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Proposition of an Action Layer for Electrum

Electrum is an extension of Alloy that adds (1) mutable signatures and fields to the modeling layer; and (2) connectives from linear temporal logic (with past) and primed variables à la TLA + to the constraint language. The analysis of models can then be translated into a SAT-based bounded model-checking problem, or to an LTL-based unbounded model-checking problem. Electrum has proved to be useful to model and verify dynamic systems with rich configurations. However, when specifying events, the tedious and sometimes error-prone handling of traces and frame conditions (similarly as in Alloy) remained necessary. In this paper, we introduce an extension of Electrum with a so-called "action" layer that addresses these questions.

Introduction

The specification and verification of software and systems are crucial tasks at early development phases. Indeed, the later the detection of an error happens in the development cycle, the more costly it is. This calls for expressive formal specification languages, ideally supported by automatic verification tools. Then, an important issue is the trade-off between the expressiveness of the specification language and the automation degree of the verification. Alloy [START_REF] Jackson | Software Abstractions: Logic, Language, and Analysis[END_REF], one of the main propositions in lightweight formal methods, does not favor one concern over the other. Instead, it gives up on the completeness of the verification: it performs an exhaustive exploration of the system states up to a user-specified depth.

Alloy is based on an extension of first-order logic and offers a rich way to specify structural properties over a system. In [START_REF] Macedo | Lightweight specification and analysis of dynamic systems with rich configurations[END_REF], we proposed Electrum, an extension of Alloy with support for dynamic features based upon linear temporal logic (LTL). Electrum preserves the flexibility of Alloy while easing the specification of behavioral properties and enabling verification over an unbounded temporal horizon. With Electrum, the system behavior is specified using FOLTL formulas. Electrum thus preserves the fully declarative feature of Alloy: there is no "constructive" description of the system, but only the constraints that the system satisfies. However, in practice, it is often convenient to specify the basic actions of the system (which needs little expressiveness in terms of temporal logic) separately from other behavioral requirements, such as the way these actions are ordered (which may need the full expressive power of temporal logic). Relying on this kind of idioms can have several advantages: (1) some part of the behavior, such as the frame conditions or the time model, can be specified in a systematic way; (2) such a description of the evolution of the system is more likely to be exploited by a verification procedure that relies on a model checker.

Thus, still pursuing the goal of allowing the straightforward specification and verification of models featuring rich structure and behavior, we propose here an extension of Electrum with an action layer.

The remainder of the article is organized as follows. In § 2 we present the Electrum framework. In § 3, we define the syntax and semantics of the action layer and illustrate it on an example.

Electrum

Following Alloy, structure in an Electrum specification is introduced through the declaration of signatures, which represent sets of uninterpreted atoms, and fields of arbitrary finite arity, which relate atoms belonging to different signatures. Each of these signatures and fields can be declared as static (by default) or variable (keyword var): the former have the same valuation throughout a given time trace, while the latter are mutable and hence may evolve in time. Hierarchy between signatures (which can additionally be declared as abstract) can be introduced through extension (extends keyword) or inclusion (in). Finally, both signatures and fields may be restricted by simple multiplicity constraints. Notice that for variable elements, these restrictions are applied globally in time.

Additional restrictions can be imposed through facts, axioms that every instance of the specification is required to conform to. Those may rely on reusable predicates and functions. Relational expressions are built by composing signatures and fields (and some built-in constants) with common set-theoretic operators and relational operators like join or transitive closure ^.

Every relational expression can be primed, referring to its valuation in the succeeding state. Atomic formulas are then built as inclusion (or equality) tests of relational expressions, which can be composed through the common Boolean operators, first-order quantifications and future and past LTL operators.

Execution instructions consist of run and check commands restricted by scopes that determine the maximum (or exactly the) number of atoms of each signature that will be considered by the analyses: (1) run instructs the Analyzer to search for an instance satisfying a given constraint; (2) check instructs the Analyzer to prove a given assertion valid (in practice: by checking that it cannot find a counterexample). A protected keyword Time restricts the size of the traces when analysis is performed by bounded model checking (BMC). Note that unbounded model checking (UMC) is still bounded on the atoms in the valuations of signatures. The complete semantics of Electrum can be consulted in [START_REF] Macedo | Lightweight specification and analysis of dynamic systems with rich configurations[END_REF]. 

Extending Electrum with Actions

In this section, we present the syntax and semantics of the action layer. The layer is actually syntactic sugar on top of plain Electrum, therefore the semantics is defined by translation into Electrum. For the sake of readability, we illustrate this translation over an example (Fig. 1) inspired by the classic Alloy Hotel example. The latter specifies a system handling entries in the rooms of a hotel with disposable key-cards carrying cryptographic keys that must match other keys stored in room-door locks to release these and open the rooms.

Specifying behavior in Electrum is completely unrestricted. However, in practice (and as the Hotel example shows), many models are specified using actions (represented as predicates or using the event idiom [START_REF] Jackson | Software Abstractions: Logic, Language, and Analysis[END_REF]) that only relate two consecutive instants. Said otherwise, a large class of Electrum models does not rely on the full power of LTL to specify the valid traces: this logic is mainly useful when specifying additional facts (e.g. fairness properties) or stating properties to evaluate on a model using a run or a check command. Besides, the frame conditions and the time model could be described in a systematic way. Their generation could be automated, depending only on a few parameters (e.g. allowing, or not, simultaneous actions).

In practice, we add to plain Electrum an action syntactic sugar that is optional but committing: if no action is present in a model, then its semantics is fully unrestricted, as usual, but as soon as an action is present, the semantics associated with actions applies. The sugar thus introduces a notion of action. Frame conditions are automatically generated out of a specific parameter of actions. Traces are automatically generated, forcing a specific time model. Finally, the occurrence of an action can be referred to in the syntax of constraints.

Actions and time model

We add an act keyword that introduces a named action, possibly with parameters. Parameters may only be singletons (i.e., no set may be passed as an argument: if this is needed, then a new signature pointing to the said set should be introduced first and then passed as an argument). An action executes atomically and relates two consecutive instants, therefore the only temporal constructs allowed are the after keyword and the prime operator. As in plain Electrum, formulas (from the action body) relating to the "current" instant represent a guard (necessary condition) for the action to occur, and the ones talking about the next instant stand for the post-condition.

The most important semantic constraint in our action layer is that the time model imposes an interleaving semantics: exactly one action is executed every instant. Also, it does not feature stuttering steps by default: if this is needed, the user may define an ad hoc action: act skip {} (with an empty modifies clause).

Actions are translated into a structure of signatures and fields encoding the possible events (action occurrences). We introduce first an _ Action enumeration for all action names. Then we add a relation encoding all possible events by taking the union of all possible valuations of actions (as actions may differ in arity, we pad them to the highest arity with a dummy signature). Simultaneously, we specify the time model by forcing exactly one event to occur at every instant. Finally, a fact states the effect of every action when it is fired (cf. p. 4): Frame Conditions An action can specify, using a modifies clause, which variable signatures and fields it controls. In practice, this allows the automatic generation of frame conditions under a simple rule saying that any variable signature or field that is not controlled by an action is left unchanged by this action. E.g., the checkout action (see Fig. 1 l. 23-25) controls the occupant field only, inducing that current, lastKey and gkeys do not change when this action fires. On the other hand, notice every action is responsible for handling the frame conditions for the variable constructs declared in its modifies clause.

Referring to Actions in Constraints Any occurrence of an action can be referred to in a constraint, with actual parameters (e.g. as entry[g,r,k] in Fig. 1 l. 37) or without (in which case, there is an implicit existential quantification over all parameters). For instance, after checkout actually means: after (some g: Guest | checkout[g]). To allow this, we generate a fired predicate saying whether an action is indeed fired. As actions may take parameters of different types, the fired predicate profile accepts arguments in the union of all these types. Again, its arity is the highest arity for actions. 

Related Work and Conclusion

TLA + inspired Electrum in general, and its action layer in particular. However, significant differences between TLA + and plain Electrum have already been pointed out in [START_REF] Macedo | Lightweight specification and analysis of dynamic systems with rich configurations[END_REF]. Moreover, our proposition slightly differs as Electrum is stuttering sensitive and the time model is forced. The enhancement of Alloy with behavior [3,1,6,7,2] has been widely studied. Among these propositions, DynAlloy [3] defines a syntax for actions similar to ours, but the semantics differs in the time model and in the firing of actions. Besides, all these frameworks propose in the end a translation into plain Alloy and thus, they only offer verification over a bounded temporal horizon. In our experience, using the Electrum action layer makes the behavior specification both easier (specifying the actions, and reasoning about their occurrence, is quite natural) and less error-prone because part of the behavior specification is automatically generated. We benchmarked (not shown due to lack of space) the action layer on examples coming from the Alloy literature: w.r.t. plain Electrum, the efficiency of analyses is often reduced for valid properties, but still acceptably. In the future, we intend to assess several new compilation strategies (and perhaps semantics) to improve the efficiency.
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  Room<:keys in Room lone→ Key } 8 one sig Desk { 9 var lastKey: Room → lone Key, 10 var occupant: Room → Guest } 11 sig Guest { var gkeys: set Key } 12 . . . 13 fun nextKey[k: Key, ks: set Key] : set Key { 14 min[nexts[k] & ks] } 15 16 act checkin[g: Guest, r: Room, k: Key] 17 modifies gkeys, occupant, lastKey { 18 no r (Desk occupant) 19 k = nextKey[r (Desk lastKey), r keys] 20 gkeys' = gkeys + g → k 21 Desk occupant' = Desk occupant + r→g 22 Desk lastKey' = Desk lastKey ++ r→k } 23 act checkout[g: Guest] modifies occupant { 24 some Desk occupant g 25 Desk occupant' = Desk occupant -Room→g } 26 . . .

Fig. 1 .

 1 Fig. 1. Hotel example in Electrum with actions (syntax additions are underlined).

  enum _ Action { checkin, checkout, . . . } // action names one sig _ Dummy {} one sig _ E { // simply an enclosing signature for _ event var _ event:(checkin → Guest → Room → Key) + (checkout → Guest → _ Dummy → _ Dummy) + . . . //other possible events } { one _ event } // time model fact { always { // effect of every action when it is fired: all g : Guest, r : Room, k : Key { fired[checkin, g, r, k] implies . . . / * checkin body * / } . . . / * the same for other actions * / } }

  var sig _ Arg = _ Dummy + Guest + Room + Key {} // union of all types pred fired [a : _ Action, x1, x2, x3 : _ Arg] { // if max arity = 3 a→x1→x2→x3 in _ E _ event } This way, entry[g,r,k] (Fig. 1 l. 37) translates to fired[entry, g, r, k].
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