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Résumé

Nous considérons le problème d’apprentissage de mé-
triques dans un contexte multi-vues, et présentons une
nouvelle méthode qui apprend des métriques entre les
vues dans des espaces à noyaux à valeurs opérateurs per-
mettant de capturer la structure multimodale des don-
nées. Nous formulons ce problème comme un problème
d’optimisation convexe et nous proposons un algorithme
itératif dont l’objectif est d’apprendre conjointement les
métriques et le classificateur ou le régresseur. Afin de
faire de réduire le coût calculatoire, une approximation
Nyström par blocs de la matrice à noyaux multi-vues est
introduite. Des expériences sur des données artificielles
et réelles ont été réalisées pour évaluer l’algorithme
proposé.

Abstract

We consider the problem of metric learning for multi-
view data and present a novel method for learning
within-view as well as between-view metrics in vector-
valued kernel spaces, as a way to capture multi-modal
structure of the data. We formulate two convex opti-
mization problems to jointly learn the metric and the
classifier or regressor in kernel feature spaces. An ite-
rative three-step multi-view metric learning algorithm
is derived from the optimization problems. In order to
scale the computation to large training sets, a block-
wise Nyström approximation of the multi-view kernel
matrix is introduced. We justify our approach theore-
tically and experimentally, and show its performance
on real-world datasets against relevant state-of-the-art
methods.

1 Introduction

In this paper we tackle the problem of supervised
multi-view learning, where each labeled example is ob-
served under several views. These views might be not
only correlated, but also complementary, redundant or
contradictory. Thus, learning over all the views is ex-
pected to produce a final classifier (or regressor) that
is better than each individual one. Multi-view learning
is well-known in the semi-supervised setting, where the
agreement among views is usually optimized [4, 28].
Yet, the supervised setting has proven to be interesting
as well, independently from any agreement condition
on views. Co-regularization and multiple kernel lear-
ning (MKL) are two well known kernel-based frame-
works for learning in the presence of multiple views of
data [31]. The former attempts to optimize measures
of agreement and smoothness between the views over
labeled and unlabeled examples [26] ; the latter tries to
efficiently combine multiple kernels defined on each view
to exploit information coming from different represen-
tations [11]. More recently, vector-valued reproducing
kernel Hilbert spaces (RKHSs) have been introduced
to the field of multi-view learning for going further
than MKL by incorporating in the learning model both
within-view and between-view dependencies [20, 14]. It
turns out that these kernels and their associated vector-
valued reproducing Hilbert spaces provide a unifying
framework for a number of previous multi-view kernel
methods, such as co-regularized multi-view learning and
manifold regularization, and naturally allow to encode
within-view as well as between-view similarities [21].

Kernels of vector-valued RKHSs are positive semide-
finite matrix-valued functions. They have been applied
with success in various machine learning problems, such
as multi-task learning [10], functional regression [15]
and structured output prediction [5]. The main advan-
tage of matrix-valued kernels is that they offer a higher
degree of flexibility in encoding similarities between
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data points. However finding the optimal matrix-valued
kernel of choice for a given application is difficult, as is
the question of how to build them. In order to overcome
the need for choosing a kernel before the learning pro-
cess, we propose a supervised metric learning approach
that learns a matrix-valued multi-view kernel jointly
with the decision function. We refer the reader to [3] for
a review of metric learning. It is worth mentioning that
algorithms for learning matrix-valued kernels have been
proposed in the literature, see for example [9, 8, 17].
However, these methods mainly consider separable ker-
nels which are not suited for multi-view setting, as will
be illustrated later in this paper.

The main contributions of this paper are : 1) we intro-
duce and learn a new class of matrix-valued kernels de-
signed to handle multi-view data 2) we give an iterative
algorithm that learns simultaneously a vector-valued
multi-view function and a block-structured metric bet-
ween views, 3) we provide generalization analysis of our
algorithm with a Rademacher bound ; and 4) we show
how matrix-valued kernels can be efficiently computed
via a block-wise Nyström approximation in order to
reduce significantly their high computational cost.

2 Preliminaries

We start here by briefly reviewing the basics of vector-
valued RKHSs and their associated matrix-valued ker-
nels. We then describe how they can be used for learning
from multi-view data.

2.1 Vector-valued RKHSs

Vector-valued RKHSs were introduced to the machine
learning community by Micchelli and Pontil [19] as a
way to extend kernel machines from scalar to vector
outputs. In this setting, given a random training sample
{xi, yi}ni=1 on X × Y, optimization problem

arg min
f∈H

n∑
i=1

V (f,xi, yi) + λ‖f‖2H, (1)

where f is a vector-valued function and V is a loss
function, can be solved in a vector-valued RKHS H by
the means of a vector-valued extension of the represen-
ter theorem. To see this more clearly, we recall some
fundamentals of vector-valued RKHSs.

Definition 1. (vector-valued RKHS)
A Hilbert space H of functions from X to Rv is called
a reproducing kernel Hilbert space if there is a positive
definite Rv×v-valued kernel K on X × X such that :

i. the function z 7→ K(x, z)y belongs to H, ∀z,x ∈
X , y ∈ Rv,

ii. ∀f ∈ H,x ∈ X , y ∈ Rv, 〈f,K(x, ·)y〉H =
〈f(x),y〉Rv (reproducing property).

Definition 2. (matrix-valued kernel)
An Rv×v-valued kernel K on X × X is a function
K(·, ·) : X ×X → Rv×v ; it is positive semidefinite if :
i. K(x, z) = K(z,x)>, where > denotes the transpose

of a matrix,

ii. and, for every r ∈ N and all {(xi, yi)i=1,...,r} ∈
X × Rv,

∑
i,j〈yi,K(xi,xj)yj〉Rv ≥ 0.

Important results for matrix-valued kernels include
the positive semidefiniteness of the kernel K and that
we obtain a solution for regularized optimization pro-
blem (1) via a representer theorem. It states that so-
lution f̂ ∈ H for a learning problem can be written
as

f̂(x) =

n∑
i=1

K(x,xi)ci, with ci ∈ Rv.

Some well-known classes of matrix-valued kernels
include separable and transformable kernels. Separable
kernels are defined by

K(x, z) = k(x, z)T,

where T is a matrix in Rv×v. This class of kernels is
very attractive in terms of computational time, as it is
easily decomposable. However the matrix T acts only
on the outputs independently of the input data, which
makes it difficult for these kernels to encode necessary
similarities in multi-view setting. Transformable kernels
are defined by

[K(x, z)]lm = k(Smx, Slz).

Here m and l are indices of the output matrix (views
in multi-view setting) and operators {St}vt=1, are used
to transform the data. In contrast to separable kernels,
here the St operate on input data ; however choosing
them is a difficult task. For further reading on matrix-
valued reproducing kernels, see, e.g., [1, 6, 7, 15].

2.2 Vector-valued multi-view learning

This section reviews the setup for supervised multi-
view learning in vector-valued RKHSs [14, 21]. The
main idea is to consider a kernel that measures not only
the similarities between examples of the same view but
also those coming from different views. Reproducing
kernels of vector-valued Hilbert spaces allow encoding
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in a natural way these similarities and taking into ac-
count both within-view and between-view dependencies.
Indeed, a kernel function K in this setting outputs a
matrix in Rv×v, with v the number of views, so, that
K(xi,xj)lm, l,m = 1, . . . , v, is the similarity measure
between examples xi and xj from the views l and m.
More formally, consider a set of n labeled data

{(xi, yi) ∈ X × Y, i = 1, . . . , n}, where X ⊂ Rd and
Y = {−1, 1} for classification or Y ⊂ R for regression.
Also assume that each input instance xi = (x1

i , . . . ,x
v
i )

is seen in v views, where xli ∈ Rdl and
∑v
l=1 dl = d.

The supervised multi-view learning problem can be
thought of as trying to find the vector-valued function
f̂(·) = (f̂1(·), . . . f̂v(·)), with f̂ l(x) ∈ Y, solution of

arg min
f∈H,W

n∑
i=1

V (yi,W(f(xi))) + λ‖f‖2. (2)

Here f is a vector-valued function that groups v learning
functions, each corresponding to one view, and W :
Rv → R is combination operator for combining the
results of the learning functions.

While the vector-valued extension of the representer
theorem provides an algorithmc way for computing the
solution of the multi-view learning problem (2), the
question of choosing the multi-view kernel K remains
crucial to take full advantage of the vector-valued lear-
ning framework. In [14], a matrix-valued kernel based
on cross-covariance operators on RKHS that allow mo-
deling variables of multiple types and modalities was
proposed. However, it has two major drawbacks : i) the
kernel is fixed in advance and does not depend on the
learning problem, and ii) it is computationally expen-
sive and becomes infeasible when the problem size is
very large. We avoid both of these issues by learning a
block low-rank metric in kernel feature spaces.

3 Multi-View Metric Learning

Here we introduce an optimization problem for lear-
ning simultaneously a vector-valued multi-view function
and a positive semidefinite metric between kernel fea-
ture maps, as well as an operator for combining the
answers from the views to yield the final decision. We
then derive a three-step metric learning algorithm for
multi-view data and give Rademacher bound for it.
Finally we demonstrate how it can be implemented
efficiently via block-wise Nyström approximation and
give a block-sparse version of our formulation.

3.1 Matrix-valued multi-view kernel
We consider the following class of matrix-valued ker-

nels that can operate over multiple views

K(xi,xj)lm =
〈
Φl(x

l
i), CXlXm

Φm(xmj )
〉
, (3)

where Φl (resp. Φm) is the feature map associated to
the scalar-valued kernel kl (resp. km) defined on the
view l (resp. m). In the following we will leave out the
view label from data instance when the feature map
or kernel function already has that information, e.g.
instead of Φl(x

l
i) we write Φl(xi). CXlXm

: Hm → Hl
is a linear operator between the scalar-valued RKHSs
Hl and Hm of kernels kl and km, respectively. The
operator CXlXm allows one to encode both within-view
and between-view similarities.
The choice of the operator CXlXm

is crucial and
depends on the multi-view problem at hand. In the
following we only consider operators CXlXm

that can
be written as CXlXm

= ΦlAlmΦT
m, where Φs =

(Φs(x1), ...,Φs(xn)) with s = l,m and Alm ∈ Rn×n
is a positive definite matrix which plays the role of a
metric between the two features maps associated with
kernels kl and km defined over the views l and m. This
is a large set of possible operators, but depends on a
finite number of parameters. It gives us the following
class of kernels

K(xi,xj)lm =
〈
Φl(xi),ΦlAlmΦT

mΦm(xj)
〉

=
〈
ΦT
l Φl(xi),AlmΦT

mΦm(xj)
〉

= 〈kl(xi),Almkm(xi)〉 , (4)

where we have written kl(xi) = (kl(xt,xi))
n
t=1. We note

that this class is not in general separable or transfor-
mable. However in the special case when it is possible
to write Aml = AmAl the kernel is transformable.
It is easy to see that the lm-th block of the block

kernel matrix K built from the matrix-valued kernel (4)
can be written as Klm = KlAlmKm, where Ks =(
ks(xi,xj)

)n
i,j=1

for view s. The block kernel matrix
K =

(
K(xi,xj)

)n
i,j=1

in this case has the form

K = HAH, (5)

where H = blockdiag(K1, · · · ,Kv), 1 and the matrix
A = (Alm)vl,m=1 ∈ Rnv×nv encodes pairwise similarities
between all the views. Multi-view metric learning then
corresponds to simultaneously learning the metric A
and the classifier or regressor.

1. Given a set of n × n matrices K1, · · · ,Kv, H =
blockdiag(K1, · · · ,Kv) is the block diagonal matrix satisfying
Hl,l = Kl, ∀l = 1, . . . , v.

3



From this framework, with suitable choices of A,
we can recover the cross-covariance multi-view kernel
of [14], or for example a MKL-like multi-view kernel
containing only one-view kernels.

3.2 Algorithm

Using the vector-valued representer theorem, the
multi-view learning problem (2) becomes

arg min
c1,...,cn∈Rv

n∑
i=1

V

yi,W
 n∑
j=1

K(xi,xj)cj


+ λ

n∑
i,j=1

〈ci,K(xi,xj)cj〉.

We set V to be the square loss function and assume the
operator W to be known. We choose it to be weighted
sum of the outputs : W = wT ⊗ In giving us Wf(x) =∑v
m=1 wmf

m(x). Let y ∈ Rn be the output vector
(yi)

n
i=1. The previous optimization problem can now be

written as

arg min
c∈Rnv

‖y − (wT ⊗ In)Kc‖2 + λ 〈Kc, c〉 ,

where K ∈ Rnv×nv is the block kernel matrix associated
to the matrix-valued kernel (3) and w ∈ Rv is a vector
containing weights for combining the final result.

Using (5), and considering an additional regularizer
we formulate the multi-view metric learning (MVML)
optimization problem :

min
A,c

‖y − (wT ⊗ In)HAHc‖2 + λ 〈HAHc, c〉 (6)

+ η‖A‖2F , s.t. A � 0.

Here we have restricted the block metric matrix A to
be positive definite and we penalize its complexity via
Frobenius norm.

Inspired by [8] we make a change of variable g = AHc
in order to obtain a solution. Using a mapping (c,A)→
(g,A) we obtain the equivalent learning problem :

min
A,g

‖y − (wT ⊗ In)Hg‖2 + λ
〈
g,A†g

〉
(7)

+ η‖A‖2F , s.t. A � 0.

It is good to note that despite the misleading similari-
ties between our work and that of [8], we use different
mappings for solving our problems, which are also for-
mulated differently. We also consider different classes
of kernels as [8] considers only separable kernels.

Algorithm 1 Multi-View Metric Learning : with a)
full kernel matrices ; b) Nyström approximation
Initialize A � 0 and w
while not converged do

Update g via Equation a) 8 or b) 15
if w is to be calculated then

Update w via Equation a) 10 or b) 17
if sparsity promoting method then

Iterate A with Equation a) 12 or b) 18
else

Iterate A via Equation a) 9 or b) 16
return A, g, w

Remark. The optimization problem (7) is convex. The
main idea is to note that

〈
g,A†g

〉
is jointly convex (see

e.g. [32]).

We use an alternating scheme to solve our problem.
We arrive to the following solution for g with fixed A :

g = (H(wT⊗In)T (wT⊗In)H+λA†)−1H(wT⊗In)Ty.
(8)

The solution of (7) for A for fixed g is obtained by
gradient descent, where the update rule is given by

Ak+1 = (1− 2µη) Ak + µλ
(
Ak
)†

ggT
(
Ak
)†
, (9)

where µ is the step size. Technical details of the de-
rivations can be found in the supplementary material
(Appendix A.1). It is important to note here that Equa-
tion (9) is obtained by solving the optimization pro-
blem (7) without considering the positivity constraint
on A. Despite this, (when µη < 1

2 ) the obtained A is
symmetric and positive (compare to [13]), and hence
the learned matrix-valued multi-view kernel is valid.
If so desired, it is also possible to learn the weights

w. For fixed g and A the solution for w is

w = (ZTZ)−1ZTy, (10)

where Z ∈ Rn×v is filled columnwise from Hg.
Our MVML algorithm thus iterates over solving A,

g and w if weights are to be learned (see Algorithm 1,
version a). The complexity of the algorithm is O(v3n3)
for it computes the inverse of the nv × nv matrix A,
required for calculating g. We will show later how to re-
duce the computational complexity of our algorithm via
Nyström approximation, while conserving the desirable
information about the multi-view problem.

3.3 Illustration
We illustrate with simple toy data the effects of lear-

ning both within- and between-view metrics. We com-
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Figure 1 – Simple two-view dataset and its transformations - left : original data where one of the views is
completely generated from the other by a linear transformation (a shear mapping followed by a rotation), left
middle : MKL transformation, right middle : MVML transformation and right : OKL transformation. MVML
shows a linear separation of classes (blue/pale red) of the views (circles/triangles), while MKL and OKL do not.

pare our method, MVML, to MKL that considers only
within-view dependencies, and to output kernel lear-
ning (OKL) [8, 9] where separable kernels are learnt. We
generated an extremely simple dataset of two classes
and two views in R2, allowing for visualization and
understanding of the way the methods perform classi-
fication with multi-view data. The second view in the
dataset is completely generated from the first, through
a linear transformation (a shear mapping followed by
a rotation). The generated data and transformation
arising from applying the algorithms are shown in Fi-
gure 1. The space for transformed data is R2 since we
used linear kernels for simplicity. Our MVML is the only
method giving linear separation of the two classes. This
means that it groups the data points into groups based
on their class, not view, and thus is able to construct a
good approximation of the initial data transformations
by which we generated the second view.

3.4 Rademacher complexity bound

We now provide a generalization analysis of MVML
algorithm using Rademacher complexities [2]. The no-
tion of Rademacher complexity has been generalizable
to vector-valued hypothesis spaces [18, 27, 24]. Previous
work has analyzed the case where the matrix-valued
kernel is fixed prior to learning, while our analysis
considers the kernel learning problem. It provides a
Rademacher bound for our algorithm when both the
vector-valued function f and the metric between views
A are learnt. We start by recalling that the feature map
associated to the matrix-valued kernelK is the mapping
Γ : X → L(Y,H), where X is the input space, Y = Rv,
and L(Y,H) is the set of bounded linear operators from
Y to H (see, e.g., [19, 7] for more details). It is known
that K(x, z) = Γ(x)∗Γ(z). We denote by ΓA the feature
map associated to our multi-view kernel (Equation 4).

The hypothesis class of MVML is

Hλ = {x 7→ fu,A(x) = ΓA(x)∗u : A ∈ ∆, ‖u‖H ≤ β},

with ∆ = {A : A � 0, ‖A‖F ≤ α} and β is a regu-
larization parameter. Let σ1, . . . ,σv be an iid family
of vectors of independent Rademacher variables where
σi ∈ Rv, ∀ i = 1, . . . , n. The empirical Rademacher
complexity of the vector-valued class Hλ is the function
R̂n(Hλ) defined as

R̂n(Hλ) =
1

n
E

[
sup
f∈H

sup
A∈∆

n∑
i=1

σ>i fu,A(xi)

]
.

Theorem 1. The empirical Rademacher complexity of
Hλ can be upper bounded as follows :

R̂n(Hλ) ≤
β
√
α‖q‖1
n

,

where q =
(
tr(K2

l )
)v
l=1

, and Kl is the Gram matrix
computed from the training set {x1, . . . , xn} with the
kernel kl defined on the view l. For kernels kl such that
tr(K2

l ) ≤ τn, we have

R̂n(Hλ) ≤ β
√
ατv

n
.

The proof for the theorem can be found in the sup-
plementary material (Appendix A.2). Using well-known
results [22, chapter 10], this bound on Rademacher com-
plexity can be used to obtain a generalization bound for
our algorithm. It is worth mentioning that in our multi-
view setting the matrix-valued kernel is computed from
the product of the kernel matrices defined over the views.
This is why our assumption is on the trace of the square
of the kernel matrices Kl. It is more restrictive than
the usual one in the one-view setting (tr(Kl) ≤ τn),
but is satisfied in some cases, like, for example, for dia-
gonally dominant kernel matrices [25]. It is interesting
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to investigate whether our Rademacher bound could be
obtained under a much less restrictive assumption on
the kernels over the views, and this will be investigated
in future work.

3.5 Block-sparsity and efficient imple-
mentation via block-Nyström ap-
proximation

In this section we consider variant of our formulation
(6) which allows block-sparse solutions for the metric
matrix A, and further show how to reduce the com-
plexity of the required computations for our algorithms.

Block-sparsity We formulate a second optimization
problem to study the effect of sparsity over A. Instead
of having for example l1-norm regularizer over the whole
matrix, we consider sparsity on a group level so that
whole blocks corresponding to pairs of views are put to
zero. Intuitively, the block-sparse result will give insight
as to which views are interesting and worth taking
into account in learning. For example, by tuning the
parameter controlling sparsity level one could derive,
in some sense, an order of importance to the views and
their combinations. The convex optimization problem
is as follows

min
A,c

‖y − (wT ⊗ In)HAHc‖2 + λ 〈HAHc, c〉

+ η
∑
γ∈G
‖Aγ‖F , (11)

where we have a l1/l2-regularizer over set of groups G
we consider for sparsity. In our multi-view setting these
groups correspond to combinations of views ; e.g. with
three views the matrix A would consist of six groups :

We note that when we speak of combinations of views
we include both blocks of the matrix that this combi-
nation corresponds to. Using this group regularization,
in essence, allows us to have view-sparsity in our multi-
view kernel matrix.

To solve this optimization problem we introduce the
same mapping as before, and obtain the same solution
for g and w. However (11) does not have an obvious
closed-form solution for A so it is solved with proximal
gradient method, the update rule being

[Ak+1]γ = (12)(
1− η

‖[Ak − µk∇h(Ak)]γ‖F

)
+

[Ak − µk∇h(Ak)]γ ,

where µk is the step size, h(Ak) = λ
〈
g, (Ak)†g

〉
, and

∇h(Ak) = −λ(Ak)−1ggT (Ak)−1.
We note that even if we begin iteration with positive

definite (pd) matrix the next iterate is not guaranteed
to be always pd, and this is the reason for omitting
the positivity constraint in the formulation of sparse
problem (Equation 11). Nevertheless all block-diagonal
results are pd, and so are other results if certain condi-
tions hold. In experiments we have observed that the
solution is positive semidefinite. The full derivation of
the proximal algorithm and notes about positiveness of
A are in supplementary material (Appendix A.1).

Nyström approximation As a way to reduce the
complexity of the required computations we propose
using Nyström approximation on each one-view ker-
nel matrix. In Nyström approximation method [30],
a (scalar-valued) kernel matrix M is divided in four
blocks,

M =

[
M11 M12

M21 M22

]
,

and is approximated by M ≈ QW†QT , where Q =[
M11 M12

]T and W = M11. Denote p as the number
of rows of M chosen to build W. This scheme gives a
low-rank approximation of M by sampling p examples,
and only the last block, M22, will be approximated.

We could approximate the block kernel matrix K di-
rectly by applying the Nyström approximation, but this
would have the effect of removing the block structure
in the kernel matrix and consequently the useful multi-
view information might be lost. Instead, we proceed in
a way that is consistent with the multi-view problem
and approximate each kernel matrix defined over one
view as Kl ≈ QlW

†
lQ

T
l = Ql(W

†
l )

1/2(W†
l )

1/2QT
l =

UlU
T
l ,∀ l = 1, . . . , v. The goodness of approximation is

based on the p chosen. Before performing the approxi-
mation a random ordering of the samples is calculated.
We note that in our multi-view setting we have to im-
pose the same ordering over all the views. We introduce
the Nyström approximation to all our single-view ker-
nels and define U = blockdiag(U1, · · · ,Uv). We can
now approximate our multi-view kernel (5) as

K = HAH ≈ UUTAUUT = UÃUT ,

where we have written Ã = UTAU. Using this scheme,
we obtain a block-wise Nyström approximation of K
that preserves the multi-view structure of the kernel
matrix while allowing substantial computational gains.
We introduce Nyström approximation into (6) and
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(11) and write g̃ = ÃUT c, resulting in

min
Ã,g̃,w

‖y − (wT ⊗ In)Ug̃‖2 + λ〈g̃, Ã†g̃〉 (13)

+ η‖Ã‖2F , s.t. Ã � 0

and

min
Ã,g̃,w

‖y − (wT ⊗ In)Ug̃‖2 + λ〈g̃, Ã†g̃〉 (14)

+ η
∑
γ∈G
‖Ãγ‖F .

We note that the optimization problems are not strictly
equivalent to the ones before ; namely we impose the
Frobenius norm regularization over Ã rather than over
A. The obtained solution for (13) will again satisfy
the positivity condition when µη < 1

2 . For the sparse
solution the positivity is unfortunately not always gua-
ranteed, but is achieved if certain conditions hold.

We solve the problems as before, and obtain :

g̃ = (UT (wT⊗In)T (wT⊗In)U+λÃ†)−1UT (wT⊗In)Ty,
(15)

Ãk+1 = (1− 2µη) Ãk + µλ(Ãk)†g̃g̃T (Ãk)†, (16)

and
w = (Z̃T Z̃)−1Z̃Ty. (17)

Here Z̃ ∈ Rn×v is filled columnwise from Ug̃. For our
block-sparse method with we get update rule

[Ãk+1]γ = (18)1− η∥∥∥[Ãk − µk∇f(Ãk)]γ

∥∥∥
F


+

[
Ãk − µk∇f(Ãk)

]
γ
,

where ∇f(Ãk) = −λ(Ãk)−1ggT (Ãk)−1 and µk is the
step size.
We follow the same algorithm than before for calcu-

lating the solution ; now over Ã and g̃ (Algorithm 1,
version b). The complexity is now of order O(v3p3)
rather than O(v3n3), where p � n is the number of
samples chosen for the Nyström approximation in each
block. From the obtained solution it is possible to cal-
culate the original g and A if needed.

To also reduce the complexity of predicting with our
multi-view kernel framework, our block-wise Nyström
approximation is used again on the test kernel matrices
Ktest
s computed with the test examples. Let us recall

that for each of our single-view kernels, we have an
approximation K ≈ UsU

T
s = QsW

†
sQ

T
s . We choose

Qtest
s to be p first columns of the matrix Ktest

s , and
define the approximation for the test kernel to be

Ktest
s ≈ Qtest

s W†
sQ

T
s = Qtest

s

(
W†

s

)1/2
UT
s .

In such an approximation, the error is in the last n− p
columns of Ktest

s . We gain in complexity, as if forced to
use the test kernel as is, we would need to calculate A
from Ã in O(vn3) operations.

4 Experiments

Here we evaluate the proposed multi-view metric
learning (MVML) method on real-world datasets and
compare it to relevant methods. The chosen datasets
are "pure" multi-view datasets, that is to say, the view
division arises naturally from the data.
We perform two sets of experiments with two goals.

First, we evaluate our method in regression setting
with a large range of Nyström approximation levels in
order to understand the effect it has on our algorithm.
Secondly, we compare MVML to relevant state-of-the-
art methods in classification. In both cases, we use non
multi-view methods to justify the multi-view approach.
The methods we use in addition to our own are :

— MVML_Cov and MVML_I : we use pre-set
kernels in our framework : MVML_Cov uses the
kernel from [14] and MVML_I refers to the case
when have only one-view kernel matrices in the
diagonal of the multi-view kernel. 2

— lpMKL is an algorithm for learning weights for
MKL kernel [16]. We apply it to kernel regression.

— OKL [8, 9] is a kernel learning method for sepa-
rable kernels.

— MLKR [29] is an algorithm for metric learnig in
kernel setting.

— KRR and SVM : We use kernel ridge regression
and support vector machines with one-view as
well as in early fusion (ef) and late fusion (lf)
in order to validate the benefits of using multi-
view methods.

We perform our experiments with Python, but for OKL
and MLKR we use the MATLAB codes provided by
authors 3. In MVML we set weights uniformly to 1

v .

2. Code for MVML is available at https ://lives.lif.univ-
mrs.fr/ ?page_id=12

3. https ://www.cs.cornell.edu/∼kilian/code/code.html
and https ://github.com/cciliber/matMTL.
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Figure 2 – Regression on Sarcos1-dataset. Left : normalized mean squared errors (the lower the better), middle :
R2-score (the higher the better), right : running times ; as functions of Nyström approximation level (note the
logartithmic scales). The results for KRR are calculated without approximation and are shown as horizontal
dashed lines. Results for view 2 and early fusion are worse than others and outside of the scope of the two plots.

For all the datasets we use Gaussian kernels, k(x, z) =
exp(− 1

2σ2 ‖x− z‖2).

4.1 Effect of Nyström approximation

For our first experiment we consider SARCOS-
dataset 4, where the task is to map a 21-dimensional
input space (7 joint positions, 7 joint velocities, 7 joint
accelerations) to the corresponding 7 joint torques. Here
we present results to the first task.

The results with various levels of Nyström approxima-
tion - averaged over four approximations - from 1% to
100% of data are shown in Figure 2. Regularization pa-
rameters were cross-validated over values λ ∈ [1e-08, 10]
and η ∈ [1e-04, 100]. Kernel parameter γ = 1/2σ2 was
fixed to be 1/number of features as a trade-off between
overfitting and underfitting. We used only 1000 data
samples of the available 44484 in training (all 4449 in
testing) to be feasibly able to show the effect of approxi-
mating the matrices on all levels, and wish to note that
using more data samples with moderate approximation
level we can yield a lower error than presented here :
for example with 2000 training samples and Nyström
approximation level of 8% we obtain error of 0.3915.
However the main goal of our experiment was to see
how our algorithm behaves with various Nyström ap-
proximation levels and because of the high complexity
of our algorithm trained on the full dataset without
approximation we performed this experiment with low
amount of samples.

The lowest error was obtained with our MVMLsparse
algorithm at 8% Nyström approximation level. All the
multi-view results seem to benefit from using the ap-
proximation. Indeed, approximating the kernel matrices
can be seen as a form of regularization and our results

4. http ://www.gaussianprocess.org/gpml/data.

reflect on that [23]. Overall our MVML learning me-
thods have much higher computational cost with large
Nyström parameters, as can be seen from Figure 2,
rightmost plot. However with smaller approximation
levels with which the methods are intended to be used,
the computing time is competitive.

4.2 Classification results

In our classification experiments we use two real-
world multi-view datasets : Flower17 5 (7 views, 17
classes, 80 samples per class) and uWaveGesture 6 (3
views, 8 classes, 896 data samples for training and 3582
samples for testing). We set the kernel parameter to be
mean of distances, σ = 1

n2

∑n
i,j=1 ‖xi − xj‖. The regu-

larization parameters were obtained by cross-validation
over values λ ∈ [1e-08, 10] and η ∈ [1e-03, 100]. The
results are averaged over four approximations.

We adopted one-vs-all classification approach for mul-
ticlass classification. The results are displayed in Table 1.
The MVML results are always notably better than
the SVM results, or the results obtained with OKL or
MLKR. Compared to MVML, OKL and MLKR accu-
racies decrease more with low approximation levels. We
can see that all MVML methods perform very simi-
larly, sometimes the best result is obtained with fixed
multi-view kernel, sometimes when A is learned.

As an example of our sparse output with MVML we
note that running the algorithm with Flower17 dataset
with 12% approximation often resulted in a spd matrix
as in Figure 3. Indeed the resulting sparsity is very
interesting and tells us about importance of the views
and their interactions.

5. http ://www.robots.ox.ac.uk/∼vgg/data/flowers/17.
6. http ://www.cs.ucr.edu/∼eamonn/time_series_data.
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Table 1 – Classification accuracies± standard deviation. The number after the dataset indicates the level of
approximation of the kernel. The results for efSVM classification for Flower17-dataset are missing as only similarity
matrices for each view were provided. Last column reports the best result obtained when using only one view.

METHOD MVML MVMLsp. MVML_Cov MVML_I lpMKL OKL MLKR

Flower17 (6%) 75.98 ± 2.62 75.71 ± 2.48 75.71 ± 2.19 76.03 ± 2.36 75.54 ± 2.61 68.73 ± 1.95 63.82 ± 2.51
Flower17 (12%) 77.89 ± 2.41 77.43 ± 2.44 77.30 ± 2.36 78.36 ± 2.52 77.87 ± 2.52 75.19 ± 1.97 64.41 ± 2.41
Flower17 (24%) 78.60 ± 1.41 78.60 ± 1.36 79.00 ± 1.75 79.19 ± 1.51 78.75 ± 1.58 76.76 ± 1.62 65.44 ± 1.36
uWaveG. (6%) 92.67 ± 0.21 92.68 ± 0.17 92.34 ± 0.20 92.34 ± 0.19 92.34 ± 0.18 70.09 ± 1.07 71.09 ± 0.94
uWaveG. (12%) 93.03 ± 0.11 92.86 ± 0.26 92.53 ± 0.18 92.59 ± 0.13 92.48 ± 0.21 74.07 ± 0.26 80.22 ± 0.38
uWaveG. (24%) 92.59 ± 0.99 93.26 ± 0.15 92.66 ± 0.05 93.10 ± 0.11 92.85 ± 0.13 76.65 ± 0.33 86.38 ± 0.31

METHOD efSVM lfSVM 1 view SVM

Flower17 (6%) - 15.32 ± 1.94 11.59 ± 1.54
Flower17 (12%) - 23.82 ± 2.38 15.74 ± 1.54
Flower17 (24%) - 38.24 ± 2.31 22.79 ± 0.79
uWaveG. (6%) 80.00 ± 0.74 71.24 ± 0.41 56.54 ± 0.38
uWaveG. (12%) 82.29 ± 0.63 72.53 ± 0.16 57.50 ± 0.17
uWaveG. (24%) 84.07 ± 0.23 72.99 ± 0.06 58.01 ± 0.05

Figure 3 – An example of learned Ã with MVMLsparse
from Flower17 (12%) experiments.

5 Conclusion

We have introduced a general class of matrix-valued
multi-view kernels for which we have presented two me-
thods for simultaneously learning a multi-view function
and a metric in vector-valued kernel spaces. We provided
iterative algorithms for the two resulting optimization
problems, and have been able to significantly lower the
high computational cost associated with kernel methods
by introducing block-wise Nyström approximation. We
have explained the feasibility of our approach onto a
trivial dataset which reflects the objective of learning
the within-view and between-view correlation metrics.
The performance of our approach was illustrated with
experiments with real multi-view datasets by compa-
ring our method to standard multi-view approaches, as
well as methods for metric learning and kernel learning.
Our sparse method is especially promising in the sense
that it could give us information about importance of

the views. It would be interesting to investigate the
applicability of our framework in problems involving
missing data in views, as well as the generalization pro-
perties with the Nyström approximation. We would also
like to continue investigating the theoretical properties
of our sparse algorithm in order to prove the positi-
veness of the learned metric matrix that we observed
experimentally.
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A Appendix

A.1 MVML optimization

Here we go through the derivations of the solutions
A, D and w for our optimization problem. The pre-
sented derivations are for the case without Nyström
approximation ; however the derivations with Nyström
approximation are done exactly the same way.

Solving for g and w

Let us first focus on the case where A and w are
fixed and we solve for g. We calculate the derivative of
the expression in Equation (7) :

d

dg
‖y − (wT ⊗ In)Hg‖2 + λ

〈
g,A†g

〉
=

d

dg
〈y,y〉 − 2〈y, (wT ⊗ In)Hg〉

+ 〈(wT ⊗ In)Hg, (wT ⊗ In)HD〉+ λ〈g,A†g〉
= −2H(wT ⊗ In)Ty

+ 2H(wT ⊗ In)T (wT ⊗ In)Hg + 2λA†g

By setting this to zero we obtain the solution

g = (H(wT⊗In)T (wT⊗In)H+λA†)−1H(wT⊗In)Ty.

As for w when A and g are fixed, we need only to
consider optimizing

min
w
‖y − (wT ⊗ In)Hg‖2. (19)

If we denote that Z ∈ Rn×v is equal to reshaping Hg by
taking the elements of the vector and arranging them
onto the columns of Z, we obtain a following form :

min
w
‖y − Zw‖2. (20)

One can easily see by taking the derivative and setting
it to zero that the solution for this is

w =
(
ZTZ

)−1
ZTy. (21)

Solving for A in (6)

When we consider g (and w) to be fixed in the MVML
framwork (6), for A we have the following minimization
problem :

min
A

λ
〈
g,A†g

〉
+ η‖A‖2F

Derivating this with respect to A gives us

d

dA
λ
〈
g,A†g

〉
+ η‖A‖2F

=
d

dA
λ
〈
g,A†g

〉
+ η tr(AA)

= −λA†ggTA† 7 + 2ηA

Thus the gradient descent step will be

Ak+1 = (1− 2µη) Ak + µλ
(
Ak
)†

ggT
(
Ak
)†

when moving to the direction of negative gradient with
step size µ.

Solving for A in (11)
To solve A from equation (11) we use proximal mini-

mization. Let us recall the optimization problem after
the change of the variable :

min
A,g,w

‖y − (wT ⊗ In)Hg‖2 + λ〈g,A†g〉

+ η
∑
γ∈G
‖Aγ‖F ,

and denote
h(A) = λ

〈
g,A†g

〉
and

Ω(A) = η
∑
γ∈G
‖Aγ‖F

for the two terms in our optimization problem that
contain the matrix A.
Without going into detailed theory of proximal ope-

rators and proximal minimization, we remark that the
proximal minimization algorithm update takes the form

Ak+1 = proxµkΩ(Ak − µk∇h(Ak)).

It is well-known that in traditional group-lasso situation
the proximal operator is

[proxµkΩ(z)]γ =

(
1− η

‖zγ‖2

)
+

zγ ,

where z is a vector and + denotes the maximum of
zero and the value inside the brackets. In our case we
are solving for a matrix, but due to the equivalence of
Frobenious norm to vector 2-norm we can use this exact
same operator. Thus we get as the proximal update

[Ak+1]γ =(
1− η

‖[Ak − µk∇h(Ak)]γ‖F

)
+

[Ak − µk∇h(Ak)]γ ,

7. Matrix cookbook (Equation 61) : https://www.math.
uwaterloo.ca/~hwolkowi/matrixcookbook.pdf.

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf


where

∇h(Ak) = −λ(Ak)−1ggT (Ak)−1.

We can see from the update fromula and the deriva-
tive that if Ak is a positive matrix, the update without
block-multiplication, Ak − µk∇h(Ak), will be positive,
too. This is unfortunately not enough to guarantee the
general positivity of Ak+1. However we note that it is,
indeed, positive if it is block-diagonal, and in general
whenever a matrix of the multipliers α

αst =

(
1− η

‖[Ak − µk∇h(Ak)]st‖2

)
+

is positive, then Ak+1 is, too (see [12] for reference -
this is a blockwise Hadamard product where the blocks
commute).

A.2 Proof of Theorem 1

Theorem 1. Let H be a vector-valued RKHS associated
with the the multi-view kernel K defined by Equation 4.
Consider the hypothesis class Hλ = {x 7→ fu,A(x) =
ΓA(x)∗u : A ∈ ∆, ‖u‖H ≤ β}, with ∆ = {A : A �
0, ‖A‖F ≤ α}. The empirical Rademacher complexity
of Hλ can be upper bounded as follows :

R̂n(Hλ) ≤
β
√
α‖q‖1
n

,

where q =
(
tr(K2

l )
)v
l=1

, and Kl is the Gram matrix
computed from the training set {x1, . . . , xn} with the
kernel kl defined on the view l. For kernels kl such that
tr(K2

l ) ≤ τn, we have

R̂n(Hλ) ≤ β
√
ατv

n
.

Proof. We start by recalling that the feature map as-
sociated to the operator-valued kernel K is the mapping
Γ : X → L(Y,H), where X is the input space, Y = Rv,
and L(Y,H) is the set of bounded linear operators from
Y to H (see, e.g., [19, 7] for more details). It is known
that K(x, z) = Γ(x)∗Γ(z). We denote by ΓA the feature
map associated to our multi-view kernel (Equation 4).
We also define the matrix Σ = (σ)ni=1 ∈ Rnv

R̂n(Hλ) =
1

n
E

[
sup
f∈H

sup
A∈∆

n∑
i=1

σ>i fu,A(xi)

]

=
1

n
E

[
sup
u

sup
A

n∑
i=1

〈σi,ΓA(xi)
∗u〉Rv

]

=
1

n
E

[
sup
u

sup
A

n∑
i=1

〈ΓA(xi)σi, u〉H

]
(1)

≤ β

n
E

[
sup
A
‖

n∑
i=1

ΓA(xi)σi‖H

]
(2)

=
β

n
E

sup
A

 n∑
i,j=1

〈σi,KA(xi, xj)σj〉Rv


1
2

 (3)

=
β

n
E
[
sup
A

(〈Σ,KAΣ〉Rnv )
1/2

]
=
β

n
E
[
sup
A
〈Σ,HAHΣ〉1/2

]
=
β

n
E
[
sup
A
tr(HΣΣ>HA)1/2

]
≤ β

n
E
[
sup
A
tr([HΣΣ>H]2)1/4tr(A2)1/4

]
(4)

≤ β

n
E
[
sup
A
tr(H2ΣΣ>)1/2tr(A2)1/4

]
≤ β
√
α

n
E
[
sup
A
tr(H2ΣΣ>)1/2

]
=
β
√
α

n
E
[
tr(H2ΣΣ>)1/2

]
≤ β
√
α

n

(
E
[
tr(H2ΣΣ>)

])1/2

(5)

=
β
√
α

n

(
tr
[
H2 E(ΣΣ>)

])1/2

=
β
√
α

n

√
‖(tr(K1

2), . . . , tr(Kv
2))‖1.

Here (1) and (3) are obtained with reproducing property,
(2) and (4) with Cauchy-Schwarz inequality, and (5)
with Jensen’s inequality. The last equality follows from
the fact that tr(H2) =

∑v
l=1 tr(Kl

2). For kernels kl
that satisfy tr(K2

l ) ≤ τn, l = 1, . . . , v, we obtain that

R̂n(Hλ) ≤ β
√
ατv

n
. �
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