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I. INTRODUCTION

BLE has two communication modes according to its specification: Neighbor Discovery or ND and Connected Mode or CM. ND is the first phase, where two devices discover each other to establish a link. CM is the second phase, where devices can exchange data over their connection, which is teared down once the session is over. While in ND, the central device is the scanner and the peripheral device is the advertiser. When reaching CM, the central device becomes the master and peripheral the slave. During ND, communication is asynchronous and devices transit through 4 of the 5 BLE states [START_REF] Bluetooth | Specification of the Bluetooth System[END_REF]: standby, scanning and initiating for scanners, or standby and advertising for advertisers, using only the 3 advertising channels. When in CM, a device transits through connection and standby using the 37 data channels. The time spent in CM depends on the size of the data and/or the duration of the session, whereas the time a BLE transceiver will spend transmitting, receiving or in standby mode during ND is determined by the parameters given in Table I. The values assigned to these parameters determine two important and interdependent characteristics of the ND phase for BLE devices that have a huge impact on user experience and device lifetime: Discovery Latency (DL) and energy consumption. DL is the time it takes for a device to discover or to be discovered, in other words the time to establish a communication. BLE is suitable for a very wide range of application scenarios, but to maximize the lifetime of the devices while guaranteeing the user experience expected for a given application, it is necessary to find a suitable set of parameters that are specific to the type of communication patterns being used and the constraints specific to the application. In this work, we propose a method to find optimal sets of parameters to minimize the energy consumption for a wide range of BLE applications, thus maximizing battery lifetime.

In previous work [START_REF] Kamath | Measuring Bluetooth Low Energy Consumption[END_REF]- [START_REF] Jeon | Performance Analysis of Neighbor Discovery Process in Bluetooth Low-Energy Networks[END_REF] authors have proposed models for energy consumption during ND from the advertiser's perspective and considering that the scanner is already listening when the advertiser starts advertising. These models are based on quantitative models of the physical layer via BLE SoC measurements of current consumption [START_REF] Kamath | Measuring Bluetooth Low Energy Consumption[END_REF], and probabilistic models of the Link Layer of the protocol [START_REF] Liu | Modeling neighbor discovery in bluetooth low energy networks[END_REF]- [START_REF] Jeon | Performance Analysis of Neighbor Discovery Process in Bluetooth Low-Energy Networks[END_REF]. For certain use cases the role of the devices might be reversed, for example in the case where there are fixed advertisers and scanners are passing by. In this situation, the advertiser is waiting for a scanner, which is not taken into account in existing models.

In this paper, we present an extension and optimization of the model proposed by Kindt et al. [4] in Section III. Then we propose a method for parameter optimization in Section IV. The objective is to obtain the best BLE performance possible during ND, with respect to two important metrics: Discovery Latency (DL) and energy consumption. Based on our parameter optimization, we give DL, energy consumption and battery lifetime results for two IoT use cases in Section VI. These results are compared with performance obtained when using configurations recommended by the Bluetooth SIG Profiles [START_REF]Adopted Bluetooth Profiles, Services, Protocols and Transports[END_REF]. DL model and parameter optimization, are validated via testbed experiments in Section V.

II. OPTIMIZING BLE FOR A WIDE RANGE OF SCENARIOS

The BLE standard supports a wide range of parameter values for ND. The choice of these parameters directly affect the performances of BLE devices. Therefore, it is of capital importance to use an optimal parameter configuration in order to ensure a fair tradeoff between DL and energy consumption. According to the BLE specification, before establishing a connection, the scanner must first listen to the advertising channel during the ND in order to synchronize with the advertiser. The scanner/master is the initiator and is responsible for establishing a connection with one or several advertisers/slaves. Once in Connected Mode, or CM, master and slave will periodically exchange application data. From the point of view of BLE communication, the scanner/master is the central device whereas the advertiser is the peripheral which is typically at the sensor side. However, for certain use cases, the scanner may play the peripheral role at the application level.

Applications based on proximity sensing are an example where the advertiser is configured to broadcast data to advertise periodically. Multiple scanners in range can receive data without the need for a connection establishment. From the application level point of view, the advertiser and the scanner would play the central and the peripheral role respectively, and furthermore, the scanner is at the user side, meaning that for such use cases, DL and energy consumption criticality are at the scanner side. This shows that efforts to improve performance should be focused on one side or another, depending on constraints that are imposed by the use case.

The Bluetooth SIG has given a list of profiles [START_REF]Adopted Bluetooth Profiles, Services, Protocols and Transports[END_REF] intended to provide efficient configurations for BLE devices for different applications, such as collecting sensor information, health, sports and fitness, environmental sensing and proximity. These profiles define the behavior for both central and peripheral devices, and they include recommended scanner/advertiser configurations to ensure optimal DL and energy consumption during ND. There are 24 profiles in total, where the same configuration is recommended for 10 different profiles and it is depicted in Table II, 4 profiles recommend different configurations, 6 profiles state that devices should be configured with consideration for user expectations of connection establishment, and the rest state that connection establishment requirements are defined by a higher layer specification.

To the best of our knowledge, there is no performance evaluation using these profiles and there is no evaluation considering the scanner as a peripheral device with constrained DL and energy consumption. The analytical model proposed by Kindt et al. [START_REF] Kindt | Precise Energy Modeling for the Bluetooth Low Energy Protocol[END_REF] can be used to determine the right configuration depending on application constraints. But results from this kind of model are very general and might require very long computation time. Getting results from Algorithm 1 can take from minutes to several hours when evaluating configurations that uses large parameters. Furthermore, this model is not suitable when the scanner behaves as the peripheral device at the application level.

We extend and optimize this model to estimate BLE performance, DL and energy consumption, regardless of the role of the devices. In addition, we propose a parameter optimization method based on this model, in order to obtain the lowest BLE energy consumption possible, while taking into account use case requirements such as maximum acceptable Discovery Latency. Finally, we evaluate the Bluetooth SIG Profiles for some typical IoT use cases and compare with the results we find with our new model. We present the results in terms of battery lifetime based on the battery model presented in our other work [START_REF] Liendo | Efficient Bluetooth Low Energy Operation for Low Duty Cycle Applications[END_REF]. We based our work on the more complete and precise model available in the literature [START_REF] Kindt | Precise Energy Modeling for the Bluetooth Low Energy Protocol[END_REF]. The model considers that the advertiser starts at a given phase offset called φ after t = 0, moment at which the scanner starts scanning on channel 37 as shown in Figure 1a. In order to determine scanner performance when constrained DL and energy consumption is at the scanner side, we propose to consider the case where the advertiser starts advertising at a given phase offset φ before t = 0. In other words, in this case, the scanner starts scanning at a random time within one advertising cycle as illustrated in Figure 1b.

Algorithm 1 from [START_REF] Kindt | Precise Energy Modeling for the Bluetooth Low Energy Protocol[END_REF], is used to estimate the advertiser DL. It is the elapsed time between the start of the first advertising event, until the start of the advertising event received by the scanner. The duration of an advertising event successfully received by the scanner t advEvnt (ch) is added to obtain the total advertiser DL. It depends on the channel over which reception takes place, which is estimated at line 9.

The condition to consider a successful reception is that the starting point of an advertiser event n falls into a region within a scanner interval called effective scanning window which goes from tsemin(k) to tsemax(k). The effective scanning window is different for each of the advertising channels and depends on four parameters: scanning interval T SI , scanning window T SW , duration of an advertising packet transmission T apk and the duration of hopping to the next channel t ch (see Figure 1, where T AW = T apk + t ch ). The effective scanning window is estimated as seen in Table III 

Φ T AI t=0 AdvertisingCycle (b)
The Advertiser is available waiting to be discovered by the scanner Figure 1 an advertising event n begins, the packet can be succesfully received even if tearly is not within the scanning window. tlate is the time with respect to each advertising channel from which, if an advertisign event n begins, the packet can't be successfully received, even if tlate is within the scanning window. For more details we refer the reader to the paper [START_REF] Kindt | Precise Energy Modeling for the Bluetooth Low Energy Protocol[END_REF]. The probability of an advertising event having started between tsemin(k) and tsemax(k) is called P hit , it is calculated at line 10 of Algorithm 1, where n and k are the current evaluated advertiser and scanner events which are considered according to lines 13 and 6 respectively. P cM is the probability that the n th advertising events don't lead to a successful reception (cumulative miss probability). With increasing values of n, the probability that one of the advertising events is received successfully, grows. Thus, P cM shrinks with growing n. The algorithm terminates if (1 -P cM ) is smaller than a lower bound = 0.9999. The expected DL for a given φ offset is calculated at line 11. It is considered for the expected value of ρ to be 5ms and the error is neglected. Then the average DL for a given T SI , T SW , T AI configuration is obtained [START_REF] Kindt | Precise Energy Modeling for the Bluetooth Low Energy Protocol[END_REF] by integrating the expected DL results over all possible values of φ. A numerical integration is then performed by multiplying the results with ∆ and computing the sum of these values.

For calculating the probability P hit of whether an advertising event is successfully received, the probability density function (PDF) of the start of an advertising event over time t (which depends on both n and φ) is required. The shape of the distribution depends on n. For more detail on the shape of the distribution we refer the reader to the paper [START_REF] Kindt | Precise Energy Modeling for the Bluetooth Low Energy Protocol[END_REF].

Then the consumed charge in Coulombs during DL can be calculated knowing the current and voltage of the circuit for each event. The current and voltage vary from one manufacturer to the other and are extracted from quantitative models of the physical layer which are based on SoC measurements [START_REF] Kamath | Measuring Bluetooth Low Energy Consumption[END_REF]. Finally, knowing the charge and DL, energy consumed during DL can be estimated. Quantitative models of physical layer in our work are based on TI CC2540 and ST BlueNRG current consumption measurements extracted from technical literature [START_REF] Liu | Energy analysis of neighbor discovery in Bluetooth Low Energy networks[END_REF], [START_REF]BlueNRG Current Consumption Estimation Tool[END_REF]. n ← 0 , DLexp ← 0, P hit ← 0, P cM ← 1, ch ← 37 4:

while 1 -P cM ≤ ε do 5:

t ideal ← φ + nT AI , P hit ← 0 6: Kmin = t ideal T SI
, Kmax = t ideal +n5ms T SI

7:

for K = Kmin to K = Kmax do 8:

ch ← mod(j, 3)

9:

(tsemin(k), tsemax(k)) ← getInterval(ch))

10:

P hit ← P hit + pk(t real , n, ρ n 12 , t ideal , tsemin(k), tsemax(k), ρ)

11:

DLexp ← DLexp+pk.P cM (n(T AI +5ms)+t advEvent (ch))

12:

end for 13: peripheral at the application level, we propose an optimization as depicted in Algorithm 2. Unlike in Algorithm 1, the phase offset φ is within a negative range, that is the case where the advertiser starts advertising before the scanner starts scanning. We consider the advertiser starts a maximum of T AI + ρ time before t = 0 which is a full advertising cycle plus the maximum value of ρ as shown in Figure 1b. Before t = 0 any advertising event n has 0 probability of being received by the scanner, so P cM is increased to its maximum value and the next event n is evaluated as shown in line 5 of Algorithm 2. The average DL has been computed such that all data related a specific event can be accessed once the algorithm has been executed as seen in line 18 of Algorithm 2. The foregoing aims to evaluate not only average but also worst case for parameter optimization purposes, as it will be discussed in Section IV, so we don't make use of DL adv and DL exp variables shown in Algorithm 1. Finally, average DL is calculated at line 19.

P cM ← P cM (1 -P hit ) , n ← n + 1
Algorithm 2 can be used for both cases: when analyzing BLE performance from the advertiser or scanner perspective. The main difference between these two cases lies in the definition of φ. When analyzing performance from the advertiser perspective we use φ = [0, 3T SI ] and when analyzing performance from the scanner perspective φ = [-(T AI + 10ms), 0] accordingly with Figure 1. For the sake of simplicity, henceforth when we refer to the performance from the advertiser point of view, we will refer to Algorithm 1, and we'll refer to Algorithm 2 when analyzing from scanner perspective. As it has been stated in [START_REF] Kindt | Precise Energy Modeling for the Bluetooth Low Energy Protocol[END_REF], the model must be calibrated. Its precision lies in the choice of ∆ (φ step). We have adjusted ∆ for Algorithm 1 according to Eq. 1 and for Algorithm 2 according to Eq. 2. The accuracy of the estimated advertiser and scanner DL, for both average and worst case values, are experimentally validated as explained in Section V.

∆ = 1ms if 30ms ≥ T SI ≤ 100ms 5ms if 100ms < T SI < 640ms 93.6ms if T SI ≥ 640ms (1) 
∆ = 10µs if 20ms ≥ T AI ≤ T SW + ρ 19.9µs if T SW + ρ < T SI < 6s 29.9µs if T SI ≥ 6s (2) 
Algorithm 2 Proposed BLE Average Scanner DL 1: for φ = -T AI + 10ms to 0 step ∆ do 2:

n = 1 , P cM = 1, ε = 0.9999

3:

while 1 -P cM ≤ ε do 4:

t ideal = φ + (n -1)T AI , t real = t ideal + (n -1) ρ 2 5:
if t ideal < 0 then 6: 19: advDL = mean(advt real ) , scanDL = mean(scant real )

P cM = 1 , n = n + 1
IV. BLE PARAMETER OPTIMIZATION BLE parameter optimization is achieved using a look-up table based simulation in Matlab using Algorithm 2. For evaluation of DL, the typical procedure is to fix two parameters, usually T SI and T SW , and to vary the other one, T AI . As mentioned previously, this procedure can take a lot of time. We have executed the algorithm for typical BLE parameter values and all their possible combinations and stored them in a look-up table in order to save computing time when evaluating use case.

We sweep into the look-up table to determine the (T SI , T SW , T AI ) configuration whose worst DL is no longer than a critical latency (CL) given by the use case: the maximum communication latency that guarantees acceptable operation or user experience. We have set up the simulation such that, the worst case DL has a maximum difference of 5 ms below the desired value (CL). Several configurations may satisfy a given latency requirement, for example, for a required advertiser DL of 200 ms at least a dozen of configurations can be found, with a scanner duty cycle ranging from 65% to 100%, using T SI ≤ 400 ms and an advertiser duty cycle of up to ≈ 5%. In this case, we select the configuration that provides the smallest energy consumption on the advertiser side. Similarly, several configuration may satisfy a given latency requirement when constrained DL is at the scanner side, and we selected the configuration that provides the smallest energy consumption for the scanner.

In Table IV we give a set of parameters (T SI , T SW , T AI ) obtained for a required latency CL between 200 ms and 1 s, when evaluating BLE from the advertiser perspective (advCL) and from scanner perspective (scaCL).

V. EXPERIMENTAL MODEL VALIDATION

A. Testbed Setup

We have validated the proposed model on a real testbed developed on top fo WalT. WalT is a cheap, reproducible and highly configurable platform for network experiments developed at Univ. Grenoble Alpes [START_REF]WalT -Wireless Testbed[END_REF]. It is basically composed We have configured two nodes to play advertiser and scanner role. They both have a set of scripts that drive the communication between the two BLE devices. One task runs on the advertiser and starts the scanner through the wired network with a delay, before or after it itself starts advertising, depending on the scenario. The advertiser contains all the data related to T SI -T SW -T AI configurations and iterates over T AI with a given step, repeating every measurement a configurable number of times (100 in this case). While running the experiments we capture all the timestamped Bluetooth traffic with tshark for further analysis, mainly extracting the discovery latency. Docker images containing all the software to run the exact same experiment will be made available.

B. Experimental Results

Figure 2 and3 show the results obtained on the testbed compared to results obtained by simulation, using respectively Algorithm 1 with the modifications mentioned in Section III and Algorithm 2, for T SI = 400 ms and T SW = 300 ms. For the sake of legibility, we show detailed statistics only for testbed results and only the mean for simulation. In Figure 2 the advertiser is peripheral, and in Figure 3 the scanner is peripheral. High average DL is obtained near the values of T AI that are multiples of T SI , corresponding to the peaks observed in both figures, as it was observed in previous work too [START_REF] Kindt | Precise Energy Modeling for the Bluetooth Low Energy Protocol[END_REF]. Around these values, if an advertising event starts between the end of the scanning window and the beginning of the next scanning event, then the next advertising event is very likely to be missed, as the random delay ρ is not enough to compensate the difference between T SI and T SW . The peaks should be avoided in configurations, as very large average and worst case DL are obtained for these configurations, resulting in higher energy consumption and bad user experience. Experimental results show the same pattern as the results obtained from simulations of the model. As said earlier, details statistics for simulation results were omitted, since they fit perfectly to experimental results, except for extreme mean and max values at the peaks, they are just more regular as you would expect since they were obtained from an ideal system, with a very large number of trials. In both cases, the peaks are exactly at the same location, which means that the model and experimentation behave similarly. However, we can see that there is a significant difference in the extreme values. This can be explained easily by the fact that we drive experiments from user space, where high precision timing is impossible to achieve. This introduces a high variability in the results where the curve is very steep since a small imprecision in the timing, can result in a large variation in the measured delay. We notice on the graph that the distribution of values is very asymmetric, the median stays low, but the mean grows very quickly at the peaks, the 1 st and 3 rd quartiles are close, but the 0.05 and 0.95 quantiles show much more variability: there are few occurrences where the DL is very large but they have a very big impact. Also, these occurrences are catastrophic for the user experience, we reached a worst case scanner discovery latency of 255 s in our experiments, more than 4 min! Once the model has been validated we proceed to validate our parameter optimization method. We have tested the configurations contained in Table IV which, as mentioned in Section IV, are based on the worst DL of a T AI -T SI -T SW configuration, such that it does not exceed a specific CL. Table V and VI show the resulting worst DL obtained from both simulation and experiments, corresponding to the configurations that provide best energy consumption on the advertiser side (Table V) and scanner side (Table VI). As it can be seen, results are very accurate with a maximum error of ≈ 3% of our simulations compared to the experimental results. This validates our DL model and parameter optimization, and thus energy consumption for any BLE manufacturer. In order to provide results for typical IoT scenarios based on our parameter optimization, we propose two test cases and compare them with results when using recommended SIG Profiles configurations, more specificaly the Proximity Profile [START_REF] Bluetooth | Proximity Profile specification[END_REF]. These two test cases are a retail store and a medical telemetry system which are described below.

A. Retail store use case

This test case targets iBeacon technology (a Proximity application). A device which generates iBeacon advertisements is called beacon. Beacons establish a region around them by iBeacon signals as shown in Figure 4. A device supporting an iBeacon application can determine if it has entered or exited from the region, and can approximate its distance to the beacon via signal strengths. Beacons transmit advertisement data frames containing information about what's on sale so the user can find the item and receive extra information about it. Supposing the user is walking around the beacon, the time to pass near it must be considered to ensure a connection between the beacon (advertiser) and the smartphone (scanner); so the user can successfully receive the notification.

In the worst case, where the user walks by 29.5m far from the beacon, for a total walking distance of 10.9m as shown in Figure 4, the user has a maximum time to establish a connection of 11.22 s if the user walks at speed of 3.5 km/h [START_REF] Knoblauch | Field studies of pedestrian walking speed and start-up time[END_REF] or 4.36 s at a speed of 9 km/h [START_REF] Bohannon | Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants[END_REF]. The user passes through the region at a constant speed in a straight line without stopping. BLE on the user's smartphone is active at the moment to enter the region. For performance evaluation, we suppose ideal channel conditions and consider the worst case. In accordance with the above mentioned, we have considered a maximum acceptable latency CL of 4.36s. In addition, with the aim of providing reliability in case of packet loss where an entire period would have to pass before the packet can be received, we consider CL = 2.18s, thus ensuring that the packet can be received while the user is still in range with the beacon. This is the CL reference value used for parameter optimization. The chosen configuration is shown in Table VII.

Since the advertiser is considered to be active permanently, we do not consider dynamic reconfiguration after 30 s as in the SIG Profiles. We evaluate performance of this use case based on Algorithm 2, where the advertiser is considered to be available waiting to be discovered by the scanner. Table VII shows the simulation results for average energy consumption (E avg ), average DL (DL avg ), worst case DL (DL wc ) and lifetime for advertiser and scanner of a TI CC2540 and a ST BlueNRG. These values represent the typical expense during one connection between advertiser and scanner during ND. Our proposed configuration meets the requirements of the use case, while implementing a duty cycle that provides a longer lifetime for both scanner and advertiser.

Using the CC2540 device from TI, advertiser (beacon) lifetime can be 105 times higher, compared with recommended configurations from the Bluetooth SIG. At the same time providing a scanner DL that satisfies application requirements and providing a good user experience. When using ST BlueNRG device, advertiser lifetime can be 89 times higher using our proposed configuration compared to the Bluetooth SIG and scanner lifetime can be twice higher with our proposition for both TI and ST devices. Scanner results are obtained based on a 225 mAh coin cell battery, and although the scanner is expected to be running on a smartphone which has higher capacity, this proves that smartphone battery usage can be more efficient. Additionally, we can see that using the Bluetooth SIG profile, it would be necessary to connect the beacon to a permanent source of energy. In contrast, with our proposition, the beacon can operate for more than 2 years on a single coin cell battery when using ST BlueNRG, which achieves the longest lifetime. 

B. Medical telemetry system use case

We now analyze a medical telemetry use case where an inbody implanted pacemaker uses BLE to connect to a mobile device or other access point supporting BLE, to transmit information to a medical institution. The implanted sensor operates on a 225 mAh coin cell battery and plays the beacon or peripheral role (advertiser), so the challenge is to extend battery lifetime as long as possible, as it has to remain active permanently. A connection is required to collect data from the pacemaker to the smartphone or other mobile device via BLE. The key parameters to be evaluated are the connection time on the user side and its energy consumption during ND. The scanner is active when sending data to the hospital is required, whose frequency can range from every 3 months to every 12 months [START_REF] Burri | Remote monitoring and follow-up of pacemakers and implantable cardioverter defibrillators[END_REF]. The scanner is in range at the moment of connection. We base the parameter optimization and performance evaluation on Algorithm 1, since the advertiser plays the peripheral role at the application level and has constrained DL and energy consumption. We suppose ideal channel conditions.

Table VIII shows DL, energy consumption and lifetime results. With our proposition, advertiser lifetime can be 281 times higher than with the SIG Profile when using ST Blu-eNRG, reaching a lifetime of 7 years and 4 months with an average advertiser DL of ≈ 4 s, which is considered a good user experience for this use case. The SIG Profile provides a lifetime of 9.5 days. This proves that BLE is a suitable technology for this kind of applications when using an optimal configuration. Lifetime on the scanner side improvement is not achieved with the proposed configuration as extending the advertiser lifetime is the priority.

VII. CONCLUSIONS

We have extended an existing model [START_REF] Kindt | Precise Energy Modeling for the Bluetooth Low Energy Protocol[END_REF] and proposed a novel parameter optimization method to compute optimal parameters for BLE devices depending on application requirements. This model as well as the parameter optimization are validated experimentally. We show that BLE is suitable for a wide range of IoT applications if parameters are chosen with care. We obtain the appropriate T SI -T SW -T AI configuration that guarantees a Discovery Latency which satisfies specific requirements for any use case, such as maximum acceptable 
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Table I :

 I BLE Neighbor Discovery parameters

	Name	Notation Value according to the standard
	Scan Interval	T SI	≤ 10.24 s
	Scan Window	T SW	≤ T SI
	Advertising Interval	T AI	20 (or 100) ms ≤ T AI ≤ 10.24 s
			integer multiple of 0.625 ms
	Advertising Delay	ρ	pseudo-random value in [0, 10] ms
	Advertising Event	T	

AE = T AI + ρ Adv. Indication interval T AW ≤ 10 ms (low duty cycle)

Table II :

 II Recommended Advertising Interval, Scan Interval and Scan Window Values (Table 5.1 and 5.2 in [9])

	Advertising/Scan Duration	Parameter	Value
	First 30 seconds (fast connection)	Adv. Interval	20 ms to 30 ms
	After 30 seconds (reduced power)	Adv. Interval	1 s to 2.5 s
	First 30 seconds (fast connection)	Scan Interval	30 ms to 60 ms
		Scan Window 30 ms
	After 30 seconds (reduced power) Scan Interval	1.28 s
	-Option 1	Scan Window	11.25 ms
	After 30 seconds (reduced power) Scan Interval	2.56 s
	-Option 2	Scan Window	11.25 ms
	III. MODEL OPTIMIZATION	

  , where tearly is the time with respect to each advertising channel from which, if

	Scanner	Scanning ch.37 Scanning Event				Scanning ch.38 Scanning Cycle		Scanning ch.39
	Advertiser		T SW	T SI	ch.37 T AW	ch.38	ch.39		T SW	ch.37 T SI ch.38 Advertising Event(TAE) ch.39	ch.37 T SW	ch.38	ch.39 T SI	time
			Φ				T AI		𝜌		T AI	𝜌	time
	t=0											
			Advertising Event(TAE)		T AW					
	ch.37	ch.38	ch.39				ch.37	ch.38	ch.39		ch.37	ch.38	ch.39
				T AI			𝜌						time
					Scanning Event				
					Scanning ch.37				Scanning ch.38			Scanning ch.39
					T SW		T SI			T SW	T SI		time

(a) The Scanner is available waiting for an advertising packet Scanner Advertiser

Table III :

 III Effective Scanning Window DL adv ← 0 2: for φ = 0 to 3T SI step ∆ do 3:

	Ch	tearly	tlate
	37	0	T apk
	38	T apk + t ch	2T apk + t ch
	39	2T apk + 2t ch	3T apk + 2t ch
	Ch tsemin(k)	tsemax(k)

37 0 (k -1)T SI + T SW -tlate 38 (k -1)T SI -tearly (k -1)T SI + T SW -tlate 39 (k -1)T SI -tearly (k -1)T SI + T SW -tlate

In order to evaluate DL from scanner perspective when it is Algorithm 1 BLE Average Advertiser DL 1:

  SI ,T SW , T apk, tch) , tsemax(k, T SI ,T SW , T apk, tch) advt real = t real (max(p k )) + abs(φ) , scant real = t real (max(p k ))

	7:	continue			
	8: 9: 10:	end if Kmin =	t ideal T SI	, Kmax =	t ideal +n5ms T SI	, P hit = 0
	12:	p k (t real , n, ρ	n 12 , t ideal , tsemin(k), tsemax(k), ρ)
	13:	P hit = P hit + p k		
	14:	end for				
	15:	P cM = P cM (1 -P hit ) , n = n + 1	
	16:	end while				
	17: end for				
	18:					

for K = Kmin to K = Kmax do 11:

tsemin(k, T

Table IV :

 IV Parameter Optimization Respect to CL

			Respect to advCL	Respect to scanCL
	CL	T AI	T SI	T SW	T SI	T SW
	200 ms	190 ms	400 ms	300 ms	400 ms	300 ms
	300 ms	290 ms	500 ms	400 ms	600 ms	400 ms
	400 ms	390 ms	60 ms	50 ms	800 ms	500 ms
	500 ms	490 ms	500 ms	500 ms	900 ms	600 ms
	600 ms	590 ms	300 ms	300 ms	1.28 s	640 ms
	700 ms	690 ms	200 ms	200 ms	2.56 s	1.28 s
	800 ms	790 ms	70 ms	60 ms	3.2 s	1.28 s
	900 ms	890 ms	2.56 s	1.92 ms	3.84 s	1.28 s
	1 s	990 ms	1.92 ms	1.28 ms	4.48 s	1.28 s
	of 6 different elements: clients from which to access the
	server and the nodes, the server which is the brain of the
	platform, which interacts with nodes on which we run or drive
	experiments, interconnected with PoE switches to manage
	the network and restart nodes, and finally the docker hub
	on which we store WalT images containing full reproducible
	experiments. In our case, nodes are Raspberry Pis with one
	Asus USB-BT400 Bluetooth device attached, compatible with
	Bluetooth 4.0 Core, running Debian with the Linux BlueZ
	stack.					

Table V :

 V Parameter Optimization respect to advertiser CL

	CL	T SI	T SW	T AI	simul.	expe.	error
	200 ms	400 ms	300 ms	190 ms	198.1 ms	204.40 ms	3.08 %
	300 ms	500 ms	400 ms	290 ms	298.1 ms	303.51 ms	1.78 %
	400 ms	60 ms	50 ms	390 ms	398.1 ms	406.02 ms	1.95 %
	500 ms	500 ms	500 ms	490 ms	498.1 ms	505.82 ms	1.53 %
	600 ms	300 ms	300 ms	590 ms	598.1 ms	596.31 ms	0.30 %
	700 ms	200 ms	200 ms	690 ms	698.1 ms	706.19 ms	1.15 %
	800 ms	70 ms	60 ms	790 ms	798.1 ms	803.81 ms	0.70 %
	900 ms	2.56 s	1.92 ms	890 ms	898.1 ms	905.61 ms	0.83 %
	1 s	1.92 ms	1.28 ms	990 ms	998.1 ms	1.006 s	0.79 %
	Table VI: Parameter Optimization respect to scanner CL
	CL	T SI	T SW	T AI	simul.	expe.	error
	200 ms	400 ms	300 ms	190 ms	204.2 ms	200.76 ms	1.68 %
	300 ms	600 ms	400 ms	290 ms	304.2 ms	306.76 ms	0.83 %
	400 ms	800 ms	500 ms	390 ms	404.2 ms	403.79 ms	0.10 %
	500 ms	900 ms	600 ms	490 ms	504.2 ms	504.82 ms	0.12 %
	600 ms	1.28 s	640 ms	590 ms	604.2 ms	601.83 ms	0.39 %
	700 ms	2.56 s	1.28 s	690 ms	704.2 ms	688.89 ms	2.17 %
	800 ms	3.2 s	1.28 s	790 ms	804.2 ms	801.84 ms	0.29 %
	900 ms	3.84 s	1.28 s	890 ms	904.2 ms	892.81 ms	1.26 %
	1 s	4.48 s	1.28 s	990 ms	1004.2 s	987.87 ms	1.63 %
		VI. APPLICATION TO REALISTIC SCENARIOS	

Table VII :

 VII Retail store use case DL, energy consumption and lifetime results

			TI		BlueNRG	
	SIG configurations		Advertiser Scanner	Advertiser Scanner
	TSI = 60ms, TSW = 30ms	Eavg	231.16µJ	1.1mJ	66.711µJ	452.11µJ
	TAI = 20ms	DLavg	34.9ms	22.5ms	34ms	20ms
		DLwc	51.6ms	34.2ms	50.7ms	31.7ms
		Lifetime 3.82 days	1.76 days 9.55 days	2.56 days
	TSI = 60ms, TSW = 30ms	Eavg	202.38µJ	1.24mJ	57.78µJ	476.78µJ
	TAI = 30ms	DLavg	41ms	23.6ms	40.1ms	21.1ms
		DLwc	71.6ms	39.2ms	70.7ms	36.6ms
		Lifetime 5.54 days	1.76 days 13.82 days 2.56 days
	Proposed in this work		Advertiser Scanner	Advertiser Scanner
	TSI = 10.24s, TSW = 2.56s Eavg	192.11µJ	58.4mJ	60.07µJ	25.7mJ
	TAI = 2.2s	DLavg	2.17s	1.11s	2.22s	1.11s
		DLwc	4.41s	2.21s	4.41s	2.21s
		Lifetime 1.1 years	4.05 days 2.32 years	5.62 days

Table VIII :

 VIII Medical telemetry system DL, energy consumption and lifetime results We provide results for DL, energy consumption and battery lifetime for two typical IoT test cases: retail store and medical telemetry. We show that we can obtain huge gains compared to SIG Profiles recommended configurations and provide multi-year lifetime instead of a few days or weeks.

				TI		BlueNRG
	SIG configurations		Advertiser Scanner	Advertiser Scanner
	TSI = 60ms, TSW = 30ms	Eavg	210.27µJ	3.7mJ	63.32µJ	1.6mJ
	TAI = 20ms	DLavg	26.3ms	131.9ms	25.4ms	129.3ms
		DLwc	103.1s	285ms	102.1ms	282.4ms
		Lifetime 3.82 days	1.76 days 9.55 days	2.56 days
	TSI = 60ms, TSW = 30ms	Eavg	208.33µJ	3.9mJ	62.78µJ	1.7mJ
	TAI = 30ms	DLavg	35.4ms	140.3ms	34.5ms	137.7ms
		DLwc	143.1ms	337.7ms	142.1ms	335.1
		Lifetime 5.54 days	1.76 days 13.82 days 2.56 days
	Proposed this work		Advertiser Scanner	Advertiser Scanner
	TSI = 500ms, TSW = 300ms Eavg	145.43µJ	204mJ	53.5µJ	88.2mJ
	TAI = 10.24ms	DLavg	4.1s	7.03s	4.09s	7.06
		DLwc	10.25s	21.83ms	10.25s	21.82s
		Lifetime 4.27 years	1.46 days 7.36 years	2.11 days
	critical latency.