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Abstract

This paper addresses the problem of noise reduction in non-stationary sig-

nals. The paper first describes an improved human physiology based time-

frequency (TF) representation (HPTF ) using Mel filterbanks. Then, an im-

proved noise reduction algorithm is presented, which does not require any a

priori information about the signal of interest and the noise. This efficient

noise reduction algorithm is implemented using an original wavelet shrinkage

method. The overall method results in an original denoised TF represen-

tation called denoised HPTF (DHPTF ). From this representation one can

reconstruct a denoised time-domain signal and therefore define a new noise

reduction algorithm, whose performance is evaluated and compared with

state-of-the-art methods. The performance assessment uses several criteria:

(1) signal-to-noise-ratio (SNR), (2) segmental SNR (SSNR) and (3) mean

square error (MSE). The results indicate an improvement of up to 4.72 dB
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w.r.t the SNR, 2.79 dB w.r.t the SSNR and 4.72 dB w.r.t the MSE for a

speech database signals corrupted with four different noises. In addition,

other applications such as EEG signal enhancement show promising results.

Keywords:

Time-frequency analysis, psycho-acoustic model, noise reduction, signal

enhancement, wavelet thresholding, Mel filterbank.

1. Introduction

Most real signals are non-stationary, however traditional time-domain

or frequency-domain representations are inadequate to analyze such signals

because they assume the signal as stationary. Instead, one can use joint

time-frequency (t, f) representations as they were found to be better to pro-

cess such signals. Two family of time-frequency (TF) methods have been

widely used in the state-of-the-art: (1) linear TF and (2) quadratic TF rep-

resentations [1, 2, 3]. Linear methods such as short-time Fourier transform

(STFT) are the most used in practice because they are cross-terms free (when

components are spaced enough in the TF domain [1, Section 4.1]) and com-

putationally efficient [4]. The main drawback of these types of representa-

tions are their poor resolution performance. Quadratic methods have shown

improved resolution performance but generally they required the setting of

several parameters to obtain a good trade-off between resolution performance

and cross-terms suppression [1]. Therefore, it could be difficult for a non-

expert to get the best TF representation; in addition optimal parameters

are generally signal dependent, therefore such methods are not suitable for

an automatic classification system (e.g. automatic speech recognition). To
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overcome the last limitation, signal dependent kernel methods have been de-

veloped with automatic parameters selection [5, 6], however these methods

are not computationally efficient for long duration signals (e.g. speech sig-

nals).

Another difficulty for the processing of real signals is that they are generally

corrupted by noise. In many applications, such as geophysics [7, 8], EEG

abnormalities detection [9] or speech recognition [4, 10], efficient signal en-

hancement techniques are required [11]. In the literature, there are several

methods to suppress noise that depend on the knowledge of characteristics of

the useful signal and/or the noise. Some algorithms require a priori knowl-

edge about the signal and noise second order statistics [12], while others only

require knowledge of the noise spectral density (e.g. Wiener filtering) [13].

Unfortunately, in real applications these information are not available and

must be estimated [14]. Other studies made the assumption of Gaussian

or sub-Gaussian noise in order to use wavelet based denoising approaches

[15, 16]. This is a rough assumption, as in real-life there are various noise

sources [17]. Furthermore, in mobile communications, the signal of interest is

speech and it often arises from conversations that take place in noisy and non-

stationary environments such as inside a car, in the street, or inside airports.

In such a case there is no justification to assume Gaussian noise. Therefore,

noise reduction methods based on this ideal assumption may likely fail in

real life applications [18]. Many authors proposed modelling the noise, but

these techniques are application dependent and cannot be used in different

situations [19, 20, 21].

This paper describes an improved denoised TF representation and blind noise

3



reduction method that performs well without prior information about the

signal and noise. The proposed TF representation is based on a psycho-

acoustic TF model and it deals effectively with the non-stationarity of signal

and noise. It is based on the finding that the basilar membrane inside the

cochlea is usually conceived as a bank of band-pass filters that have logarith-

mically increasing bandwidth [22]. In this study, a Mel filterbank is used to

construct the resulting TF representation as it has shown promising results

in modelling the human cochlea [22]. Some of the material presented in this

paper has been presented in [23, 24]; the main contribution of this study is

to design improved algorithm for noise variance estimation with performance

supported by extensive experimental comparisons.

This paper is organized as follows; Section 2 reviews the main principles of

the TF representation based on Mel filters called HPTF . Section 3 describes

a method to reduce noise in the HPTF . After that, Section 4 discusses recon-

structing the signal of interest from the denoised HPTF (DHPTF ). Section

5 presents experiments and discusses the results. Finally, section 6 concludes

the study and summarizes main findings.

2. HPTFrepresentation

2.1. Principle

Previous studies observed that the human ear acts like filters, which are

concentrated only on certain frequencies [25]. Mel filterbank is a psychoa-

coustic model which represents how humans perceives the sound [22]. These

Mel filters are non-uniformly spaced on the frequency axis, with more filters

in the low frequency regions and less in high frequency regions. More pre-
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cisely, Mel filters are triangular shaped filters with respect to the Mel scale.

This scale is given by the following formula for a given frequency f in Hz

[22]:

mel (f) = 2595 log10

(
1 +

f

700

)
. (1)

Thus, the Mel frequency scale is almost linear below 1000 Hz and loga-

rithmic above. If we consider M Mel filters, Hm(f), each of them is centered

on a frequency fm, for m = 2, 3, . . . ,M − 1, and has a bandwidth B(m)

defined as follows:

B(m) = fm+1 − fm−1, ∀m = 2, 3, . . . ,M − 1. (2)

The center frequency fm is calculated from its corresponding center frequency

on the Mel scale using the following inverse formula obtained from Eq. (1):

fm = 700
(
10

mel (fm)
2595 − 1

)
, (3)

where:

mel (fm) =
m

M + 1
(mel (fmax)−mel (fmin)) , ∀m = 1, 2, . . . ,M, (4)

where fmax and fmin correspond respectively to the highest and the lowest

frequencies of the input signal (generally fmin = 0 and fmax = Fs

2 , where Fs

is the sampling frequency).

Therefore, the impulse response hm(t) that corresponds the Mel filter

Hm(f) can be expressed as:

hm(t) =

∫
∞

−∞

Hm(f) e
j2π ft df (5)

=
1

2π2t2

(
cos (2πtfm−1)− cos (2πtfm)

fm−1 − fm
+

cos (2πtfm+1)− cos (2πtfm)

fm − fm+1

)
.
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Fig. 1 shows an example of Mel filter bank for M = 10, fmin = 0 Hz and

fmax = 11025 Hz, while Fig. 2 presents the impulse responses corresponding

to h2(t) and h8(t) respectively.
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Figure 1: Representation of Mel filterbank Hm(f)∀m = 1 . . . 10 with M = 10
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Figure 2: Impulse response corresponding to (a) h2(t) and (b) h8(t)

2.2. HPTF construction

Let z ∈ RN be a vector of N samples containing data, obtained from

an analog signal recorded by sensors and sampled at frequency Fs. This

observation is a superposition of signal of interest s ∈ RN and noise ε ∈ RN :

z = s+ ε. (6)

The mth row of the HPTF shown in Fig. 3, denoted by zm, is the con-

volution product between observation z and the sampled impulse response

hm, ∀{m = 1 . . .M} such that:

zm = z ∗ hm. (7)

By using the linear property of the convolution, zm is the sum of the

filtered signal of interest and the filtered noise, such that:

zm = s ∗ hm + ε ∗ hm = sm + εm. (8)
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Eq. (7) corresponds to a filtering process in the Hm(f) bandwidth, where

Hm(f) is the Mel filter centered on the fm frequency, according to Mel’s scale

(see Fig. 1). Therefore, zm represents the spectral information of the input

signal z around the frequency fm in the time-domain.

One can notice that the number of samples used to describe the impulse

response hm depends on the frequency fm. Fig. 1 shows that Hm(f) band-

width is small for low frequencies, and conversely. As a consequence, the

impulse response time support is smaller for high frequencies than for low

frequencies; this is in accordance with the Heisenberg uncertainty principle

[1, Chapter 2]. Hence, to take into account this specificity, if Lm denotes

the number of samples needed to describe the impulse response, each filter

satisfies the following constraint1:

p > q ⇒ Lp < Lq, ∀(p, q) ∈ {1 . . .M}× {1 . . .M}. (9)

Therefore, it is possible to build a TF representation that extends the

sonogram method [1, Chapter 2]. Each frequency channel corresponds to the

center frequency fm, ∀m = 1 . . .M , by taking the square magnitude of each

filtered data. Applying this process for each time lag n ∈ [1, Lm] provides

the instantaneous power distribution of the signal filtered by the Mel filter

bank:

ρz[k,m] =

∣∣∣∣∣

Lm∑

n=1

z[k − n]hm[n]

∣∣∣∣∣

2

. (10)

Eq. (10) corresponds to the square modulus of a convolution product in

its discrete form. Fig. 3 presents the HPTF representation obtained by

1the number of samples Lm is computed such as 99.9 % of the energy is conserved
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Figure 3: Hearingogram of a speech signal sampled at 8 kHz and corrupted by pink noise

(SNR = 10 dB), with M = 200 Mel filters. This plane contains M ×N pixels.

applying the proposed process to a speech signal sampled at 8 kHz. For this

experiment, the number M of Mel filters considered equals 200.

2.3. Effect of the number of filters

The number of filtersM is the only parameter needed for the construction

of the HPTF . There are two ways to explain the effect of this parameter:

(1) if the number of Mel filters tends towards infinity, the bandwidth B(m)

of each Mel filter, described by Eq. (2), tends towards 0. So that the Mel

filter Hm(f) becomes similar to a Dirac centered on the frequency fm. Thus,

the impulse response hm tends towards a sinusoidal function; therefore the

HPTF reduces to a spectrogram using a rectangular windowing function.
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(2) The higher the number of filters the smaller the width of each filter, which

means that the impulse response needs to be described using more samples;

this results in losing the temporal resolution. Therefore, to set the parameter

M there is a trade-off between time and frequency resolution.

Fig. 4 presents four HPTFplots, with different values of M . For the HPTF ,

presented in Fig. 4a M = 10 (i.e dimension is 10 × N), M equals 20 for

Fig. 4b, 100 for Fig. 4c and 800 for Fig. 4d.

One can see that even with M equal to 10, significant information can be

extracted (see Fig. 4a). Thus it is possible to quickly extract some signal

features useful for signal identification purposes. For a higher number of

Mel filters, as the frequency resolution is higher, more details are visible; in

particular the harmonics are well defined, but at the expense of a poorer time

resolution. Fig. 4d highlights the degradation of time resolution caused by

the extremely high number of filters (M = 800). The next section describes a

method to reduce the noise in the HPTFmethod based on wavelet shrinkage.
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Figure 4: Effect of the number of filters M using (a) 10 Mel filters; (b) 20 Mel filters; (c)

100 Mel filters and (d) 800 Mel filters. (Based on visual inspection one can deduce that

M = 100 filters is a good trade-off between time and frequency resolution quality for this

signal.)

2.4. Characterization of the noise in the HPTF representation

Let us first determine the expected value of the filtered noise εm defined

by:

εm = ε ∗ hm (11)
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so for a given bandwidth frequency, the noise in the (t, f) plane in its

discrete version, is defined by:

εm[k] =
Lm∑

n=1

ε[k − n] hm[n]. (12)

So the expected value of εm is given by :

µ(m)
ε = E {εm[k,m]} (13)

= E

{
Lm∑

n=1

ε[k − n] hm[n]

}

=
Lm∑

n=1

E {ε[k − n]} hm[n],

where E{·} denotes the expectation operator. Assuming that the E {ε[n]} =

ε, ∀n = 1, . . . , N , one can get:

µ(m)
ε = ε

Lm∑

n=1

hm[n]. (14)

Thus from Eq. (5), one can notice that the impulse responses hm are cen-

tered, and therefore the filtered noise εm is zero mean. Now, let us character-

ize the probability density function (PDF) of the filtered noise εm. Assuming

that the smallest impulse response length LM is still large enough, and given

that the convolution product is a sum of random variables, one can invoke

the central limit theorem and approximate the PDF of εm as Gaussian, such

that:

εm[n] ↪→ N (0, σ2
εm) n = 1, . . . , N. (15)

Note that the only assumption made on the noise is that E {ε[n]} = ε; the

PDF of the filtered noise, given in Eq. (15), is a consequence of the trans-

formation done using the HPTF representation. Section 3.1 describes the

method to estimate the variance of εm, denoted by σ2
εm .
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2.5. Noise attenuation based on local integration

To reduce the noise level, one of the most intuitive approaches is to inte-

grate the HPTFalong the time axis by locally averaging the instantaneous

power distribution such as:

ρ(smooth)
z [k0, m] =

1

K

k0+K−1∑

k=k0

ρz[k,m], (16)

where K corresponds to the number of samples used for the denoising

step; the higher this number, the higher the Signal to Noise Ratio (SNR)

gain is but with more signal degradation.
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Figure 5: Illustration of the denoising process based on the smoothing effect as described in

Eq. 16. (a) Without smoothing, (b) with a smoothing of length LM/64 (c) of length LM/8

and (d) of length LM . (One can observe that the best trade-off between the degradation

of signal of interest (by smoothing effect) and noise reduction is obtained when the size of

the smoothing filter K equals LM

8
)

Fig. 5 shows the effect of the proposed smoothing operation using differ-

ent length K of the filter.

Several experiments led to choose K = LM

8 as a good trade-off between SNR

gain and the degradation of the signal of interest. This smoothing operation
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reduces the noise power level but also affects the signal of interest; this is not

convenient for signal interpretation. For this reason, Section 3 presents an

improved approach based on an original wavelet shrinkage method to reduce

noise level while retaining the signal of interest.

3. Denoising of the HPTFprinciple

3.1. Key steps of the denoising method

The denoising algorithm is based on three key steps: (1) Discrete wavelet

transform (DWT) of the noisy data (i.e. a multiresolution analysis) to obtain

a set of wavelet coefficients [26]; (2) application of a thresholding rule to the

wavelet coefficients; (3) estimation of the signal of interest by applying an

inverse DWT to the thresholded wavelet coefficients.

This reduction noise process is applied on the filtered data zm ∀m = 1, . . . ,M .

This method improves the one described in [27] for Gaussian noise reduction;

it is based on five key points, as outlined below:

1. Construction of a TF representation using Eqs. (7) (i.e. computation

of zm for m = 1, . . . ,M);

2. Estimation of a non-constant threshold for each zm, denoted by λm;

3. Wavelet coefficients thresholding;

4. Multiresolution synthesis from thresholded wavelet coefficients to get a

signal approximation ŝm, within the Hm(f) bandwidth;

5. DHPTFconstruction taking the square value of ŝm, for m = 1, . . . ,M .

This method finds an estimate of sm denoted ŝm. The first stage corre-

sponds to the computation of zm (see Eq. (7)) for m = 1, . . . ,M . The second
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stage consists in defining thresholds for wavelet shrinkage. To explain these

steps in detail, let us recall that Eq. (15) shows that the PDF of the filtered

noise εm is centered and Gaussian. Based on this approximation, one can

use the universal threshold [27], which is a simple entropy measure solely

dependent on the number of samples in zm, denoted N , as a threshold to be

applied to the wavelet coefficients.

Then, let us consider a Gaussian white noise samples with unitary variance

filtered by Mel filterbank. Each Mel filter is a band-pass filter; therefore a

white noise filtered by using one filter of the Mel filterbank becomes a colored

noise according to the filter bandwidth B(m). After this step, multiresolution

analysis is applied to each filtered white noise to obtain wavelet coefficients

ζp
m depending on the mth Mel filter and the pth coarse level. Finally, the

standard deviation of ζp
m, denoted by σm

ζ [p], is estimated using the standard

deviation estimator. After this step, one has to estimate the noise power

σεm in zm. This can be achieved using two different algorithms: (1) the

d-dimensional amplitude trimmed estimator (DATE) [28] or (2) the median

absolute deviation (MAD). Finally, the threshold is given by:

λm[p] = σεmσ
m
ζ [p]

√
2 ln(N) (17)

This is a non-constant threshold that depends on the coarse level p and the

bandwidth of the mth filter. Fig. 6a shows an example of threshold λm (see

red plot).

Stage 3 is the application of multiresolution analysis to zm to get the wavelet

coefficients ωp
m for the pth coarse level. Previous studies have shown that

the useful signal is handled by large wavelet coefficients, whereas the noise

is distributed across small coefficients [26]. For this reason, noise in zm can
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be reduced using a thresholding step applied to the wavelet coefficients. The

two next subsections present in detail the MAD and the Date algorithm used

to estimate σεm .

3.1.1. Median Absolute Deviation

The median absolute deviation (MAD) estimator is defined by:

σεm = C ×median(|zm −median(zm)|), (18)

where C is a constant scale factor which depends on the observation. For

Gaussian distribution, C equals 0.6745−1 and corresponds to 1/Φ−1(0.75),

where Φ−1 is the inverse of the cumulative distribution function of the Gaus-

sian distribution [27]. MAD is more robust than the classical moment based

standard deviation estimators in the presence of signal (seen in this case as

outliers).

3.1.2. DATE algorithm

This technique performs trimming by assuming that the signal norms are

above some known lower-bound and that the signal probabilities of occur-

rence are less than one half [28]. The method is summarized, in Algorithm

1. Note that the two parameters that directly influence the estimate σ̂εm of

σεm are the number of observations N and the lower-bound ρ, where ρ can

be defined as in [29]. In addition, ξ(ρ) = cosh−1
(
eρ

2/2
)
and κ = 0.7979 as

specified in [14].
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Algorithm 1 DATE for estimation of noise standard deviation

Inputs:

1. A finite sequence zm = [zm[1], zm[2], . . . , zm[N ]] of real random vari-

ables satisfying the weak-sparseness model

2. A lower-bound ρ

3. A probability value Q ! 1− N
4(N/2−1)2

Constants: nmin = N/2−
√
N/4(1−Q), ξ(ρ), κ

Output: estimate σ̂εm of σεm

Computation of σ̂εm:

Sort zm[1], zm[2], . . . , zm[N ] by increasing norm so that |z(1)m |! |z(2)m |! . . . !

|z(N)
m |

nmin = N/2−
√
N/4(1−Q)

if there exists a smallest integer n in {nmin, . . . , N} such that: |z(n)m |!

(µ(n)/κ) ξ(ρ) < |z(n+1)
m |

n∗ = n

where µ(n) is defined by:

µ(n) =






1
n

n∑

k=1

|z(k)m | if n (= 0

0 if n = 0.

else

n∗ = nmin

end if

σ̂εm = µ(n∗)/κ

18



3.1.3. Thresholding methods

Many approaches exist for wavelet thresholding including the following

most popular methods:

• The hard-thresholding rule [27] which consists in zeroing coefficients

smaller than the threshold while keeping the other ones unchanged:

νp
m[k] =





0, if |ωp

m[k]|< αλm[p]

ωp
m[k], otherwise,

(19)

where k is running from 1 to N
2p (see Figs. 6b and 7c).

• The soft-thresholding rule [15], which scales the remaining coefficients

in order to form a zero mean continuous distribution (see Fig. 7d):

νp
m[k] =





0, if |ωp

m[k]|< αλm[p]

ωp
m[k]− αλm[p] sign(ω

p
m[k]), otherwise,

(20)

where k is taking its values in the same range as in the case of hard-

thresholding rule.

The constant α is a parameter used to further adjust the threshold; the

smaller the SNR gain and the higher α, the stronger the signal of interest

degradation. Therefore, selected coefficients preserve useful signal informa-

tion while noise is strongly attenuated.

Let us now illustrate the output of step 4 in Section 3.1. Let us consider a

noisy speech signal z corrupted by pink noise. Fig. 7a displays the filtered

noisy signal z65; Fig. 7b shows the clean signal s65; Fig. 7c shows the es-

timate of the clean signal ŝ65 obtained by using and hard-thresholding, and
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finally Fig. 7d shows ŝ65 obtained by using soft-thresholding. In this illus-

tration, α equals 1, and Daubechies wavelet of order 4 is used. One can see

the efficiency of the proposed denoising process using the hard-thresolding

rule compared to the result obtained when using the soft-thresholding rule

as the later degrades too much signal of interest.
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Figure 6: (a) Wavelet coefficients ωp
65 and in red the threshold; (b) Thresholded wavelet

coefficients νp
65
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Figure 7: (a) Noisy data z65; (b) Clean data s65 ; (c) Denoised data ŝ65 using hard-

thresholding and (d) Denoised data ŝ65 using soft-thresholding

In the part experiments, objective criteria are used to confirm the visual

inspection given in this section.

3.2. DWT algorithms

Two main algorithms can be used for multiresolution analysis: the pyra-

midal decomposition algorithm [26] and the a trous (”with holes”) algorithm

[30]. The a trous algorithm requires large amount of data to be computed

and stored, which could involve memory problems. Indeed if P denotes the
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number of multiresolution planes, the a trous algorithm applied to zm re-

quires the computation of P ×N wavelet coefficients. In addition, unlike the

pyramidal decomposition, the a trous algorithm does not comply with the

translation invariance property due to its principle based on zero insertion.

For these reasons, pyramidal decomposition is used in this study.

3.3. Multiresolution synthesis to get the DHPTF representation

Stage 4 of the DHPTFconstruction is the multiresolution synthesis of the

thresholded coefficients νp
m to provide ŝm. Finally, in step 5 we square ŝm

for m = 1, . . . ,M to get the DHPTF .

An example of DHPTFof the noisy speech signal is depicted in Fig. 8; the

HPTFof the same signal is given in Fig. 3. One can observe that only the

signal of interest is retained while the noise is strongly attenuated; therefore

this representation is very useful to extract signal relevant features.

22



Frequency (Hz)
200 459 791 1219 1770 2479 3391

Ti
m

e 
(s

)

0

0.5

1

1.5

2

2.5

-80

-70

-60

-50

-40

-30

-20

-10

0

Figure 8: DHPTFof the speech signal presented in Fig. 3

4. Reconstruction of the denoised signal of interest synthesis

In this section, the process of reconstructing a time-domain signal from

the presented Mel (t, f) domain is presented. If we consider the filter H(f)

associated with the whole Mel filterbank, it corresponds to a band-pass:

H(f) =
M∑

m=1

Hm(f) = 1, ∀f ∈ [f1; fM ], (21)

where [mel (fmin); f1[ and ]fM ; mel (fmax)] are the transition widths. In order

to ensure energy conservation, it is necessary to add to H(f), two filters,

H0(f) and HM+1(f), so that:

G(f) = H0(f) +HM+1(f) +H(f) = 1, ∀f ∈

[
0;

Fs

2

]
. (22)
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The impulse responses, h0(t) and hM+1(t), associated with theses filters are

defined by:

h0(t) = f1 sinc
2(f1t), (23)

and

hM+1(t) =
1

π2t2

(
πt sin (πtFs) +

cos (πtFs)− cos (2πtfM)

Fs − 2fM

)
. (24)
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Figure 9: Filter bank (black lines: Mel filters, red lines: additional filters, H0(f) and

HM+1(f), to ensure energy conservation)

Fig. 9 presents the frequency responses associated with G(f), with the

Mel filterbank H(f) in black lines andH0(f) andHM+1(f) in red lines. Thus,

the new filterbank G(f) is an all-pass filter, with an impulse response g(t)

associated with this filter bank approximated by:

g(t) = TF−1[H(f)] ≈ δ(t), (25)
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where δ denotes the Dirac function.

It follows that one can access to data z from the knowledge of its asso-

ciated filtered signal zm by way of a simple summation. Following the same

idea, an approximation of the useful signal ŝ can be obtained from ŝm as:

ŝ =
M+1∑

m=0

ŝm. (26)

This denoising process is depicted in Fig. 10 can be summarized as follows:

1. Initialize ŝ ∈ RN as a null vector;

2. For m equal to 0 to M + 1 do:

• Computation of impulse response hm;

• Computation of zm provided by the convolution product between

z and hm;

• Computation of ωp
m, for p = 1, . . . , P obtained from the DWT of

zm, where P is the number of resolution levels;

• Computation of νp
m obtained after the thresholding operation ap-

plied to ωp
m;

• Construction of ŝm by applying an inverse DWT to the coefficients

νp
m;

• Iterative estimation of ŝ such that: ŝ← ŝ+ ŝm

3. end For loop

Fig. 10 shows the flowgraph of this algorithm.
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Figure 10: Flowgraph of the denoising process

5. Experiments

5.1. Objective criteria

In order to establish an objective comparison, let us define three measures

to evaluate the denoising process efficiency:

• The SNR defined by:

SNR = 10 log10

∑N
n=1 s

2[n]
∑N

n=1 (s[n]− ŝ[n])2
.

• The mean square error (MSE) in dB defined by:

MSE = 10 log10
1

N

N∑

n=1

(s[n]− ŝ[n])2.

where N represents the number of samples of s.
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• The Segmental SNR (SSNR), which is defined as the average of the

SNRl values computed over segments with useful signal activity defined

by:

SSNR =
1

L

L∑

l=1

10 log10

∑N
n=1 s

2
[
n+l(Nw−No)

2

]

∑Nw

n=1

(
s
[
n+l(Nw−No)

2

]
− ŝ

[
n+l(Nw−No)

2

])2 ,

where L represents the number of frames in the signal, Nw the num-

ber of samples per frame and No the number of overlapping samples

between two successive windows.

5.2. Parameters setting

Let us recall the set of parameters of the proposed algorithm: (1) number

of filters M , (2) constant α to adjust the threshold, (3) thresholding rule and

(4) noise standard deviation estimation method (MAD or DATE). In order to

set the parameters of the described DHPTF , we use the clean speech signals

available in the NOIZEUS database [31] (sampled at 8 kHz). We have then

corrupted the speech signals by four different types of noise at SNR level of

5 dB.

First we have fixed α = 1 and the number of filters have been set to M = 100

because it is a good trade-off between time and frequency resolution as shown

in Fig. 7 which shows the effect of the number of filters. The comparison

criteria are: (i) SNR after denoising, (ii) SSNR after denoising and (iii) MSE

between the clean and estimated clean signal. Then, we have compared

the four possible configurations: (1) MAD and hard-thresholding (MADH),

(2) MAD and soft-thresholding (MADS), (3) Date and hard-thresholding

(DateH) and (4) Date and soft-thresholding (DateS). The results, reported
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Table 1: Comparison of the different combinations obtained between the Date, the MAD,

the hard- and soft- thresholding rule. (The bold entries represent the best results obtained

for each criterion).

Noisy MADH MADS DateH DateS

SNR (dB) 5 7.17 3.66 7.66 4.05

SSNR (dB) -1.85 1.13 0.23 1.37 0.37

MSE (dB) -32.38 -34.55 -31.04 -35.03 -31.43

in Table 1, show that the best combination is obtained when using the Date

algorithm combined with hard-thresholding rule.

5.3. Experiment 1: Speech enhancement

5.3.1. Setup

Using the same database as the previous section, this experiment first

corrupted the speech signals with four different types of noise, at six SNR

levels which are 0, 3, 5, 8, 10 and 15 dB. We have compared the proposed

algorithm based on DHPTFwith three state-of-the-art denoising methods.

The first one is the combination of the MMSE-LSA attenuation rule [32]

with decision-directed (DD) a priori SNR estimator described in [33]. The

second one combines the log-MMSE and E-Date noise estimation algorithm

as described in [14]. Finally, the third one is a simple thresholding done

by using a constant threshold fixed empirically and where the noise PSD is

estimated using the median. The algorithms are tuned as follows: α = 0.98

for the DD estimator (as advised in [33]), while the third algorithm threshold

is set at th = 6×σn, where σn the estimated noise PSD. For the computation

of the segmental SNR, the window length is 30 ms (Nw = 240) and the
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Table 2: Comparison of the proposed method with three state-of-the-art denoising methods

by using the SNR, SSNR and the MSE metrics. ( The bold entries represent the best

results).

Noisy TFHP Simple thresholding MMSE˙DD logmmse

SNR (dB) 0 7.08 3.19 4.62 4.66

SSNR (dB) -4.60 0.43 -2.29 -1.72 -1.27

MSE (dB) -27.38 -34.46 -30.57 -32.01 -32.04

SNR (dB) 5 10.28 4.85 6.01 7.10

SSNR (dB) -1.79 2.48 -0.67 -0.27 0.44

MSE (dB) -32.38 -37.66 -32.23 -33.39 -34.48

SNR (dB) 10 13.71 5.63 6.45 9.71

SSNR (dB) 1.37 4.88 0.69 0.94 2.40

MSE (dB) -37.38 -41.08 -33.01 -33.83 -37.09

SNR (dB) 15 17.19 5.94 6.49 12.47

SSNR (dB) 4.86 7.45 1.84 1.94 4.66

MSE (dB) -42.38 -44.57 -33.32 -33.86 -39.85

overlap between two consecutive windows is No =
Nw

4 .

5.3.2. Results

Table 2 presents the results of the experiment; one can see that the

HPTFmethod outperforms all the state-of-the-art methods for all the cri-

teria and all original SNR (before denoising). E.g for an original SNR of 0

dB the SNR of the denoised signal using HPTF is 7.08 dB while it is 4.66

dB when using the log-mmse based method, the SSNR is 0.43 dB while it is
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-1.27 dB for the log-mmse and the MSE is -34.46 dB while it is -32.04 dB

for the log-msse. Figs. 11, 12 and 13 show respectively the SNR, the SSNR

and the MSE after denoising for different SNR and different noises. These

figures confirm the results observed in Table 2.
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Figure 11: Comparison of the SNRs after denoising process with different methods for

signals corrupted by four types of noise: (a) white noise, (b) pink noise, (c) babble noise

and (d) f16 noise.
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Figure 12: Comparison of the segmental SNRs after denoising process with different meth-

ods for signals corrupted by four types of noise: : (a) white noise, (b) pink noise, (c) babble

noise and (d) f16 noise.
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Figure 13: Comparison of the MSE after denoising process with different methods for

signals corrupted by four types of noise: : (a) white noise, (b) pink noise, (c) babble noise

and (d) f16 noise.

5.4. Experiment 2: Simulated EEG signal

Some particular abnormalities of EEG signals (such as seizures) can be

modeled as a sum of multiple chirps of varying amplitudes and IF rates.

Such model was used for EEG seizure detection by TF matched filtering

in [34] and for defining a new high-resolution TFD named multi-directional

TFD (MDD) in [5]. In Experiment 2 we have considered a synthetic multi-
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component signal with significant variation in the instantaneous frequency

(IF) laws of its components. The signal has 256 s duration and is sampled at

32 Hz. In addition, EEG noise has often been modeled using power spectral

density (PSD) that are power law functions of the form 1
fη for 0 ≤ η ≤ 2 [19].

In this study, we have set η = 0.6 and corrupted the simulated EEG signal

such that the SNR is 5 dB. In this experiment, in order to assess only the

denoising process method we propose to use it as a ”black box” and represent

the (t, f) domain of the signals using the spectrogram.

Fig. 14 shows the result of the denoising process where each row contains the

time-domain signal and its corresponding spectrogram. The figures in the

first row represent the clean EEG signal, while the figures on the second row

show the noisy EEG signal and finally the figures on the last row represent

the denoised EEG signal using the HPTFprocess described in this paper.

One can see on Fig. 14 the efficiency of the denoising; even in the case of

low SNR and colored noise, the signal of interest is well preserved while the

noise is strongly reduced.
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Figure 14: HPTFdenoising applied to a simulated EEG signal. (a)-(b) show the time-

domain and the spectrogram of the clean EEG signal; (c)-(d) show the time-domain and

the spectrogram of the noisy signal (5 dB) and (e)-(f) show the time-domain and the

spectrogram of the denoised signal using the proposed HPTFdenoising process.
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6. Conclusion

This paper describes an innovative approach to reduce the noise level

in non-stationary signals. It relies on a time-frequency (TF) representa-

tion based on a psycho-acoustic model which describes human perception

(HPTF ) and its denoised version (DHPTF ). The efficiency of this method

is demonstrated on several types of signals, including speech and simulated

biomedical EEG signals. These experiments show that the DHPTFyields

a good information recovery, thus inducing a better signal interpretation.

One can see on each experiment given that the signal of interest is preserved

while the noise is clearly reduced. With this approach, it becomes possible to

extract patterns of interest more precisely for the purpose of signal identifi-

cation and classification, resulting in a feature extraction stage that provides

useful features based on human perception.

The second part of this study is to reconstruct the signal from the DHPTF ;

it is based a simple and useful process.

The findings of this study indicate that the proposed denoising technique

outperforms three current state-of-the-art algorithms in terms of signal-to-

noise-ratio (SNR), segmental SNR (SSNR) and mean squared error (MSE)

and can be applied to a large class of signals; e.g. the improvment is up to

4.72 dB w.r.t the SNR and the MSE, 2.79 dB w.r.t the SSNR. Therefore, this

algorithm could be of great interest to improve the performance of identifi-

cation systems dealing with non-stationary noisy signals. In future works, it

would be interesting to quantify the improvement in terms of classification

compared to other TF representations and measure the quality of extracted

features from the DHPTF representation [35].
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