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Abstract

This paper presents an analysis of the aeroelastic galloping of
an elastically mounted square cross section in a free stream.
The classic quasi-steady model [1] is used as a starting point.
From this, the relevant time scales and dimensionless groups
of the problem are derived. The time scale analysis shows that
the mechanism of frequency selection by the oscillating sys-
tem changes for heavy and light bodies. Results from direct
numerical simulations are presented and compared against re-
sults from the simplified quasi-steady model, showing that the
quasi-steady is quantitatively valid for heavy bodies, and at least
generally qualitatively valid for light bodies. Results of exper-
iments on light bodies also show this general qualitative agree-
ment. However, there are also regimes of nonlinear interaction
between the galloping and vortex shedding that the simplified
model cannot capture.

Introduction

Aeroelastic galloping is a classic fluid-structure interaction phe-
nomenon that can occur when a body is immersed in a flow. In
its simplest form, the body needs to be long in a direction per-
pendicular to the flow and have a constant cross section that can
have an angle of attack (such as a square beam, but not a circu-
lar cylinder), and be elastically mounted and free to move trans-
verse to the direction of the flow. The instability is caused by
an interaction between the motion of the body and the aerody-
namic forces on the body (hence the term aeroelastic); if a small
motion away from the body’s equilibrium position transverse to
the flow induces mean transverse (lift) forces in that same di-
rection, the equilibrium position is unstable and the body will
begin to oscillate.

If the body’s transverse velocity is added to the incoming flow
velocity in a vector sense, the body will be at a relative angle
of attack to the total flow. The mean lift force as a function of
the angle of attack can be measured from experiments for the
given body, and so the force on the oscillating body can be writ-
ten as a function of the transverse velocity. Note the reliance
on the mean lift force implies that it is assumed that the motion
of the body is relatively slow, or quasi-steady. Essentially this
means the fluctuations in the lift force due to the vortex shed-
ding in the wake can be ignored. If the body is modelled as a
spring-mass-damper system, this process results in a nonlinear
ordinary differential equation for the body’s transverse motion.

Such a simplified quasi-static model has been developed [1].

For a square cross section can be written as
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where m is the mass of the body, y is the body transverse dis-
placement, c is the mechanical damping coefficient, k is the
spring stiffness, ρ is the fluid density, U is the freestream veloc-
ity, D is the side length of the square, L is the length of the beam,
and the coefficients an are dimensionless coefficients. The value
of these coefficients are determined by fitting a polynomial to
data of the lift force as a function of angle of attack (which is
proportional to the transverse velocity) from static body exper-
iments or simulations.

Here, the validity of this quasi-steady model is investigated. Re-
sults obtained by numerically integrating equation (1) are com-
pared to results from fully-coupled direct numerical simulations
of the fluid-structure interaction problem. It is shown that the
model predicts the motion of the body quantitatively well for
heavy bodies. For light bodies, the match is not as close, how-
ever the simplified model still qualitatively captures the essen-
tial physics of the problem. Results of experiments show that
particular regimes exist where there is strong nonlinear interac-
tion between the galloping and the body motion that cannot be
captured by the model, but outside of these regimes the model
performs reasonably well.

Methodology

Solution of the Quasi-Steady Model

The quasi-steady model shown in equation (1) is a nonlinear
ordinary differential equation for the body displacement. No
full analytical solution of this equation exists, however it can be
simply integrated numerically. The numerical integration of this
equation was performed using the built-in function ODE45 in
MATLAB, given the system properties and the coefficients an.
These coefficients come from fitting a curve to data of lift force
as a function of angle of attack from static body experiments
or simulations. For the data presented here, static body direct
numerical simulations at a Reynolds number Re =UD/ν = 200
where ν is the kinematic viscosity, were conducted.

Direct Numerical Simulations

The aforementioned static body simulations, as well as the
fully-coupled fluid-structure simulations, were performed using
a high-order spectral element method. The spatial discretization



was achieved by dividing the compuational domain into quadri-
lateral elements. Each of these elements was further subdi-
vided using internal points associated with the Gauss-Lobatto-
Legendre quadrature points. High-order tensor-product La-
grange polynomials were used as shape and weighting functions
to solve the weak form of the incompressible Navier–Stokes
equations. The time integration was achieved using a three-
way time-splitting scheme, allowing the advection, pressure,
and diffusion terms to be integrated separately. For the fluid-
structure interaction simulations, the equations were solved in
the frame of reference attached to the body resulting in an extra
acceleration term. This acceleration term was found by solving
the Navier–Stokes equations in conjunction with the equation of
motion of the body, a simple spring-mass-damper system. Full
details of the spectral-element method can be found [2]. Vali-
dation of the code employed here is given in a series of papers
[3, 4].

Experiments

Experiments were conducted in a free-surface recirculating wa-
ter channel, the full details of which are presented in previous
papers [5]. The setup consisted of a rigid square-section alim-
inium tube of side length 24.6mm, hanging vertically mounted
on an air bearing system [6]. The immersed length was 620mm,
giving an aspect ratio of 25.2. The mass ratio of the system
could be varied by adding weights to the mounting system. The
motion of the body was measured using a non-contact magne-
tostrictive linear variable differential transformer (LVDT). The
lift and drag forces were also measured simultaneously with the
body motion using a two-component force balance based on
strain gauges configured in a Wheatstone bridge circuit. Full
details of the setup and measurement techniques employed can
be found elsewhere [7].

Results and Discussion

Relevant Time Scales and Dimensionless Groups

For a simple spring-mass-damper, the natural time scale of the
system is given by the natural frequency. A similar approach
can be taken to the system given in equation (1). If this equation
is linearized by removing all the terms on the right-hand side
except the first, solving for eigenvalues gives

λ1,2 =−
1
2

c− 1
2 ρUDLa1

m
± 1

2

√√√√[c− 1
2 ρUDLa1

m

]2

−4
k
m
.

(2)
If it is further assumed that the spring and damping forces are
relatively weak compared to the aerodynamic forces, (k → 0
and c→ 0) this can be reduced to
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where m∗ is the ratio of the body mass to the mass of displaced
fluid. In this form, λ represents the inverse time scale of the
motion of the body due to the “negative damping” effect of the
mean aerodynamic force.

Using λ to nondimensionalize time so that τ = t(a1/m∗)(U/D),
the quasi-steady model of equation (1) can be written as

Ÿ +
4π2m∗2

U∗2a2
1

Y =

(
1
2
− c∗m∗

a1

)
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The coefficients an are functions only of the geometry, and
the Reynolds number Re = UD/ν, where ν is the fluid kine-
matic viscosity. Therefore, for a given body and flow, the
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Figure 1: Frequency of the galloping response of a square
cylinder, from the quasi-steady model, fluid-structure interac-
tion simulations, and the linearized equation as a function of
the mass-stiffness Π1. (5)

body response is a function of three dimensionless parame-
ters: a mass-stiffness parameter, Π1 = 4π2m∗2/U∗2, a mass-
damping parameter, Π2 = c∗m∗, and the mass ratio m∗, where
U∗ =U/( fND) is the traditional reduced velocity ( fN is the nat-
ural frequency

√
k/m/(2π), and c∗ = cD/mU is a nondimen-

sional damping.

Frequency Response Regimes

Using the nondimensional parameters defined in the previous
section, the eigenvalues of the linearized equation of motion
can be written as
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While the term under the square root remains negative, the
nondimensional eigenvalues λD/U will be complex, and the
imaginary component can be used to define a frequency. This is
essentially a damped natural frequency that takes into account
the negative damping effect of the component of lift force on
the body in phase with the body velocity.

However, if the term under the square root is positive, then
λD/U represents a non-dimensional growth rate of the body
displacement. In this case, no linear frequency is predicted, and
any oscillation that occurs must be driven by a nonlinear mech-
anism.

Inspection of equation (5) shows that for a given value of mass-
damping Π2, there will be a critical value of Π1 above which
the square root term becomes positive and no linear frequency
is predicted.

Figure 1 shows the frequency calculated from the numerical
solution of equation (4), the frequency calculated from fluid-
structure interaction simulations, and the frequency calcuated
from the linearized equation (5). The figure shows that the fre-
quency response can essentially be split into two regimes: a lin-
ear regime where equation (5) accurately predicts the frequency
of oscillation, and a nonlinear regime where equation (5) either
predicts no frequency or poorly predicts the frequency of oscil-
lation.

In the nonlinear regime where the influence of stiffness is neg-
ligible, it can be assumed that the body quickly accelerates to
a terminal velocity and then continues to move at this velocity
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Figure 2: (a) Maximum displacement, (b) maximum velocity
and (c) mean power output of the galloping square cylinder as
a function of Π2 for various values of Π1 calculated from FSI
simulations compared to results from the quasi-steady model.
• Π1 = 10; • Π1 = 60; • Π1 = 250; (-) quasi-steady model,
Π1 = 10.

until the displacement is so large that the spring forces can no
longer be neglected. Assuming small displacements and retain-
ing only up to cubic terms in equation (4), the terminal velocity
can be shown to be

Ẏ =

√
Π2/a1−1/2
a3(a1/m∗)3 (6)

with no explicit dependence on Π1.

Analysis using the Quasi-Steady Model and Numerical Simulations

The quasi-steady model is based on the assumption that only
the long-time forces are important. This assumes the oscilla-
tion is much slower than the vortex shedding. A natural ques-
tion arises; just how well-separated do the oscillation and vor-
tex shedding time scales need to be? How is the accuracy of
the quasi-steady model comprimised as these two time scales
become close?

To assess this, results from numerically integrating equation (4)
are compared to those from direct numerical simulations of the
fluid-structure interaction problem in figure 2. The Reynolds
number used is Re = 200. Two-dimensional static body simu-
lations were conducted to evaluate the coefficients an. A value
of Π1 = 10 has been used for the quasi-steady model. For these
values, the power output of the quasi-steady model is a function
of Π2 only. Two-dimensional fluid-structure interaction (FSI)
simulations were then conducted at the same Re, for a series of
values of Π1.

The results show that while the agreement is generally good, the
power output predicted by the quasi-steady model is less accu-
rate for lower values of m∗. This is not suprising. As the system
mass (and therefore m∗) is decreased, the frequency of the gal-
loping oscillation increases and approaches the vortex shedding
frequency. Because of this convergence of time scales, the vor-
tex shedding can interact nonlinearly with the galloping oscil-
lation. The quasi-steady model is based on the assumption that
this interaction does not occur, and so at low m∗ the underlying
assumption of the model is invalid. However, it appears that
qualitatively, the quasi-steady model is still able to predict the
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1/Π2

Figure 3: Amplitude of oscillation (represented by A10) as a
function 1/Π2, for a series of small m∗. It is clear that the data
do not collapse, indicating a dependence on m∗. Also clear are
plateaux, caused by phase locking between the oscillation and
a multiple of the vortex shedding. • m∗ = 2.64; • m∗ = 5; •
m∗ = 11.31; • m∗ = 15.

shape of the curves, indicating that the oscillation phenomenon
is still similar.

Interaction of Galloping and Vortex Shedding for Light Bodies

This nonlinear interaction is very well highlighted by experi-
ments on light bodies. Figure 3 shows the amplitude of oscilla-
tion (presented as A10, the amplitude exceeded for 10% of the
time) for four values of m∗. The data are plotted against 1/Π2
as this is proportional to the parameter used in classic studies
[1] to present data from high-m∗ experiments.

Is is clear that the data do not collapse, indicating that there is
a dependence on m∗ when m∗ is low. Efforts to collapse the
data in a simple way such as plotting the data as a function of
c∗ (or Π2/m∗) have not been successful. An reasonable ad-
hoc scaling can be found by multiplying 1/Π2 by an arbitrary
factor for each m∗ data set, however even then the collapse is
not perfect.

The main difficulty for any collapse is the appearance of a series
of plateaux or steps in each of the data sets. Focussing on the
m∗ = 2.64 data set in figure 3, there is first a small step around
1/Π2 = 50, a second around 1/Π2 = 120, and a third around
1/Π2 = 180. These steps are caused by nonlinear synchroniza-
tion between the galloping oscillation and an odd-integer mul-
tiple of the vortex shedding. In the first step, there is one vortex
shedding cycle per oscillation cycle, in the second there is three
vortex shedding cycles per oscillation cycle, etc. A full expla-
nation of these cycles is presented elsewhere [7].

However, outside of these steps, the amplitude appears to in-
crease essentially linearly with 1/Π2, similar in fashion to the
high-m∗ data of classic studies [1] and that predicted by the
quasi-steady model.

Conclusions

A timescale analysis has been undertaken of aeroelastic gallop-
ing of a square cross section, and the dimensionless groups de-
rived used to present data from a classic quasi-steady model,
fully-coupled fluid-structure interaction simulations, and exper-
iments. The comparison shows that when the mass of the sys-
tem is high, the response of the body is governed by a single
parameter which is proportional to the product of mass and



damping. At low masses however, the response is also a func-
tion of the mass ratio, apparently due to interaction between
the galloping oscillation and the vortex shedding. Even though
this interaction strictly invalidates the quasi-steady model, this
model still appears to at least qualitatively represent the essen-
tial physics of the oscillation.
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