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Abstract

This paper generalizes a pivotal result from the PAC-Bayesian literature —the C-bound— primarily
designed for binary classification to the general case of ensemble methods of voters with arbitrary
outputs. We provide a generic version of the C-bound, an upper bound over the risk of models
expressed as a weighted majority vote that is based on the first and second statistical moments of the
vote’s margin. On the one hand, this bound may advantageously be applied on more complex outputs
than mere binary outputs, such as multiclass labels and multilabel, and on the other hand, it allows
us to consider margin relaxations. We provide a specialization of the bound to multiclass classification
together with empirical evidence that the presented theoretical result is tightly bound to the risk of
the majority vote classifier. We also give insights as to how the proposed bound may be of use to
characterize the risk of multilabel predictors.

1 Introduction

Complex Output Prediction It is well known that learning predictive models capable of dealing with
outputs richer than binary outputs (e.g., multiclass or multilabel) and for which theoretical guarantees
exist is still a realm of intensive investigations. From a practical standpoint, a lot of relaxations for learning
with complex outputs have been devised. A common approach consists in decomposing the output space
into “simpler” spaces so that the learning problem at hand is reduced to a few easier (i.e., binary) learning
tasks. For instance, this is the idea spurred by the Error-Correcting Output Codes (Dietterich and Bakiri,
1995) that makes it possible to reduce multiclass or multilabel problems into binary classification tasks
(e.g., Allwein et al. (2001); Mroueh et al. (2012); Read et al. (2011); Tsoumakas and Vlahavas (2007);
Zhang and Schneider (2012)). In our work, we study the problem of complex output prediction by
focusing on prediction functions that take the form of a weighted majority vote over a set of complex
output classifiers that we call voters.

Majority Vote Predictors Studying majority vote predictors actually allows us to provide results
that are applicable to a wide range of classification methods. For instance, ensemble methods—of which
Bagging (Breiman, 1996), Boosting (Schapire and Singer, 1999) and Random Forests (Breiman, 2001) are
representative—can all be seen as majority vote learning procedures (Dietterich, 2000; Re and Valentini,
2012); from this standpoint, our work is also related to that of Cortes et al. (2014), who have proposed
various ensemble methods for the structured output prediction problem. Majority votes are also central to
the Bayesian approach (Gelman et al., 2004) through the notion of Bayesian model averaging (Domingos,
2000; Haussler et al., 1994). Also, most if not all kernel-based predictors, such as the Support Vector
Machines (Boser et al., 1992; Cortes and Vapnik, 1995) may be viewed as weighted majority votes as well:

1

https://www.sciencedirect.com/science/article/pii/S0925231216310177


Morvant, Roy, Laviolette, Ralaivola

for a kernel classifier built from training set {(xi, yi)} and kernel function k, the predicted class for some
input x is usually computed as the sign of

∑
i αi yi k(xi, x), each voter is simply given by x 7→ yik(xi, x).

PAC-Bayesian Analysis of the Risk From a theoretical perspective, as far as binary classification
is concerned, the notion of margin is often the crux to establish the generalization ability of a majority
vote predictor; the margin of a majority vote realized on an example is then defined as the difference
between the total weight of the voters that predicted the correct class minus the total weight given to
the incorrect one. In the PAC-Bayesian framework, which is our working setup, one way to provide
generalization bounds for a majority vote classifier is to relate it to a stochastic classifier, the Gibbs
classifier, whose risk is the weighted risk of the individual voters involved in the majority vote. Up to a
linear transformation, the Gibbs risk is equivalent to the first statistical moment of the margin (Laviolette
et al., 2011; Germain et al., 2015). Folk PAC-Bayesian results can be very accurate when the Gibbs risk
is low, as in the situation where the voters having large weights are performing well (Germain et al.,
2009; Langford and Shawe-Taylor, 2002; McAllester, 2009). However, for general ensemble methods, it is
not unusual to be in the situation where, on the one hand, the voters achieve performances only slightly
above the chance level—which makes it impossible to find weights that induce a small Gibbs risk—and,
on the other hand, the risk of the majority vote itself is very low. Hence, to better capture the accuracy
of a majority vote in a PAC-Bayesian fashion, it is required to consider more than the Gibbs risk, i.e.,
more than only the first statistical moment of the margin. This idea, which has been investigated in the
context of ensemble methods by Blanchard (2004) and Breiman (2001), has been revisited as the C-bound
by Lacasse et al. (2007) in the PAC-Bayesian framework. This bound sheds light on an essential feature
of weighted majority votes: how good the voters individually are is just as important as how correlated
their predictions are; this has inspired a new ensemble method for binary classification with PAC-Bayesian
generalization guarantees named MinCq (Laviolette et al., 2011), whose performances are on par with the
most advanced binary classification methods. In the multiclass setting, there exists one PAC-Bayesian
bound, which is based on the confusion matrix of the Gibbs classifier (Morvant et al., 2012). Kuznetsov
et al. (2014) have proposed an improved Rademacher bound for multiclass prediction that is based on the
notion of the multiclass margin of Breiman (2001) (Definition 1 in the present paper). However, as for
the binary case, these bounds suffer from the same lack of tightness when the voters of the majority vote
perform poorly.

Contributions Here, we generalize the C-bound to more complex situations than mere binary classifi-
cation. We first propose a formulation of the C-bound for ensemble methods in complex output settings.
To do so, we start from complex output predictors, with the objective to build a majority vote predictor
out of these (as, e.g., in Cortes et al. (2014); Li et al. (2013)). This new formulation makes it possible
to generalize all the classification-based results of Lacasse et al. (2007), Laviolette et al. (2011) and Ger-
main et al. (2015). Since for complex output prediction the usual margin relies on the deviation between
the total weight given to the correct output minus the maximal total weight given to the “runner-up”
incorrect one, we base our theory on a notion of margin that is a relevant extension of the usual (binary)
margin. As for binary classification (Lacasse et al., 2007; Laviolette et al., 2011; Germain et al., 2015),
we derive a PAC-Bayesian generalization bound and show how we can estimate such C-bounds from a
sample. Starting from this general theoretical result, we propose specializations suitable for multiclass
classification with ensemble methods based on the true margin and on a relaxation that we call ω-margin.
We report and analyze the behavior of these C-bounds through an empirical study.

Organization of the paper The rest of the paper is organized as follows. Section 2 recalls the binary
C-bound, which is generalized to a more general setting in Section 3. We then specialize this bound to
multiclass prediction and provide empirical results in Section 4.We conclude in Section 5 and we provide
an insight as to how our results might readily be of use to address the multi-label classification.

2 Ensemble Methods in Binary Classification

For binary classification with majority vote-based ensemble methods, we often consider an arbitrary input
space X , an output space Y = {−1,+1} made of two classes, and a set H ⊆ {h : X → [−1,+1]} of voters.
We consider the possibility that a voter outputs any value in [−1,+1], interpretable as a level of confidence
of the voter into the predicted label, which is +1 if the output is positive and −1 otherwise. A voter that
always outputs values in {−1,+1} is called a (binary) classifier. The binary ρ-weighted majority vote

Technical Report V3 2



Morvant, Roy, Laviolette, Ralaivola

Bρ(·) is the classifier returning either of the two options that has obtained the larger weight in the vote,
i.e.,

∀x ∈ X , Bρ(x)
.
= argmax

y∈{−1,+1}
E
h∼ρ

( ∣∣∣h(x)
∣∣∣ I
[

sign
(
h(x)

)
= y
] )

= sign

[
E
h∼ρ

h(x)

]
,

where I[a] = 1 if predicate a is true and 0 otherwise.
Given a training set S = {(xi, yi)}mi=1 of observed data in which each example (xi, yi) ∈ S is inde-

pendently and identically distributed (i.i.d.) according to a fixed yet unknown probability distribution
D over X × {−1,+1}, the learner aims at finding a weigthing distribution ρ on H inducing a low-error
majority vote. In other words, minimizing the true risk

RD(Bρ)
.
= E

(x,y)∼D
I [Bρ(x) 6= y]

of the ρ-weighted majority vote under the 0-1-loss is aimed at. One route towards this goal is to implement
the Empirical Risk Minimization (ERM) principle which consists in minimizing the empirical risk

RS(Bρ)
.
=

1

m

m∑
i=1

I [Bρ(xi) 6= yi]

of the majority vote computed on the training set S. However, a well-known issue to learn such weights
is that the direct minimization of RS(Bρ) is an NP-hard problem. In addition, there are necessary
conditions for the ERM approach to have consistency guarantees; with these conditions failing to be met
learning may be prone to overfitting. To overcome these two issues, we may use relaxations of the risk,
look for estimators or bounds of the true risk that are simultaneously valid for all possible distributions ρ
on H, and try to minimize them. In the PAC-Bayesian theory1, such an estimator is given by the Gibbs
risk

RGibbs
D (Gρ)

.
= E
h∼ρ

RD(h)

of a ρ-weighted majority vote which is simply the ρ-average risk of the voters. Indeed, it is well known
(see, e.g., (McAllester, 1999)) that the risk of the ρ-weighted majority vote Bρ(·) is bounded by twice its
Gibbs risk:

RD(Bρ) ≤ 2RD(Gρ). (1)

With this relation, the PAC-Bayesian theory indirectly gives generalization bounds for ρ-weighted ma-
jority votes. Unfortunately, even if they tightly bound the true risk RGibbs

D (Gρ) in terms of its empirical
counterpart

RGibbs
S (Gρ)

.
= E
h∼ρ

RS(h),

this tightness might not carry over to the bound on the majority vote. Indeed, even if there exist situations
for which Inequality (1) is an equality, ensemble methods (especially when the voters are ‘weak’) build
on the idea that the risk of the majority vote might be way below the average of its voters’ risk. Indeed,
it is notorious that voting may dramatically improve performances when the community of voters tends
to compensate the individual errors. The “classical” PAC-Bayesian framework (McAllester, 1999) does
not make it possible to evaluate whether or not this compensation occurs. To overcome this problem,
Lacasse et al. (2007) proposed not only to take into account the mean of the errors of the associated Gibbs
predictor Gρ, but also its variance, and they proposed a new bound, called the C-bound, that replaces the
loose factor of 2 in Inequality (1). They also extended the PAC-Bayesian theory in such a way that both
the mean and the variance of the Gibbs classifier can be estimated from the training data simultaneously
for all ρ’s. Laviolette et al. (2011) have reformulated this approach in terms of the first and second
statistical moment of the margin realized by the ρ-weighted majority vote, where the margin Mρ(x, y) of
a ρ-weighted majority vote on an example (x, y) ∈ X × Y is

Mρ(x, y)
.
= y E

h∼ρ
h(x).

The proposed result pertains to known results in non-PAC-Bayesian frameworks (e.g., (Blanchard, 2004; Breiman, 2001)).
In terms of margin Mρ(x, y), the C-bound is defined as follows.

1The PAC-Bayesian theory was first introduced by McAllester (1999).
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Theorem 1 (C-bound of Laviolette et al. (2011); Germain et al. (2015)). For every distribution ρ on a
set of voters H, and for every distribution D on X × Y, if E(x,y)∼D yEh∼ρ h(x) > 0, then we have:

RD(Bρ) ≤ 1−

(
E

(x,y)∼D
y E
h∼ρ

h(x)

)2

E
(x,y)∼D

(
y E
h∼ρ

h(x)

)2 = 1−

(
E

(x,y)∼D
Mρ(x, y)

)2

E
(x,y)∼D

M2
ρ (x, y)

.

Proof. First, note that
RD(Bρ) = Pr

(x,y)∼D
(Mρ(x, y) ≤ 0) ,

then to upper bound RD(Bρ), it suffices to upper bound Pr(x,y)∼D (Mρ(x, y) ≤ 0). Making use of the
Cantelli-Chebyshev inequality stating that for any random variable Z,

∀a > 0, Pr
(
Z ≤ E [Z]− a

)
≤ VarZ

VarZ + a2
,

we get the desired result if Z = Mρ(x, y), with a = E(x,y)∼DMρ(x, y) combined with the definition of the
variance. The constraint E(x,y) ∼D yEh∼ρ h(x) > 0 comes from this inequality being valid when a > 0.

The C-bound involves both the ρ-weighted majority vote confidence via E(x,y)(yEh∼ρ h(x)) = E(x,y)Mρ(x, y)

and the average correlation between the voters via E(x,y)(yEh∼ρ h(x))(yEh′∼ρ h
′(x)) = E(x,y)M

2
ρ (x, y). Mi-

nimizing its empirical counterpart appears as a natural solution for learning a distribution ρ leading to a
well-performing binary ρ-weighted majority vote. Moreover, this strategy is justified by a PAC-Bayesian
generalization bound over the C-bound (similar to Theorem 3 of the present paper but restricted to the
case where Y = {−1,+1}), and has given the MinCq algorithm (Laviolette et al., 2011; Germain et al.,
2015).

As announced earlier, we here intend to generalize the C-bound theory to more complex outputs than
binary outputs. Our contributions first consist in generalizing—in Section 3—this important result to a
broader ensemble method setting, along with PAC-Bayesian generalization bounds.

3 A General Setting for Majority Votes over a Set of Complex
Output Voters

In this section, we propose a general setting in which one can consider predicting with ρ-weighted majority
votes. We present a general definition of the margin and propose a C-bound designed for majority vote-
based ensemble methods when one wants to combine complex output predictors (or experts). We recall
that these predictors are assumed to be generated a priori and thus are treated as black boxes. We also
discuss how to estimate this bound from a set S of m examples drawn i.i.d. from D. To do so, we derive
a PAC-Bayesian theorem that bounds the true risk RD(Bρ)of the ρ-weighted majority vote Bρ by using
the empirical estimation of our new C-bound on the training sample S.

3.1 A General C-bound for Complex Output Prediction

Given some input space X and a finite output space Y, we suppose that there exists a feature map
Y : Y → HY , where HY is a vector space such, e.g., a Hilbert space. For the sake of clarity, we suppose
that all the vectors of Im Y .

= Y(Y), the image of Y under Y(·), are unit-norm vectors; most of the
following results remain true without this assumption but have to be stated in a more complicated form.
Let conv(Im Y) (⊆ HY) denote the convex hull of Im Y. We consider a (non-necessarily finite) set of
voters HHH ⊆ {h : X → conv(Im Y)}; we use the bold notation to distinguish hypotheses and functions that
output vector values from the real-valued hypotheses and functions considered in the binary case.

Remark 1. Let us point out that assuming the existence of a feature map Y : Y → HY is frequent in
kernel methods (see, e.g., Cortes et al. (2007); Brouard et al. (2011); Giguere et al. (2014)). Indeed, there
is always such a feature map if one considers an output kernel kY : Y × Y → R. Moreover, considering
that the vectors in Y(Y) are unit-norm is equivalent to assuming that such output kernels kY(·, ·) are
normalized, which can always be done. It is interesting to remark that the “kernel trick” applies here,
hence one can consider the dual form, referring only to the kernel kY(·, ·) and never explicitly use the
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feature map Y(·) that can be very complicated. Finally, a large variety of kernels exists in the literature.
For example, when the output is a string, we have the blended spectrum kernel, the N-gram kernel, the
weighted degree, etc. When the output is a graph or a tree, we have the Tanimoto kernel and many other
convolution/spectral kernels. See Gärtner (2003) for a survey.

For every probability distribution ρ on HHH, we define the ρ-weighted majority vote classifier Bρ such
that:

∀x ∈ X , Bρ(x)
.
= argmin

c∈Y

∥∥∥∥Y(c)− E
h∼ρ

h(x)

∥∥∥∥2
= argmin

c∈Y
‖Y(c)‖2 +

∥∥∥∥ E
h∼ρ

h(x)

∥∥∥∥2 − 2

〈
Y(c), E

h∼ρ
h(x)

〉
,

= argmin
c∈Y

−2

〈
Y(c), E

h∼ρ
h(x)

〉
,

= argmax
c∈Y

〈
Y(c), E

h∼ρ
h(x)

〉
, (2)

where the next-to-last equality comes from ‖Y(c)‖ = 1, ∀c ∈ Y and from Eh∼ρ h(x) being independent
from c. As in the binary classification case, the learning objective in the present framework is to find a
distribution ρ that minimizes the true risk

RD(Bρ) = E
(x,y)∼D

I [Bρ(x) 6= y]

of the ρ-weighted majority vote. Inspired by the margin definition of Breiman (2001), we propose the fol-
lowing generalization of the binary margin, which measures the confidence of a prediction as the deviation
between the voting weights received by the correct prediction and the largest voting weight received by
any incorrect prediction.

Definition 1. For any example (x, y) ∈ X × Y and any distribution ρ on a set of complex output voters
HHH, we define the margin Mρ(x, y) of the ρ-weighted majority vote on (x, y) as

Mρ(x, y)
.
=

〈
E

h∼ρ
h(x) , Y(y)

〉
−max

c∈Y
c6=y

〈
E

h∼ρ
h(x) , Y(c)

〉
. (3)

With this definition at hand, it is obvious that the ρ-weighted majority vote errs on (x, y) if and only
if the margin realized on (x, y) is negative. Therefore, we have:

RD(Bρ) = Pr
(x,y)∼D

(Mρ(x, y) ≤ 0) . (4)

Remark 2. One may retrieve the binary notion of majority vote from our general framework in various
ways, by considering an appropriate feature map Y(·). See A for more details.

Using the proof technique of Theorem 1, we arrive at the following general C-bound.

Theorem 2 (General C-bound). For every probability distribution ρ on a set of voters HHH from X to
conv(Im Y), and for every distribution D on X × Y, if E(x,y)∼DMρ(x, y) > 0 , then we have:

RD(Bρ) ≤ 1−

(
E

(x,y)∼D
Mρ(x, y)

)2

E
(x,y)∼D

M2
ρ (x, y)

.

Proof. Thanks to Equation (4), the proof consists in bounding
Pr(x,y) (Mρ(x, y) ≤ 0) with the Cantelli-Chebyshev inequality as done for Theorem 1.

Remark 3 (On the construction of the set of voters HHH). All our results hold for both extreme cases of
weak voters, as usual in ensemble methods, and that of more expressive/highly-performing voters. Typical
instantiations of the former situation are encountered when making use of a kernel function k : X × X → R
that induces the set of voters HHH = {z 7→ k(x, z) Y(y) | (x, y) ∈ S}; the situation also arises when a set

Technical Report V3 5



Morvant, Roy, Laviolette, Ralaivola

of structured prediction functions learned with different hyperparameters are considered; as evidenced in
Section 4.2 for the multiclass setting, the weak voters may also be decision stumps or (more-or-less shallow)
trees. Combining more expressive voters is a situation that may show up as a need to combine voters
obtained from a primary mechanism. This is for instance the case in multiview learning (Sun, 2013;
Yu et al., 2014) when one want to combine models learned from several data descriptions—note that the
binary C-bound has already shown its relevance in such a situation (Morvant et al., 2014).

3.2 A PAC-Bayesian Theorem to Estimate the General C-bound

In this section, we briefly discuss how to estimate the previous bound from a sample S constituted by m
examples drawn i.i.d. from D. To reach this goal, we derive a PAC-Bayesian theorem that upper-bounds
the true risk RD(Bρ) of the ρ-weighted majority vote by using the empirical estimation of the C-bound
of Theorem 2 on the sample S.

Theorem 3. For any distribution D on X × Y, for any set HHH of voters from X to conv(Im Y), for any
prior distribution π onHHH and any δ ∈ (0, 1], with a probability at least 1−δ over the choice of the m-sample
S ∼ (D)m, for every posterior distribution ρ over HHH, if E(x,y)∼DMρ(x, y) > 0, we have:

RD(Bρ) ≤ 1− max
(
0, µ2

1(S, π, ρ, δ)
)

min
(
1, µ2(S, π, ρ, δ)

) ,
where

µ1(S, π, ρ, δ)
.
=

1

m

∑
(x,y)∈S

Mρ(x, y)−B
√

2

m

[
KL(ρ‖π) + ln

2
√
m

δ/2

]
,

µ2(S, π, ρ, δ)
.
=

1

m

∑
(x,y)∈S

M2
ρ (x, y) +B2

√
2

m

[
2 KL(ρ||π) + ln

2
√
m

δ/2

]
,

and where B ∈ (0, 2] upper-bounds the absolute value of the margin |Mρ(x, y)|, ∀(x, y), and where KL(ρ‖π) = Eh∼ρ ln ρ(h)
π(h)

is the Kullback-Leibler divergence between ρ and π.

Proof. Since we have that h(x) ∈ conv(Im Y), ∀x ∈ X and ‖Y(c)‖ = 1, ∀c ∈ Y, then 〈Eh∼ρ h(x),Y(c)〉 takes
its value in [−1,+1]. It follows from Equation (3) that B = 2 is always an upper bound of |Mρ(x, y)|.

The bound is obtained by deriving a PAC-Bayesian lower bound on
E(x,y)∼DMρ(x, y) and a PAC-Bayesian upper bound on E(x,y)∼D (Mρ(x, y))2. We then use a union bound
argument to make these two bounds simultaneously valid, and the result follows from Theorem 2. These
two bounds and their respective proof are provided in Appendix B, as Theorems 5 and 6.

Unlike with classical PAC-Bayesian bounds and especially those provided for structured output pre-
diction by McAllester (2009), our theorem has the advantage to directly upper bound the risk of the
ρ-weighted majority vote thanks to the C-bound of Theorem 2. Moreover, it allows us to deal with either
the general notion of margin, or surrogate versions thereof, as illustrated in the following.

3.3 A Surrogate for the Margin

The general notion of margin can be hard to exploit in general because of the requirement to compute a
max (the margin value of the runner-up) to be evaluated. We propose to define a simpler surrogate of the
margin, by replacing the second term in Equation (3) by a threshold ω.

Definition 2 (The ω-margin). For any example (x, y) ∈ X × Y, for any distribution ρ on HHH, we define
the ω-margin Mρ,ω(x, y) of the ρ-weighted majority vote realized on (x, y) as

Mρ,ω(x, y)
.
=

〈
E

h∼ρ
h(x) , Y(y)

〉
− ω .

Trivially, the ω-margin always upper-bounds the margin when ω = −1. Moreover, since ∀Y(y) ∈ ImY, ‖Y(y)‖ = 1,
and ∀x ∈ X , Eh∼ρ h(x) ∈ conv(Im Y), then the ω-margin always lower-bounds the margin when ω = 1. We
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will see that in the multiclass setting it is also the case for ω = 1
2 . When the ω-margin lower-bounds the

margin, we can replace it in the C-bound in the following way:

C(Mρ,ω)
.
= 1−

(
E

(x,y)∼D
Mρ,ω(x, y)

)2

E
(x,y)∼D

M2
ρ,ω(x, y)

. (5)

Indeed, in this situation we have:

RD(Bρ) = Pr
(x,y)∼D

(Mρ(x, y) ≤ 0) ≤ Pr
(x,y)∼D

(Mρ,ω(x, y) ≤ 0) .

Therefore, the proof process of Theorem 2 applies if E
(x,y)∼D

Mρ,ω(x, y) > 0.

Note that even for values of ω for which C(Mρ,ω) does not give rise to a valid upper bound of RD(Bρ),
it remains a value of interest as it still captures the behavior of RD(Bρ) simultaneously for many different
values of ρ. We provide some evidence about this in Section 4.2.

We now theoretically and empirically illustrate these results by studying multiclass classification from
our general C-bound perspective.

4 Specializations of the General C-bound to Multiclass Predic-
tion

4.1 From Multiclass Margins to C-bounds

The input space at hand still is X , but the output space Y = {1, . . . , k} now is a finite set of classes (or
categories) k ≥ 2. We define the output feature map Y(·) such that the image of Y is Im Y = {0, 1}k.
More precisely, the image of a label c ∈ Y under Y(·) is the canonical k-dimensional vector (0, . . . , 1, . . . 0)>

whose only nonzero entry is a 1 at its c-th position. The set HHH is a set of multiclass voters h from X to
conv(Im Y). We recall that given a prior distribution π over HHH and an i.i.d. m-sample S (drawn from
D), the goal of the PAC-Bayesian theory is to estimate the prediction ability of the ρ-weighted majority
vote Bρ(·) of Equation (2). In this multiclass setting, since for each class c ∈ Y only the c-th coordinate
of Y(c) is equal to 1, the definitions of the majority vote classifier and the margin can respectively be
rewritten as:

Bρ(x) = argmax
c∈Y

E
h∼ρ

hc(x) ,

and

Mρ(x, y) = E
h∼ρ

hy(x)− max
c∈Y,c6=y

E
h∼ρ

hc(x) ,

where hc(x) is the c-th coordinate of h(x). The following theorem relates the risk of Bρ and the ω-margin
associated to the posterior distribution ρ over HHH.

Theorem 4. Let k ≥ 2 be the number of classes. For every distribution D over X × Y and for every
distribution ρ over a set of multiclass voters HHH, we have:

Pr
(x,y)∼D

(
Mρ,1k

(x, y) ≤ 0
)
≤ RD(Bρ) ≤ Pr

(x,y)∼D

(
Mρ,12

(x, y) ≤ 0
)
.
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(1, 0, 0)> Y(y) = (0, 1, 0)>

(0, 0, 1)>

Multiclass margin

ω-margin (ω = 1/2)

ω-margin (ω = 1/k)

E
h∼ρ

h(x)

Figure 1: Illustration of the multiclass margins. Representation of the multiclass margins and the
vote applied on an example (x, y) ∈ X × Y in the barycentric coordinate system defined by conv(Im Y)
when Y = {1, 2, 3} and the true class y is 2, i.e., (0, 1, 0)>. We have Y(1) = (1, 0, 0)>, Y(2) = (0, 1, 0)>,
and Y(3) = (0, 0, 1)>. Each line is the decision boundary of a margin: the hyperplane where lies each
example with a margin equals to 0. A vote correctly classifies an example if it lies on the same side of the
hyperplane than the correct class.

Proof. First, let us prove the left-hand side inequality. We have:

RD(Bρ) = Pr
(x,y)∼D

(Mρ(x, y) ≤ 0)

= Pr
(x,y)∼D

(
E

h∼ρ
hy(x) ≤ max

c∈Y,c6=y
E

h∼ρ
hc(x)

)
≥ Pr

(x,y)∼D

(
E

h∼ρ
hy(x) ≤ E

c∈Y,c6=y
E

h∼ρ
hc(x)

)

≥ Pr
(x,y)∼D

 E
h∼ρ

hy(x) ≤ 1

k − 1

k∑
c=1,c 6=y

E
h∼ρ

hc(x)


= Pr

(x,y)∼D

(
E

h∼ρ
hy(x) ≤ 1

k − 1

[
1− E

h∼ρ
hy(x)

])
= Pr

(x,y)∼D

(
E

h∼ρ
hy(x)− 1

k
≤ 0

)
= Pr

(x,y)∼D

(
Mρ,1k

(x, y) ≤ 0
)
.

The right-hand side inequality is verified by observing that Bρ necessarily makes a correct prediction if
the weight Eh∼ρ hy(x) given to the correct y is higher than 1

2 .

Consequently, as illustrated in Figure 1, the ω-margin of the points that lie between the 1
k -margin and

the 1
2 -margin can be negative or positive according to ω. We thus have the following bound.

Corollary 1 (ω-margin multiclass C-bound). For every probability distribution ρ on a set of multiclass
voters HHH, and for every distribution D on X × Y, if E(x,y)∼DMρ,12

(x, y) > 0, then we have:

RD(Bρ) ≤ C(Mρ,12
) = 1−

(
E

(x,y)∼D
Mρ,12

(x, y)

)2

E
(x,y)∼D

M2
ρ,12

(x, y)
,

where C(·) is the function involved in the ω-margin-based C-bound (Equation (5)).

The region of indecision when ω ∈ [ 1
k
, 1
2

] implies there is possibly some value of ω to be chosen carefully
to provide a good estimator of the true margin. If this is so, we can consider to make use of C(Mρ,ω) for
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Quantity Pearson correlation

Trivial bound of Equation (1) 0.6709
C(Mρ), the Multiclass (Theorem 2) 0.8758
C(Mρ,ω) with ω = 1/2 (Corollary 1) 0.5535
C(Mρ,ω) with ω = 1/3 + 1/(3k) 0.8811
C(Mρ,ω) with ω = 1/6 + 2/(3k) 0.8950
C(Mρ,ω) with ω = 1/k 0.8627

Table 1: Pearson correlations of the bounds with the risk of the majority vote. All values are evaluated
on the test set T , averaged for 10 random train/test splits.

that particular value of ω to improve the analysis of the majority vote’s behavior. Obviously, in such a
situation, C(Mρ,ω) is no longer a bound on RD(Bρ). However, due to the linearity of the ω-margin, this
could open the way to a generalization of the MinCq algorithm of Laviolette et al. (2011) to the multiclass
setting.

4.2 Experimental Evaluation of the Bounds in the Multiclass Setting

The binary C-bound is known to be well-suited to characterize the behavior of the risk of the ρ-weighted
majority vote, as their respective values are correlated (Lacasse et al., 2007). We extend this analysis
by empirically evaluating the behavior of the multiclass C-bounds introduced above on natural data. We
generate multiclass ρ-weighted majority votes by running a multiclass version of AdaBoost (Freund and
Schapire, 1997)—known as AdaBoost-SAMME2 (Zhu et al., 2009)—on multiclass datasets from the UCI
dataset repository (Blake and Merz, 1998). We split each dataset in two halves: a training set S and a test
set T . We train the algorithm on S, using 100, 250, 500 and 1, 000 decision trees of depth 2, 3, 4 and 5 as
base voters, for a total of 16 majority votes per dataset. We repeat the process for 10 random train/test
splits, and the reported values are all computed on the test set. Figure 2 shows, using 3 of these splits,
how the values of different upper bounds relate with the risk of the majority vote, and how the choice
of ω for various values of C(Mρ,ω) affects the correlation with the risk. We finally report in Table 1 the
Pearson product-moment correlation coefficients for all computed values, using the 10 train/test splits.

As pointed out before, we notice from Figure 2 and Table 1 that for some values ω, the values of
C(Mρ,ω) are highly correlated with the risk of the majority vote. Unfortunately, the only one that is an
upper bound of the latter (ω = 1

2 ) does not show the same predictive power. Thus, these results also give
some empirical evidence that a wise choice of ω can improve the correlation between the C-bound based
on the ω-margin and the risk of the vote.

These experiments confirm the usefulness of the C-bounds based on a notion of margin to upper-
bound the true risk of the ρ-weighted majority vote. Taking into account the first and second statistical
moments of such margins seems effectively very informative. This property is interesting from an algo-
rithmic viewpoint: one may derive a multiclass optimization algorithm generalizing the algorithm MinCq
(Laviolette et al., 2011) by minimizing C(Mρ,ω), with ω considered as a hyperparameter to tune (e.g., by
cross-validation).

5 Conclusion

In the context of binary classification, it is well known that the PAC-Bayesian C-bound offers a tight bound
over the risk of the ρ-weighted majority vote by taking into account the first two statistical moments of
its margin. Moreover, from a practical standpoint, minimizing the C-bound leads to a well-performing
algorithm called MinCq (Laviolette et al., 2011). This paper fills the gap between this binary PAC-Bayesian
bound and more complex tasks by generalizing the C-bound for majority vote over complex output voters,
and by proposing a new surrogate of the margin that is easier to manipulate; we also explain how an
empirical estimation of the C-bound may be related to its expectation thanks to PAC-Bayesian results.
In addition, we show how to specialize our result to multiclass and we provide in C insights as to how
the bound we propose may be instantiated for multilabel classification—thoroughly studying the case of
multilabel classification from the standpoint of the results we have provided, together with accompanying
empirical results would deserve a whole paper.

2We use of the implementation provided in the Scikit-Learn Python library (Pedregosa et al., 2011).
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Figure 2: Empirical results. Comparison of the true risk of the ρ-weighted majority with: the trivial
bound of Equation (1), the C-bound, and C(Mρ,ω) for various values of ω. All the values were calculated
on a test set disjoint from the one used to learn ρ.

Concretely, we think that the theoretical C-bounds provided here are a first step towards developing
ensemble methods to learn ρ-weighted majority vote for complex outputs through the minimization of a
C-bound, or of a surrogate of it. A first solution for deriving such a method could be to study the general
weak learning conditions necessary and sufficient to define an ensemble of structured output voters, as
done by Mukherjee and Schapire (2013) for multiclass boosting. From a theoretical standpoint, we would
like to study how much our generalization bound is robust to label noise as done for example by (Liu and
Tao, 2016).
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A Recovering Binary classification from the General Framework

From the general framework of Section 3, many choices of feature maps Y(·) lead back to binary classifi-
cation. Perhaps the most intuitive choice would be to consider Y : {−1,+1} → R, with Y(+1) = 1 and
Y(−1) = −1, but this choice would give us a margin that do not lie in [−1, 1]. To directly recover the
binary framework of Section 2, one must use the feature map described below.

Let us consider Y : {−1,+1} → R2, with Y(+1) =
(

1√
2
, 1√

2

)>
and Y(−1) =

(
− 1√

2
, 1√

2

)>
. In this

case, each voter h outputs a vector of R2 whose first coordinate h1 is an element of
[
− 1√

2
, 1√

2

]
, and the

second coordinate is always 1√
2
. In this case, we have

Bρ(x) = argmax
c∈{−1,+1}

〈
Y(c) , E

h∼ρ
h(x)

〉
= argmax

c∈{−1,+1}

〈(
1√
2
c, 1√

2

)
,

(
1√
2

E
h∼ρ

√
2h1(x) , 1√

2

)〉
= argmax

c∈{−1,+1}

[
1
2 c E

h∼ρ

√
2h1(x) + 1

2

]
= argmax

c∈{−1,+1}

[
c E
h∼ρ

√
2h1(x)

]
= sign

[
E

h∼ρ

√
2h1(x)

]
.

and

Mρ(x, y) =

〈
E

h∼ρ
h(x) , Y(y)

〉
− max
c∈{−1,+1}

c6=y

〈
E

h∼ρ
h(x) , Y(c)

〉

=

〈
E

h∼ρ
h(x) , Y(y)

〉
−
〈

E
h∼ρ

h(x) , Y(−y)

〉
=

(
1
2 y E

h∼ρ

√
2h1(x) + 1

2

)
−
(
− 1

2 y E
h∼ρ

√
2h1(x) + 1

2

)
= y E

h∼ρ

√
2h1(x) .

As Eh∼ρ
√

2h1(x) represents the “binary” margin that lies in [−1, 1] and y ∈ {−1, 1} is the binary label,
we recover the usual definitions of Section 2.

B The Bounds Required to Prove Theorem 3

Theorem 5. For any distribution D on X×Y, for any set HHH of voters from X to conv(Im Y), for any
prior distribution π on HHH and any δ∈(0, 1], with a probability at least 1−δ over the choice of the m-sample
S∼(D)m, for every posterior distribution ρ over HHH we have :

E
(x,y)∈D

Mρ(x, y) ≥ 1

m

∑
(x,y)∈S

Mρ(x, y)−B
√

2

m

[
KL(ρ‖π) + ln

2
√
m

δ

]
,

where B∈ (0, 2] bounds the absolute value of the margin |Mρ(x, y)| for all (x, y), and KL(ρ‖π)=Eh∼ρ ln ρ(h)
π(h)

is the Kullback-Leibler divergence between ρ and π.

Proof. The following proof shows how to obtain the lower bound on the first moment of Mρ(x, y), and
uses the same notions as the classical PAC-Bayesian proofs.3

Given a distribution D′ on X × Y, for any distribution ρ′ overHHH, we can rewrite E(x,y)∼D′Mρ′(x, y) as

an expectation over ρ′. We denote MD′

h the random variable such that Eh∼ρ′MD′

h = E(x,y)∼D′Mρ′(x, y).

3The reader can refer to (Germain et al., 2009; Seeger, 2003; Catoni, 2007; McAllester, 2003; Germain et al., 2015) for
examples of classical PAC-Bayesian analyses.
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First, we have that Eh∼π exp
[
m

2B2

(
MS

h −MD
h

)2]
is a non-negative random variable. Applying Markov’s

inequality yields that with probability at least 1− δ over the choice of S ∼ (D)m, we have:

E
h∼π

exp
[ m

2B2

(
MS

h −MD
h

)2] ≤ 1

δ
E

S∼Dm
E

h∼π
exp

[ m

2B2

(
MS

h −MD
h

)2]
. (6)

We upper-bound the right-hand side of the inequality:

E
S∼Dm

E
h∼π

exp
[ m

2B2

(
MS

h −MD
h

)2]
= E

h∼π
E

S∼Dm
exp
[ m

2B2

(
MS

h −MD
h

)2]
(7)

= E
h∼π

E
S∼Dm

exp

[
m 2

(
1

2

(
1− 1

B
MS

h

)
− 1

2

(
1− 1

B
MD

h

))2
]

≤ E
h∼π

E
S∼Dm

exp

[
m kl

(
1

2

(
1− MS

h

B

)∥∥∥∥1

2

(
1− MD

h

B

))]
(8)

≤ E
h∼π

2
√
m = 2

√
m. (9)

Line (7) comes from the fact that the distribution π is defined a priori. Since B is an upper bound of

the possible absolute values of the margin, both 1
2

(
1− MS

h

B

)
and 1

2

(
1− MD

h

B

)
are between 0 and 1. Thus

Line (8) is an application of Pinsker’s inequality 2(q − p)2 ≤ kl(q‖p) = q ln q
p + (1 − q) ln 1−q

1−p . Finally,

Line (9) is an application of (?)Theorem 5]m-04.
By applying this upper bound in Inequality (6) and by taking the logarithm on each side, with prob-

ability at least 1− δ over the choice of S ∼ Dm, we have:

ln

(
E

h∼π
exp

[ m

2B2

(
MS

h −MD
h

)2]) ≤ ln

(
2
√
m

δ

)
.

Now, by applying the change of measure inequality proposed by Seldin et al. (?)Lemma 4]seldin-tishby-

10 with φ(h) = m
2B2

(
MS

h −MD
h

)2
, and by using Jensen’s inequality exploiting the convexity of φ(h), we

obtain that for all distributions ρ on HHH:

ln

(
E

h∼π
exp

[ m

2B2

(
MS

h −MD
h

)2]) ≥ E
h∼ρ

m

2B2

(
MS

h −MD
h

)2 −KL(ρ‖π)

≥ m

2B2

(
E

h∼ρ
MS

h − E
h∼ρ

MD
h

)2

−KL(ρ‖π) .

From all what precedes, we have that with probability at least 1 − δ over the choice of S ∼ (D)m, for
every posterior distribution ρ on HHH, we have:

m

2B2

(
E

(x,y)∼S
Mρ(x, y)− E

(x,y)∼D
Mρ(x, y)

)2

−KL(ρ‖π) ≤ ln

(
2
√
m

δ

)
.

The result follows from algebraic calculations.

Theorem 6. For any distribution D on X×Y, for any set HHH of voters from X to conv(Im Y), for any
prior distribution π on HHH and any δ∈(0, 1], with a probability at least 1−δ over the choice of the m-sample
S∼(D)m, for every posterior distribution ρ over HHH we have :

E
(x,y)∈D

(Mρ(x, y))
2 ≤ 1

m

∑
(x,y)∈S

(Mρ(x, y))
2

+B2

√
2

m

[
2KL(ρ||π) + ln

2
√
m

δ

]
,

where B∈ (0, 2] bounds the absolute value of the margin |Mρ(x, y)| for all (x, y), and KL(ρ‖π)=Eh∼ρ ln ρ(h)
π(h)

is the Kullback-Leibler divergence between ρ and π.

Proof. This proof uses many notions that are usual in classical PAC-Bayesian proofs, but the expectation
over single voters is replaced with an expectation over pairs of voters. Given a distribution D′ on X×Y,
for any distribution ρ′2 over HHH, we rewrite E(x,y)∼D′(Mρ′(x, y))2 as an expectation over ρ′2. Let MD′

h,h′ be

the r.v. such that E(h,h′)∼ρ′2 M
D′
h,h′=E(x,y)∼D′(Mρ′(x, y))2. First, we apply the Markov’s inequality on the
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non-negative r.v. E(h,h′)∼π2 exp
[
m

2B4

(
MS

h,h′−MD
h,h′

)2]
. Thus, we have that with probability at least 1−δ

over the choice of S∼Dm:

E
(h,h′)∼π2

exp

[
m

2B4

(
MS

h,h′−MD
h,h′

)2]
≤ 1

δ
E

S∼(D)m
E

(h,h′)∼π2
exp

[
m

2B4

(
MS

h,h′−MD
h,h′

)2]
. (10)

Then, we upper-bound the right-hand side of the inequality:

E
S∼Dm

E
(h,h′)∼π2

exp

[
m

2B4

(
MS

h,h′ −MD
h,h′

)2]
= E

(h,h′)∼π2
E

S∼Dm
exp

[
m

2B4

(
MS

h,h′ −MD
h,h′

)2]
(11)

= E
(h,h′)∼π2

E
S∼Dm

exp

[
m 2

(
1

2

(
1− 1

B2
MS

h,h′

)
− 1

2

(
1− 1

B2
MD

h,h′

))2
]

≤ E
(h,h′)∼π2

E
S∼Dm

exp

[
m kl

(
1

2

(
1− MS

h,h′

B2

)∥∥∥∥∥1

2

(
1− MD

h,h′

B2

))]
(12)

≤ E
(h,h′)∼π2

2
√
m = 2

√
m. (13)

Line 11 comes from the fact that the distribution π is defined a priori, i.e., before observing S. Since B

upper-bounds the absolute value of the margin, both 1
2

(
1−MS

h,h′
B2

)
and 1

2

(
1−MD

h,h′
B2

)
lie between 0 and 1.

Line 12 is then an application of Pinsker’s inequality4. Finally, Line 13 is an application of (?)Theorem
5]m-04, which is stated to be valid for m ≥ 8, but is also valid for any m ≥ 1.
By applying this upper bound in Inequality (10) and by taking the logarithm on each side, with probability
at least 1− δ over the choice of S ∼ (D)m, we have:

ln

(
E

(h,h′)∼π2
exp

[ m

2B4

(
MS

h,h′ −MD
h,h′
)2]) ≤ ln

(
2
√
m

δ

)
.

Now, we need the change of measure inequality5 of Lemma 1 (stated below) that has the novelty to

use pairs of voters. By applying this lemma with φ(h,h′) = m
2B4

(
MS

h,h′−MD
h,h′

)2
, and by using Jensen’s

inequality exploiting the convexity of φ(h,h′), we obtain that for all distributions ρ on HHH:

ln

(
E

(h,h′)∼π2
exp

[
m

2B4

(
MS

h,h′−MD
h,h′

)2])
≥ E

(h,h′)∼ρ2
m

2B4

(
MS

h,h′−MD
h,h′

)2
−2KL(ρ‖π)

≥ m

2B4

(
E

(h,h′)∼ρ2
MS

h,h′ − E
(h,h′)∼ρ2

MD
h,h′

)2

−2KL(ρ‖π) .

From all what precedes, with probability at least 1 − δ on the choice of S ∼ Dm, for every posterior
distribution ρ on HHH, we have:

m

2B4

(
E

(x,y)∼S
(Mρ(x, y))2 − E

(x,y)∼D
(Mρ(x, y))2

)2

− 2KL(ρ‖π) ≤ ln

(
2
√
m

δ

)
.

The result follows from algebraic calculations.

The change of measure used in the previous proof is stated below.

Lemma 1 (Change of measure inequality for pairs of voters). For any set of votersHHH, for any distributions
π and ρ on HHH, and for any measurable function φ :HHH×HHH 7→ R, we have:

ln

(
E

(h,h′)∼π2
exp

[
φ(h,h′)

])
≥ E

(h,h′)∼ρ2
φ(h,h′)− 2KL(π‖ρ) .

Proof. The proof is very similar to the one of Seldin et al.(?)Lemma 4]seldin-tishby-10, but is defined
using pairs of voters. The first inequality below is given by using Jensen’s inequality on the concave

4The Pinkser inequality is: 2(q − p)2≤kl(q‖p)=q ln q
p

+(1− q) ln 1−q
1−p

5The change of measure is an important step in most PAC-Bayesian proofs (Seldin and Tishby, 2010).
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function ln(·).

E
(h,h′)∼ρ2

φ(h,h′) = E
(h,h′)∼ρ2

ln
(

eφ(h,h
′)
)

= E
(h,h′)∼ρ2

ln

(
eφ(h,h

′) ρ
2(h,h′)
π2(h,h′)

π2(h,h′)
ρ2(h,h′)

)
= KL(ρ2‖π2) + E

(h,h′)∼ρ2
ln

(
eφ(h,h

′) π
2(h,h′)
ρ2(h,h′)

)
≤ KL(ρ2‖π2) + ln

(
E

(h,h′)∼ρ2
eφ(h,h

′) π
2(h,h′)
ρ2(h,h′)

)
≤ KL(ρ2‖π2) + ln

(
E

(h,h′)∼π2
eφ(h,h

′)

)
= 2KL(ρ‖π) + ln

(
E

(h,h′)∼π2
eφ(h,h

′)

)
.

Note that the last inequality becomes an equality if ρ and π share the same support. The last equal-
ity comes from the definition of the KL-divergence, and from the fact that π2(h,h′) = π(h)π(h′) and
ρ2(h,h′) = ρ(h)ρ(h′).

C Specializations of the C-bound to Multilabel Prediction

We instantiate the general C-bound approach to multilabel classification. To do so, we stand in the
following setting, where the space of possible labels is {1, . . . , k} with a finite number of classes k ≥ 2,
but we consider the multilabel output space YYY = {0, 1}k that contains vectors y = (y1, . . . , yk)>. In other
words we consider multiple binary labels. Given an example (x,y) ∈ X ×YYY, the output vector y is then
defined as follows:

∀j ∈ {1, . . . , k}, yj =

{
1 if x is labeled with j
0 otherwise.

In this specific case, we define the output feature map Y(·) such that the image of YYY is Im YYY =
{
− 1√

k
, 1√

k

}k
,

and:

∀j ∈ {1, . . . , k}, Yj(y) =

{
1√
k

if yj = 1 (x is labeled with j)
−1√
k

otherwise,

where Yj(y) is the j-th coordinate of Y(y). According to this definition, we have that: ∀c ∈ YYY, ‖Y(c)‖ =
1. The set HHH is made of multilabel voters h from X to conv(Im YYY). In the light of the feature output map
Y(·), the definition of the ρ-weighted majority vote classifier and the margin can respectively be rewritten
as:

Bρ(x) = argmax
c∈YYY


k∑
j=1

E
h∼ρ

hj(x)Yj(c)

 ,

and

Mρ(x,y) =

k∑
j=1

E
h∼ρ

hj(x)Yj(y) − max
c∈YYY
c6=y

 k∑
j=1

E
h∼ρ

hj(x)Yj(c)

 ,
where hj(x) is the j-th coordinate of h(x).

The following theorem relates the risk of Bρ(·) and the ω-margin associated to the distribution ρ on
HHH.

Theorem 7. Let k ≥ 2 be the number of labels. For every distribution D over X × YYY and for every
distribution ρ over a set of multilabel voters HHH, we have:

RD(Bρ) ≤ Pr
(x,y)∼D

(
Mρ,k−1

k
(x,y) ≤ 0

)
.

Proof. We have to show:

Pr
(x,y)∼D

(Mρ(x,y) ≤ 0) ≤ Pr
(x,y)∼D

(
Mρ,k−1

k
(x,y) ≤ 0

)
.
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Figure 3: Representation of the multilabel ω-margin. Graphical representation of the k−1
k -margin

and the vote applied on an example (x,y) for multilabel classification when k = 2 and the true y
is ( 1√

2
, 1√

2
)>. The angles of the cube corresponds to the different multilabels, that are: Y(YYY) ={

(−1√
2
, −1√

2
)>, ( 1√

2
, −1√

2
)>, (−1√

2
, 1√

2
)>, ( 1√

2
, 1√

2
)>
}

. Each line represents the decision boundary of a mar-

gin: the hyperplane where lies each example with a margin equal to 0. A vote correctly classifies an
example if it lies on the same side of the hyperplane than the correct label.

To do so we will prove that:
Mρ,k−1

k
(x,y) > 0 =⇒ Mρ(x,y) > 0 .

Recall that conv(Im YYY) is a hypercube whose vertices are exactly the Y(c)’s with c ∈ YYY. Given a vertex
Y(y), we denote Hy the hyperplane which passes through all the points Y(j)(y), where Y(j)(y) is the
point of the hypercube that has exactly the same coordinates as Y(y), excepting for the jth that has been
put to 0.

Now, consider the region Ry of the hypercube conv(Im YYY) that consists of all the points that correspond
to Mρ,k−1

k
(x,y) > 0, that is, the points that are on the same side of hyperplane Hy than Y(y). Clearly,

for any k ≥ 2, the point Y(y) is strictly closer to the point Eh∼ρ h(x) than any other Y(c)’s if the vector
Eh∼ρ h(x) lies in Ry. This in turn implies that the margin Mρ(x,y) is strictly positive. Figure 3 shows an
example with k = 2 and Y(y) = ( 1√

2
, 1√

2
)>, where Hy is represented by a red dotted line, and Ry is the

region delimited by the top-right corner and Hy.
To finish the proof, we have to show that Ry is exactly the region where Mρ,k−1

k
(x,y) > 0. Equivalently,

we must show that the intersection of Hy and the hypercube conv(Im YYY) is exactly the points for which
Mρ,k−1

k
(x,Y(y)) = 0, i.e., the vectors Eh∼ρ h(x) for which 〈Eh∼ρ h(x) , y〉 − k−1

k
= 0. We know from basic

linear algebra that the points P that lie on hyperplane Hy must satisfy the following equation: (P −P0) ·
N = 0, where N is the normal of the hyperplane and P0 is any point in P . It is easy to see that Y(y) is the
normal of Hy and that we can take P0 = Y(1)(y). Hence, the equation becomes (P −Y(1)(y)) ·Y(y) = 0.

Since all coordinates of Y(y) are either 1√
k

or −1√
k
, and all coordinates of Y(1)(y) are the same as the

ones of Y(y) except the first one being 0 in Y(1)(y), we have that Y(1)(y) ·Y(y) = k−1
k

. The result then
follows from

(P −Y(1)(y)) ·Y(y) = P ·Y(y)−Y(1)(y) ·Y(y) = 〈P , Y(y)〉 − k − 1

k
.

Finally, according to the same arguments as in Corollary 1, one can derive the following multilabel
C-bound.

Corollary 2 (ω-margin multilabel C-bound). For every probability distribution ρ on a set of multilabel
voters HHH, for every distribution D on X ×YYY, if E(x,y)∼DMρ,k−1

k
(x,y) > 0, we have:

RD(Bρ) ≤ C(Mρ,k−1
k

) = 1−

(
E

(x,y)∼D
Mρ,k−1

k
(x,y)

)2

E
(x,y)∼D

(
Mρ,k−1

k
(x,y)

)2 .
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