based
on our parameter optimization, we propose two test cases
and compare them with results when using recommended SIG
Profiles configurations, more specificaly the Proximity Profile
[9]. These two test cases are a retail store and a medical
telemetry system which are described below.

A. Retail store use case

This test case targets iBeacon technology (a Proximity
application). A device which generates iBeacon advertisements
is called beacon. Beacons establish a region around them by
iBeacon signals as shown in Figure 4. A device supporting
an iBeacon application can determine if it has entered or
exited from the region, and can approximate its distance to the
beacon via signal strengths. Beacons transmit advertisement
data frames containing information about what’s on sale so the
user can find the item and receive extra information about it.
Supposing the user is walking around the beacon, the time to
pass near it must be considered to ensure a connection between
the beacon (advertiser) and the smartphone (scanner); so the
user can successfully receive the notification.

In the worst case, where the user walks by 29.5m far from
the beacon, for a total walking distance of 10.9m as shown
in Figure 4, the user has a maximum time to establish a
connection of 11.22 s if the user walks at speed of 3.5 km/h
[13] or 4.36 s at a speed of 9 km/h [14]. The user passes
through the region at a constant speed in a straight line
without stopping. BLE on the user’s smartphone is active at
the moment to enter the region. For performance evaluation,
we suppose ideal channel conditions and consider the worst
case.

30m 2m 0.5m
Beacon

Inmediate

Near

Far
Unknown

60m 10.9m

Best case

Worst case

Figure 4: iBeacon regions. Worst case and best case walking
distance around iBeacon

In accordance with the above mentioned, we have consid-
ered a maximum acceptable latency CL of 4.36s. In addition,
with the aim of providing reliability in case of packet loss
where an entire period would have to pass before the packet
can be received, we consider CL = 2.18s, thus ensuring that
the packet can be received while the user is still in range with
the beacon. This is the CL reference value used for parameter
optimization. The chosen configuration is shown in Table VII.

Since the advertiser is considered to be active permanently,
we do not consider dynamic reconfiguration after 30 s as in
the SIG Profiles. We evaluate performance of this use case
based on Algorithm 2, where the advertiser is considered to
be available waiting to be discovered by the scanner. Table VII
shows the simulation results for average energy consumption
(Eavg), average DL (DLavg), worst case DL (DLwc) and
lifetime for advertiser and scanner of a TI CC2540 and a ST
BlueNRG. These values represent the typical expense during
one connection between advertiser and scanner during ND.
Our proposed configuration meets the requirements of the use
case, while implementing a duty cycle that provides a longer
lifetime for both scanner and advertiser.

Using the CC2540 device from TI, advertiser (beacon)
lifetime can be 105 times higher, compared with recommended
configurations from the Bluetooth SIG. At the same time pro-
viding a scanner DL that satisfies application requirements and
providing a good user experience. When using ST BlueNRG
device, advertiser lifetime can be 89 times higher using our
proposed configuration compared to the Bluetooth SIG and
scanner lifetime can be twice higher with our proposition
for both TI and ST devices. Scanner results are obtained
based on a 225 mAh coin cell battery, and although the
scanner is expected to be running on a smartphone which
has higher capacity, this proves that smartphone battery usage
can be more efficient. Additionally, we can see that using the
Bluetooth SIG profile, it would be necessary to connect the
beacon to a permanent source of energy. In contrast, with our
proposition, the beacon can operate for more than 2 years on
a single coin cell battery when using ST BlueNRG, which
achieves the longest lifetime.



Table VII: Retail store use case DL, energy consumption and
lifetime results

TI BlueNRG
SIG configurations Advertiser Scanner Advertiser Scanner
TSI = 60ms, TSW = 30ms Eavg 231.16µJ 1.1mJ 66.711µJ 452.11µJ
TAI = 20ms DLavg 34.9ms 22.5ms 34ms 20ms

DLwc 51.6ms 34.2ms 50.7ms 31.7ms
Lifetime 3.82 days 1.76 days 9.55 days 2.56 days

TSI = 60ms, TSW = 30ms Eavg 202.38µJ 1.24mJ 57.78µJ 476.78µJ
TAI = 30ms DLavg 41ms 23.6ms 40.1ms 21.1ms

DLwc 71.6ms 39.2ms 70.7ms 36.6ms
Lifetime 5.54 days 1.76 days 13.82 days 2.56 days

Proposed in this work Advertiser Scanner Advertiser Scanner
TSI = 10.24s, TSW = 2.56s Eavg 192.11µJ 58.4mJ 60.07µJ 25.7mJ
TAI = 2.2s DLavg 2.17s 1.11s 2.22s 1.11s

DLwc 4.41s 2.21s 4.41s 2.21s
Lifetime 1.1 years 4.05 days 2.32 years 5.62 days

B. Medical telemetry system use case

We now analyze a medical telemetry use case where an in-
body implanted pacemaker uses BLE to connect to a mobile
device or other access point supporting BLE, to transmit
information to a medical institution. The implanted sensor
operates on a 225 mAh coin cell battery and plays the beacon
or peripheral role (advertiser), so the challenge is to extend
battery lifetime as long as possible, as it has to remain active
permanently. A connection is required to collect data from
the pacemaker to the smartphone or other mobile device via
BLE. The key parameters to be evaluated are the connection
time on the user side and its energy consumption during ND.
The scanner is active when sending data to the hospital is
required, whose frequency can range from every 3 months
to every 12 months [15]. The scanner is in range at the
moment of connection. We base the parameter optimization
and performance evaluation on Algorithm 1, since the adver-
tiser plays the peripheral role at the application level and has
constrained DL and energy consumption. We suppose ideal
channel conditions.

Table VIII shows DL, energy consumption and lifetime
results. With our proposition, advertiser lifetime can be 281
times higher than with the SIG Profile when using ST Blu-
eNRG, reaching a lifetime of 7 years and 4 months with an
average advertiser DL of ≈ 4 s, which is considered a good
user experience for this use case. The SIG Profile provides
a lifetime of 9.5 days. This proves that BLE is a suitable
technology for this kind of applications when using an optimal
configuration. Lifetime on the scanner side improvement is
not achieved with the proposed configuration as extending the
advertiser lifetime is the priority.

VII. CONCLUSIONS

We have extended an existing model [4] and proposed
a novel parameter optimization method to compute optimal
parameters for BLE devices depending on application require-
ments. This model as well as the parameter optimization are
validated experimentally. We show that BLE is suitable for a
wide range of IoT applications if parameters are chosen with
care. We obtain the appropriate TSI−TSW−TAI configuration
that guarantees a Discovery Latency which satisfies specific
requirements for any use case, such as maximum acceptable

Table VIII: Medical telemetry system DL, energy consumption
and lifetime results

TI BlueNRG

SIG configurations Advertiser Scanner Advertiser Scanner
TSI = 60ms, TSW = 30ms Eavg 210.27µJ 3.7mJ 63.32µJ 1.6mJ
TAI = 20ms DLavg 26.3ms 131.9ms 25.4ms 129.3ms

DLwc 103.1s 285ms 102.1ms 282.4ms
Lifetime 3.82 days 1.76 days 9.55 days 2.56 days

TSI = 60ms, TSW = 30ms Eavg 208.33µJ 3.9mJ 62.78µJ 1.7mJ
TAI = 30ms DLavg 35.4ms 140.3ms 34.5ms 137.7ms

DLwc 143.1ms 337.7ms 142.1ms 335.1
Lifetime 5.54 days 1.76 days 13.82 days 2.56 days

Proposed this work Advertiser Scanner Advertiser Scanner
TSI = 500ms, TSW = 300ms Eavg 145.43µJ 204mJ 53.5µJ 88.2mJ
TAI = 10.24ms DLavg 4.1s 7.03s 4.09s 7.06

DLwc 10.25s 21.83ms 10.25s 21.82s
Lifetime 4.27 years 1.46 days 7.36 years 2.11 days

critical latency. We provide results for DL, energy consump-
tion and battery lifetime for two typical IoT test cases: retail
store and medical telemetry. We show that we can obtain huge
gains compared to SIG Profiles recommended configurations
and provide multi-year lifetime instead of a few days or weeks.
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