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The Rindler horizon in Minkowski spacetime can be implanted with supertranslation hair by a matter
shock wave without planar symmetry, and the hair is observable as a supertranslation memory on the
Rindler family of uniformly linearly accelerated observers. We show that this classical memory is
accompanied by a supertranslation quantum memory that modulates the entanglement between the
opposing Rindler wedges in quantum field theory. A corresponding phenomenon across a black hole
horizon may play a role in Hawking, Perry, and Strominger’s proposal for supertranslations to provide a
solution to the black hole information paradox.
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I. INTRODUCTION

In the longstanding pursuit to predict the fate of an
evaporating black hole, a recent development is the
suggestion by Hawking, Perry, and Strominger [1–3] that
significant quantum correlations may be encoded in “soft”
degrees of freedom, associated with vanishing energy in a
particle description and a diffeomorphism in a geometric
description, but nevertheless carrying nontrivial dynamics
due to the global boundary conditions. Such degrees of
freedom exist already in Minkowski spacetime electrody-
namics [4], and in the gravitational case these degrees of
freedom are associated with supertranslations in the Bondi-
Metzner-Sachs (BMS) group of asymptotic isometries at
the infinity [5–10]. Contributions to the ongoing debate
include [11,12].
In this paper we analyze the correspondence between

quantum correlations and classical supertranslations in the
simplified setting where a stationary black hole horizon is
replaced by the Rindler horizon, the Killing horizon of a
boost Killing vector in Minkowski spacetime. This sim-
plification has a long pedigree [13–15], avoiding compli-
cations due to spacetime curvature but maintaining a
bifurcate Killing horizon as a central piece of input in
the quantum field theory [16,17]. We shall analyze how the
quantum correlations across the Rindler horizon change

when the horizon is implanted with classical supertransla-
tion hair.
Recall that the Schwarzschild black hole can be implanted

with supertranslation hair by letting a spherically asymmetric
shock wave fall into the hole [2]. This classical hair is
observable in the gravitational memory that affects the
separation of geodesic observers at the asymptotic infinity
[18], and in quantum field theory it is expected to be
accompaniedbycorrelations in theoutgoingHawkingquanta.
For a Rindler horizon, the notion of supertranslation hair

has been characterized in [19–22] (for a related discussion
see [23]). It was shown in [24] that the Rindler horizon can
be implanted with supertranslation hair by letting a shock
wave without planar symmetry fall across the horizon, and
this hair is classically observable in amemory on the Rindler
family of uniformly linearly accelerated observers. We shall
show that the classical Rindler supertranslation memory is
accompanied by a Rindler supertranslation quantum
memory, and we analyze how this memory modulates the
entanglement between the opposing Rindler wedges.
We work with a massless scalar field in 3þ 1 spacetime

dimensions. The core results are given in terms of a
Bogoliubov transformation between a presupertranslation
region and a postsupertranslation region, demonstrating that
both the alpha-coefficients and beta-coefficients are nontrivial,
so that the supertranslation induces both particle creation and
mode mixing. The entanglement is analyzed within a trunca-
tion to finitely many field modes, and using negativity as the
entanglement monotone. We identify subsystems in which
entanglement is degraded and subsystems in which the
entanglement is generated, and this identification appears
reasonably robust against the input used in the truncation.
We anticipate that a similar analysis can be carried out

for supertranslations implanted on a Schwarzschild black
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hole as in [2], and that the results will help to clarify the role
of black hole supertranslations in the solution to the black
hole information paradox.
We begin in Sec. II with a recap of the classical Rindler

supertranslation memory [24]. The quantum memory is
found in Sec. III, and the entanglement consequences are
analyzed in Sec. IV. Section V gives a summary and brief
concluding remarks. Appendix A gives the derivation of an
integral identity used in themain text, andAppendixB recalls
key features of negativity as an entanglement monotone.
The Minkowski metric is taken to have the mostly plus

sign, and Roman indices run over all spacetime indices.
Complex conjugate is denoted by an asterisk and Hermitian
conjugate by a dagger.

II. RECAP: CLASSICAL MEMORY
FOR RINDLER SUPERTRANSLATIONS

In this section we recall relevant properties of the Rindler
spacetime and the classical Rindler supertranslation
memory found in [24], establishing the notation that will
be used in the quantum field theory analysis in Sec. III.
The spacetime consists of two subsets of four-dimen-

sional Minkowski spacetime joined together along a null
shell as shown in Fig. 1. In the past of the shell we write the
metric in the Minkowski null coordinates ðU;V; x; yÞ as

ds2 ¼ −dUdV þ δABdxAdxB; ð2:1Þ
where the uppercase Latin indices take values in fx; yg and
the shell is at V ¼ V0 > 0. In the region 0 < V < V0, we
introduce advanced Bondi-type coordinates ðv; r; x; yÞ in
which the metric reads

ds2 ¼ −2κrdv2 þ 2dvdrþ δABdxAdxB; ð2:2Þ

where κ is a positive constant of dimension inverse length,
−∞ < r < ∞, −∞ < v < v0, and the shell is at v ¼ v0. In
terms of the four Rindler quadrants shown in Fig. 1, r > 0
is in region I, r < 0 is in region III, and r ¼ 0 is on the
Rindler horizon, U ¼ 0. Curves of constant r, x, and y are
orbits of the boost Killing vector

ξ̄ ¼ −U∂U þ V∂V ¼ κ−1∂v: ð2:3Þ

Selected orbits of ξ̄ in region I are shown in the figure.
In the future of the shell, v > v0, we take the metric to be

related to (2.2) by the diffeomorphism that is generated by
the vector field

Ξa ¼ κ−1½fðx; yÞ; 0;−r∂Afðx; yÞ�; ð2:4Þ

where f is an arbitrary function of the transverse coor-
dinates. Working to linear order in f, the metric for
−∞ < v < ∞ thus reads

ds2 ¼ −2κrdv2 þ 2dvdrþ 4rhðv − v0Þ∂AfdvdxA

þ ðδAB þ 2κ−1rhðv − v0Þ∂A∂BfÞdxAdxB; ð2:5Þ

where hðv − v0Þ is the Heaviside step function.
While ∂v is not a Killing vector of (2.5) at v ¼ v0, it is a

Killing vector individually both for v < v0 and for v > v0,
and in each region it generates a pure boost: for v < v0
this holds by (2.3), and for v > v0 this holds because ∂v
commutes with Ξ (2.4). As grr ¼ 0 and gvr ¼ 2, the
coordinates in (2.5) may be regarded as a Rindler counter-
part of Bondi-type coordinates, and the coordinates pre-
serve the structure of the Rindler horizon for all v in the
sense that gvv ¼ OðrÞ and gAv ¼ OðrÞ. Ξ may hence be
regarded as a Rindler version of a supertranslation vector
field [19–22], and it follows that the shell imparts a Rindler
supertranslation charge on the spacetime. The linearized
stress-energy tensor vanishes for v ≠ v0 by construction,
while at v ¼ v0 the stress-energy tensor is nonvanishing for
generic f, involving not just the Dirac delta but also the
derivative of the Dirac delta [24].
It was shown in [24] that the supertranslation charge

imparted by the shell is detectable as a classical memory on
a family of observers who prior to the shell are uniformly
linearly accelerated, along the orbits of the boost Killing
vector ξ̄ (2.3). Assuming that each of these observers
maintains their uniform linear acceleration on crossing the
shell, as characterized at the shell by the appropriate local
notion of acceleration in curved spacetime, the observers
follow after the shell orbits of boost Killing vectors that
differ from trajectory to trajectory, and the trajectory-
dependence carries a memory of the planar inhomogeneity
of the shell. In the rest of the paper we show that an
accompanying memory exists also for a quantum field.

FIG. 1. A null shell in the Rindler spacetime, with the trans-
verasse dimensions suppressed. In the past of the shell the metric
is given by (2.1), and the shell is at V ¼ V0 > 0. The four Rindler
quadrants are labeled in the figure by I, II, III, and IV, and selected
orbits of the boost Killing vector ξ̄ (2.3) are shown in quadrant I.
The coordinates in (2.5) cover both the future of the shell and the
region 0 < V < V0 of the past of the shell, and in these
coordinates the shell is at v ¼ v0.
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III. QUANTUM MEMORY FOR RINDLER
SUPERTRANSLATIONS

We now turn to a real massless Klein-Gordon field in
the r > 0 part of the shock wave spacetime (2.5).
Geometrically, r > 0 means that we only consider the right
quadrant of the spacetime as shown in Fig. 1, but therein both
the preshell region v < v0 and the postshell region v > v0.

A. Classical field

Working to linear order in f, the Klein-Gordon field
equation, ∇a∇aϕ ¼ 0, takes the form

0 ¼ 2κr∂2
rϕþ 2∂r∂vϕþ ∂2

xϕþ ∂2
yϕþ 2κ∂rϕ

− 4rhð∂AfÞ∂r∂Aϕ − 2κ−1rhð∂A∂BfÞ∂A∂Bϕ

− 2hð∂AfÞ∂Aϕ − 2κ−1rhð∂A∂B∂BfÞ∂Aϕ

þ κ−1hð∂B∂BfÞ∂vϕþ κ−1rh0ð∂B∂BfÞ∂rϕ; ð3:1Þ

where the derivatives in parentheses act only within the
parentheses. We consider this equation first individually for
v < v0 and v > v0, and then match the solutions at v ¼ v0.
For v < v0, the metric is given by (2.2), the terms

proportional to f in (3.1) vanish, and (3.1) reduces to

0 ¼ 2κr∂2
rϕþ 2∂r∂vϕþ ∂2

xϕþ ∂2
yϕþ 2κ∂rϕ: ð3:2Þ

Separating (3.2) with the ansatz

ϕ ¼ e−iωvϕrðrÞeikAxA ; ð3:3Þ
where kx, ky, ω ∈ R, we find that ϕrðrÞ satisfies

2κrϕ00
r þ 2ðκ − iωÞϕ0

r − k2ϕr ¼ 0; ð3:4Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. Assuming ðkx; kyÞ ≠ ð0; 0Þ, so that

k > 0, (3.4) can be solved in terms of modified Bessel
functions [25], and the solution that does not diverge at
r → ∞ is

ϕr ¼ N1

�
2k

ffiffiffi
r

p
ffiffiffiffiffi
2κ

p
�

iω=κ
Kiω=κ

�
2k

ffiffiffi
r

p
ffiffiffiffiffi
2κ

p
�
; ð3:5Þ

where N1 is a normalization factor. Solutions that are of
positive frequency with respect to the boost Killing vector ξ̄
(2.3) are those with ω > 0.
To fix the normalization, we define the Klein-Gordon

inner product on the null surfaces of constantv, as in [26,27].
Using (2.2), the formula for the inner product becomes

hW1;W2i ¼ −i
Z

∞

0

dr
Z
R2

dxdyðW1∂rW�
2 −W�

2∂rW1Þ:

ð3:6Þ
We have verified that this inner product is conserved, and it
agrees with the inner product on surfaces that are deformed
near r ¼ 0 to be spacelike and hit the Rindler horizon

bifurcation point ðU;VÞ ¼ ð0; 0Þ. For a complete set of
solutions that are positive frequency with respect to ξ̄, we
hence choose

ϕ0
ω;k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh ðπω=κÞ

4π4κ

r
e−iωv

�
2k

ffiffiffi
r

p
ffiffiffiffiffi
2κ

p
�

iω=κ

× Kiω=κ

�
2k

ffiffiffi
r

p
ffiffiffiffiffi
2κ

p
�
eikAx

A
; ð3:7Þ

where ω > 0 and k ¼ ðkx; kyÞ ∈ R2nfð0; 0Þg. The inner
products are

hϕ0
ω;k;ϕ

0
ω0;k0 i ¼ δðω − ω0Þδ2ðk − k0Þ; ð3:8aÞ

hϕ0�
ω;k;ϕ

0�
ω0;k0 i ¼ −δðω − ω0Þδ2ðk − k0Þ; ð3:8bÞ

hϕ0
ω;k;ϕ

0�
ω0;k0 i ¼ 0: ð3:8cÞ

For v > v0, we have hðv − v0Þ ¼ 1, and the terms
proportional to f in (3.1) do contribute. However, since
the v > v0 region of (2.5) is obtained from (2.2) by a
diffeomorphism generated by the Rindler supertranslation
vector field Ξ (2.4), and since we are working to linear
order in f, a complete set of mode solutions that are of
positive frequency with respect to ∂v is

ϕ1
ω;k ¼ ð1 − Ξa∂aÞϕ0

ω;k

¼ ð1þ iκ−1ωf þ iκ−1rkA∂AfÞϕ0
ω;k; ð3:9Þ

where again ω > 0 and k ¼ ðkx; kyÞ ∈ R2nfð0; 0Þg. The
Klein-Gordon inner product formula can be written down
by applying the Rindler supertranslation diffeomorphism to
(3.6), and the diffeomorphism construction guarantees that
the inner products are

hϕ1
ω;k;ϕ

1
ω0;k0 i ¼ δðω − ω0Þδ2ðk − k0Þ; ð3:10aÞ

hϕ1�
ω;k;ϕ

1�
ω0;k0 i ¼ −δðω − ω0Þδ2ðk − k0Þ; ð3:10bÞ

hϕ1
ω;k;ϕ

1�
ω0;k0 i ¼ 0: ð3:10cÞ

Now, consider the matching at v ¼ v0. We look for a
solution to the linearized Klein-Gordon equation (3.1) as
ϕ ¼ ϕ0 þ ϕ1 þOðf2Þ, where ϕ0 has order f0 and ϕ1 has
order f. Matching terms order by order shows that ϕ0

satisfies (3.2) and ϕ1 satisfies

0 ¼ 2κr∂2
rϕ1 þ 2∂r∂vϕ1 þ ∂2

xϕ1 þ ∂2
yϕ1 þ 2κ∂rϕ1

− 4rhð∂AfÞ∂r∂Aϕ0 − 2κ−1rhð∂A∂BfÞ∂A∂Bϕ0

− 2hð∂AfÞ∂Aϕ0 − 2κ−1rhð∂A∂B∂BfÞ∂Aϕ0

þ κ−1hð∂B∂BfÞ∂vϕ0 þ κ−1rh0ð∂B∂BfÞ∂rϕ0: ð3:11Þ
Assuming ϕ0 to be smooth across v ¼ v0, the terms
involving ∂r∂vϕ1 and h0 in (3.11) show that ∂rϕ1 has at
v ¼ v0 a discontinuity, and the matching condition reads
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2½∂rϕ1�v0þv0− ¼ −κ−1rð∂B∂BfÞ∂rϕ0jv0 : ð3:12Þ

Assuming that r∂rϕ0 is integrable at r → ∞ and ½ϕ1�v0þv0− →0

as r → ∞, which will hold for the functions below, we may
integrate (3.12) to

2½ϕ1�v0þv0− ¼ κ−1ð∂B∂BfÞ
Z

∞

r
drr∂rϕ0jv0 : ð3:13Þ

Consider hence the solution ϕ̂ω;k that is equal to ϕ0
ω;k at

v < v0. Expanding this solution at v > v0 in the basis
fϕ1

ω;kg, we write

ϕ̂ω;k ¼
�ϕ0

ω;k for v < v0;R
0
∞dω0 R d2k0ðαω;k;ω0;k0ϕ1

ω0;k0 þ βω;k;ω0;k0ϕ1�
ω0;k0 Þ for v > v0;

ð3:14Þ

where the αs and βs are the Bogoliubov coefficients
between the fϕ0

ω;kg basis and the fϕ1
ω;kg basis [16]. Using

)3.9 ) and (3.12), we find

αω;k;ω0;k0 ¼ δðω − ω0Þδ2ðk − k0Þ þ αð1Þω;k;ω0;k0

þOðf2Þ; ð3:15aÞ

βω;k;ω0;k0 ¼ βð1Þω;k;ω0;k0 þOðf2Þ; ð3:15bÞ

where the condition determining αð1Þ and βð1Þ is that the
equation

2

Z
∞

0

dω0
Z

d2k0ðαð1Þω;k;ω0;k0ϕ0
ω0;k0 þ βð1Þω;k;ω0;k0ϕ0�

ω0;k0 Þ

¼ κ−1ð∂B∂BfÞ
Z

∞

r
drr∂rϕ

0
ω;k þ 2Ξa∂aϕ

0
ω;k ð3:16Þ

holds on the surface v ¼ v0. Evaluating h·;ϕ0
ω0;k0 iv0 and

h·;ϕ0�
ω0;k0 iv0 on both sides of (3.16), where h·; ·iv0 stands for

the inner product (3.6) evaluated on the v ¼ v0 surface, and
using (3.8), we hence obtain

αð1Þω;k;ω0;k0 ¼ hΞa∂aϕ
0
ω;k;ϕ

0
ω0;k0 iv0

þ ð2κÞ−1
�
ð∂B∂BfÞ

Z
∞

r
drr∂rϕ

0
ω;k;ϕ

0
ω0;k0

�
v0

;

ð3:17aÞ

βð1Þω;k;ω0;k0 ¼ −hΞa∂aϕ
0
ω;k;ϕ

0�
ω0;k0 iv0

− ð2κÞ−1
�
ð∂B∂BfÞ

Z
∞

r
drr∂rϕ

0
ω;k;ϕ

0�
ω0;k0

�
v0

:

ð3:17bÞ

Writing

Ξa∂aϕ
0
ω;k ¼ −iκ−1ωfϕ0

ω;k − iκ−1rkA∂Afϕ0
ω;k; ð3:18Þ

we can evaluate (3.17) using formula 6.576.4 in [28] and
the integral identity that we give in Appendix A. We find

αð1Þω;k;ω0;k0 ¼ −
iωf̃ðk̃Þ
4π2κ

�
k
k0

�
iω=κ

�
1þ iω

2κ

�
1 −

k2

k02

�
2F1

�
1þ iω

κ
; 1; 2; 1 −

k2

k02

�	
δðω − ω0Þ

−
iωf̃ðk̃Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinhðπω=κÞ sinhðπω0=κÞp
32π2κ3 sinhðπðωþ ω0Þ=ð2κÞÞ P

�
ωþ ω0

sinhðπðω − ω0Þ=ð2κÞÞ
�

×
�
k
k0

�
iω0=κ

�
1 −

k2

k02

�
2F1

�
1þ iðωþ ω0Þ

2κ
; 1þ iðω0 − ωÞ

2κ
; 2; 1 −

k2

k02

�

−
if̃ðk̃Þe−iðω−ω0Þv0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπω=κÞ sinhðπω0=κÞp
8π4κ

�
kffiffiffi
2

p
κ

�
−iω=κ

�
k0ffiffiffi
2

p
κ

�
iω0=κ

× Γ
�
1þ iω

κ

�
Γ
�
1 −

iω0

κ

�
Γ
�
1þ iω

κ
−
iω0

κ

�

×

�
k̃2

k2

�
1 −

iω0

κ

�
2F1

�
2; 1þ iω

κ
; 3þ iω

κ
−
iω0

κ
; 1 −

�
k0

k

�
2
�

þ 4kAk̃
A

ðk0Þ2
�
1þ iω

κ

�
2F1

�
2; 1 −

iω0

κ
; 3þ iω

κ
−
iω0

κ
; 1 −

�
k
k0

�
2
�	

; ð3:19aÞ
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βð1Þω;k;ω0;k0 ¼ iωf̃ðk̃þÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπω=κÞ sinhðπω0=κÞp

32π2κ3 sinhðπðωþ ω0Þ=ð2κÞÞ
�

ω − ω0

sinhðπðω − ω0Þ=ð2κÞÞ
�

×

�
k
k0

�
iω0=κ

�
1 −

k2

k02

�
2F1

�
1þ iðωþ ω0Þ

2κ
; 1þ iðω0 − ωÞ

2κ
; 2; 1 −

k2

k02

�

þ if̃ðk̃þÞe−iðωþω0Þv0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπω=κÞ sinhðπω0=κÞp
8π4κ

�
kffiffiffi
2

p
κ

�
−iω=κ

�
k0ffiffiffi
2

p
κ

�
−iω0=κ

× Γ
�
1þ iω

κ

�
Γ
�
1þ iω0

κ

�
Γ
�
1þ iω

κ
þ iω0

κ

�

×

�
k̃2þ
k2

�
1þ iω0

κ

�
2F1

�
2; 1þ iω

κ
; 3þ iω

κ
þ iω0

κ
; 1 −

�
k0

k

�
2
�

þ 4kAk̃
Aþ

ðk0Þ2
�
1þ iω

κ

�
2F1

�
2; 1þ iω0

κ
; 3þ iω

κ
þ iω0

κ
; 1 −

�
k
k0

�
2
�	

; ð3:19bÞ

where k̃ ¼ k − k0, k̃þ ¼ kþ k0, f̃ is the Fourier trans-
form of f as defined by

f̃ðkÞ ¼
Z

eikAx
A
fðx; yÞdxdy; ð3:20Þ

and P stands for the Cauchy principal value.
We see that both αð1Þω;k;ω0;k0 and β

ð1Þ
ω;k;ω0;k0 are nonvanishing

for generic f. αð1Þω;k;ω0;k0 is distributional at ω ¼ ω0, having
both a Dirac delta and a Cauchy principal value there,

whereas βð1Þω;k;ω0;k0 has no distributional singularities.

B. Quantized field

We are now ready to read off the quantum memory
associated with the shell.
Since the modes ϕ0

ω;k are of positive frequency with
respect to the Killing vector ∂v for v < v0, and the modes
ϕ1
ω;k are of positive frequency with respect to the Killing

vector ∂v for v > v0, we can quantize the field in each
region by adopting these modes as the positive frequency
basis functions. As ∂v generates a pure boost in each
region, the Fock vacua that ensue are of the Rindler type,
seen as a no-particle state by the uniformly accelerated
observers who follow the orbits of ∂v.
However, the Bogoliubov transformation (3.14) between

the two sets of modes is nontrivial, and in particular it
involves nonvanishing beta-coefficients. It follows that the
two Rindler vacua are not equivalent: if the field is initially
prepared in the v < v0 Rindler vacuum, the field is no
longer in the Rindler vacuum for v > v0.
Hence, the shell creates Rindler particles that contain

information about the classical supertranslation field Ξ, and
specifically about the planar profile f of the supertransla-
tional shockwave. This is a quantum counterpart of the
classical Rindler supertranslation memory found in [24].

In particular, if the field is prepared in the Minkowski
vacuum at v < v0, the reduced density matrix in the right
Rindler wedge will acquire nonthermal corrections for
v > v0. The extra Rindler particles created by the shell
change the entanglement between observers who reside in
the opposite Rindler wedges. We shall analyze this phe-
nomenon in the next section.

IV. ENTANGLEMENT DUE TO RINDLER
SUPERTRANSLATIONS

A. The entanglement setup

It is well appreciated that Minkowski vacuum contains
nonlocal spatial correlations that can be harvested by
localized quantum systems [29–32]. For a pair of localized
observers who follow the orbits of a boost Killing vector,
accelerating in opposite directions with acceleration of
magnitude a, these quantum correlations appear as a two-
mode squeezed state, and each of the individual observers
experiences the state as thermal in the Unruh temperature
a=ð2πÞ [15].
Suppose now that one of the accelerated observers goes

through the shock wave (2.5). How does the shock wave
affect the quantum correlations between the two observers?
To set up the notation, we call the two observers

respectively Luke and Rob, with Luke accelerating to
the left and Rob accelerating to the right, as shown in
Fig. 2. In the past of the shell, the Minkowski vacuum j0iM
can be written as [16]

j0iM ¼
Y
ω;k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω=κ

p X∞
n¼0

e−nπω=κjniL;ω;k ⊗ jniR;ω;k;

ð4:1Þ
where jniR;ω;k are the Fock basis states in region I in the
notation of Sec. III and jniL;ω;k are the corresponding Fock

QUANTUM MEMORY FOR RINDLER SUPERTRANSLATIONS PHYS. REV. D 97, 085012 (2018)

085012-5



basis states in region II. If the observers’ proper accel-
eration has magnitude a, the frequency with respect to the
observers’ proper time is related to ω by ða=κÞω.
To describe the correlations between Luke and Rob after

Rob has crossed the shock wave, we need to write (4.1) in
Rob’s new basis, obtained from the old basis by the
Bogoliubov transformation (3.15).
We simplify this problem in two ways. First, instead of

the continuous labels ω and k, we postulate that Rob and
Luke each couple to just two modes of the field. This
sidesteps the technical issue that the product over the
modes on the right-hand side of (4.1) is not mathematically
well defined, and the related open questions of quantifying
entanglement with continuously labeled mode sets.
Conditions under which this postulate may provide a
reasonable approximation in a sense of wave packets are
discussed in [33]. Second, we truncate the initial state of
each mode to keep just the n ¼ 0 and n ¼ 1 states. From
(4.1) we see that is a good approximation for the high
energy modes, ω=κ ≫ 1.

B. Before the wave

We denote the two modes to which Luke couples
by A and C, and the two modes to which Rob couples
by B and D. Before the shock wave, we take the state
to be

jΦi ¼ jϕ1i ⊗ jϕ2i; ð4:2Þ

where

jϕ1i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2
p ðj0iA ⊗ j0iB þ pj1iA ⊗ j1iBÞ; ð4:3aÞ

jϕ2i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ q2
p ðj0iC ⊗ j0iD þ qj1iC ⊗ j1iDÞ; ð4:3bÞ

and p and q are real-valued parameters. jΦi is a good
approximation to the high-frequency regime in (4.1) when
0 < p ≪ 1 and 0 < q ≪ 1, but in what follows we con-
sider the more general situation in which p and q are
allowed to be arbitrary.
We quantify the entanglement in jΦi by the negativity

N , reviewed in Appendix B. jϕ1i is bipartite in A ↔ B and
has negativity p=ð1þ p2Þ; similarly, jϕ2i is bipartite in
C ↔ D and has negativity q=ð1þ q2Þ. There is clearly no
entanglement in the subsystems A ↔ C, A ↔ D, B ↔ D
and B ↔ C, and the corresponding negativities vanish.
Collecting, the nonvanishing negativities are

N A↔B ¼ p
1þ p2

; ð4:4aÞ

N C↔D ¼ q
1þ q2

: ð4:4bÞ

The total Rob-Luke negativity is N A↔B þN C↔D ¼
p=ð1þ p2Þ þ q=ð1þ q2Þ.

C. After the wave

After Rob has crossed the wave, we denote the two
modes to which Rob couples by B̄ and D̄. We write the
Bogoliubov coefficients from fB;Dg to fB̄; D̄g as in (3.14)
and (3.15),

αk;k0 ¼ δk;k0 þ λαð1Þk;k0 þ λ2αð2Þk;k0 þOðλ3Þ; ð4:5aÞ

βk;k0 ¼ λβð1Þk;k0 þ λ2βð2Þk;k0 þOðλ3Þ; ð4:5bÞ

where k ∈ fB;Dg and k0 ∈ fB̄; D̄g, and we have included
a formal perturbative parameter λ to facilitate the book-
keeping in the perturbative expansion.
For (4.5) to provide a mathematically consistent

Bogoliubov transformation, αk;k0 and βk;k0 must satisfy
the Bogoliubov identities [16], which imply in the linear
order that αð1Þ is anti-Hermitian and βð1Þ is symmetric,
while in higher orders they imply relations involving the
higher-order coefficients (see Appendix A of [34]).
Reducing (3.17) to (4.5) in a way that satisfies these
identities would need additional input about the reduction,
such as a construction of suitable wave packets [33], and
we shall not attempt to provide this input here. Instead, we

shall proceed without specifying the explicit form of αð1Þk;k0

and βð1Þk;k0 . This will suffice to demonstrate that the shock

FIG. 2. A pair of uniformly accelerated observers in the shock
wave spacetime of Fig. 1. Luke (L) accelerates leftward in
quadrant II. Rob (R) accelerates rightward in quadrant I, crossing
the wave. After crossing the wave, Rob’s trajectory is no longer a
pure hyperbola in the two dimensions shown in the diagram, but
it involves a perturbative correction due to the wave [24]. Luke
couples to field modes labeled A and C. Rob couples before the
wave-crossing to field modes labeled B and D, and after the
wave-crossing to field modes labelled B̄ and D̄.
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wave does change the bipartite entanglements in the
system.

D. Changes in entanglement

In terms of the Bogoliubov transformation (4.5), we have
[16,35]

a†k ¼
X
k0
ðαk;k0 ā†k0 − βk;k0 āk0 Þ; ð4:6aÞ

j0iBj0iD ¼ Ne
1
2

P
mn

Vmnā
†
mā

†
n j0iB̄j0iD̄; ð4:6bÞ

where am and a†m are the annihilation and creation operators
for Rob’s early time modes B and D, ām and ā†m are the
annihilation and creation operators for Rob’s late time
modes B̄ and D̄, Vmn ¼ β†mpðα−1Þ†pn, and N is a normali-
zation constant. Using (4.6), we can transform the state jΦi
(4.2) to the late time basis and analyze the negativity for the

bipartite subsystems of interest. We shall omit the calcula-
tional details and just describe the outcome.

1. Subsystem A and B̄.

Consider the system formed by A and B̄. Before the wave
this was the single pair jϕ1i (4.3a), one mode coupling to
Luke and the other to Rob, with negativity N A↔B (4.4a).
After the wave, the reduced density matrix ρA↔B̄ is

obtained by tracing outC and D̄. Keeping terms of order λ2,
we find that the partial transpose ρTA↔B̄ is a 12 by 12 matrix,
and the correction to N A↔B (4.4a) starts in order λ2. We
consider this correction here in the limit in which the
diagonal elements of αð1Þ and βð1Þ are negligible compared
with the off-diagonal elements; this limit can be motivated
by observing that in the continuous label case (3.19), the
last two terms in (3.19a) and the first term in (3.19b) vanish
on the diagonal. The correction to the negativity comes then
entirely from the correction to the single negative eigen-
value of ρTA↔B, and we find

N A↔B̄ ¼
p

1þp2
− λ2

�
p2ð1þ 2q2Þþq2þpð1þ 5q2Þ

2ð1þp2Þð1þq2Þ jαð1ÞB;Dj2þ
p½p2q2þ 1þ 2q2þpð3þ 5q2Þ�ð1þq2Þ− 2p4q4

2pð1þp2Þð1þq2Þ2 jβð1ÞB;Dj2
�

þOðλ3Þ: ð4:7Þ

As both αð1Þ and βð1Þ appear in (4.7), the change in the
entanglement is due in part to particle creation and in part to
mode mixing. The sign of the correction term in (4.7) is
typically negative, that is, entanglement is degraded.

However, it can be arranged to be positive if βð1ÞB;D is
nonzero and p and q are sufficiently large. An increase in
the entanglement, when it occurs, is hence necessarily
associated with particle creation.
For the Minkowski vacuum state (4.1) in the high

frequency limit, ω=κ ≫ 1, the correction term in (4.7) is
negative since in this case 0 < p ≪ 1 and 0 < q ≪ 1. The
wave has hence degraded the entanglement between A
and B̄.
An interesting special case occurs when q ¼ 0 and

p ¼ 1: there is then initially only one entangled pair,
and this pair is prepared in the maximally entangled Bell
state. The initially maximal entanglement is degraded, as
seen from the sign of the correction in (4.7). This system is
mathematically identical to the cavity system considered in
[36], and (4.7) agrees with the correction found therein.

2. Subsystem B̄ and D̄

Consider the system formed by B̄ and D̄. Before the
wave this was a system of two completely unentangled
modes coupled to Rob, with vanishing negativity.
After the wave, the reduced density matrix ρB̄↔D̄ is

obtained by tracing out Luke’s modes A and C. Keeping

terms of order λ2, we find that the partial transpose ρTB̄↔D̄ is
a 14 by 14 matrix. The leading correction to the negativity
appears in order λ, and we find

N B̄↔D̄ ¼ λ
2p2q2jβð1ÞB;Dj

ð1þ p2Þð1þ q2Þ þOðλ2Þ: ð4:8Þ

The wave has hence entangled Rob’s two modes. As the
Bogoliubov coefficient entering (4.8) is βð1Þ, the leading
order entanglement creation is due to particle creation, not
due to mode mixing.

3. Subsystem B̄ and C

Consider finally the system formed by B̄ and C. Before
the wave this was a system of two completely unentangled
modes, one coupled to Luke and the other to Rob, with
vanishing negativity.
After the wave, the reduced density matrix ρB̄↔C is

obtained by tracing out Luke’s mode A and Rob’s mode D̄.
Keeping terms of order λ2, we find that the partial transpose
ρTB̄↔C is a 12 by 12 matrix, and the first contribution to
N B̄↔C comes in order λ2. Specialising again to the limit in
which the diagonal elements of αð1Þ and βð1Þ are negligible
compared with the off-diagonal elements, we find
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N B̄↔C ¼ λ2ð2q2maxð2p2q2jαð1ÞB;Dj2− jβð1ÞB;Cj2;0Þ
þp2max ðð2q2− 1Þjαð1ÞB;Dj2þ 2ðq4 − 1Þjβð1ÞB;Cj2;0ÞÞ
þOðλ3Þ: ð4:9Þ

There exist parameter ranges in which N B̄↔C > 0, and the
entanglement generation comes from a mixture of particle
creation and mode mixing effects.

4. Quantum monogamy and negativity

A curious property in the above negativity results is that
entanglement generation can in certain circumstances
happen already in order λ, as seen in (4.8), but entangle-
ment degradation will happen only in order λ2, as seen in
(4.7). For example, suppose that p ¼ 1, and consider the
entanglement of B̄ with A and with D̄. N A↔B̄ (4.7) has
decreased from the maximal entanglement value 1=2 in
order λ2, but N B̄↔D̄ (4.8) has increased from the vanishing
entanglement value 0 already in order λ. This might at first
sight appear to be at tension with the monogamy of
entanglement, which states that given a pair of maximally
entangled systems, neither member of the pair can be
entangled with a third system [37].
However, there is in fact no tension. The reason is that

the monogamy inequality that relates to negativity is not
linear but quadratic, taking in the present situation the form
[38] (for related discussion see [39–41])

N 2
B̄↔ACD̄ ≥ N 2

A↔B̄ þN 2
B̄↔C þN 2

B̄↔D̄: ð4:10Þ

An explicit calculation of the entanglement of B̄ with A, C,
and D̄ (negative eigenvalues of the 16 × 16matrix obtained
by taking the partial transpose of late time ρ ¼ jΦihΦjwith
respect to B̄) shows that N B̄↔ACD̄ does not obtain a
correction at order λ from the maximal entanglement value
of 1=2, for the maximal case when p ¼ 1 and q ¼ 1, but
gets possible corrections starting from order λ2. Hence,
none of the terms on either side of the inequality (4.10) are
linear in λ, since the only linear order term generated in
N B̄↔D̄ in (4.8) becomes order λ2 upon squaring on the
right-hand side. Inequality (4.10) is thus satisfied to order λ
and there is no contradiction.
From our results in (4.7), (4.8), and (4.9), it is straight-

forward to check that the λ2 correction term on the right-
hand side of (4.10) for the maximal case when p ¼ 1 and
q ¼ 1 is given by

N 2
A↔B̄ þN 2

B̄↔C þN 2
B̄↔D̄ ¼ 1

4
−
5

4
ðjαð1ÞB;Dj2 þ 2jβð1ÞB;Dj2Þλ2

þOðλ3Þ: ð4:11Þ

As is expected, the coefficient of the λ2 term is nonpositive.
For the left-hand side of (4.10), to obtain the explicit form
of the λ2 term inN 2

B̄↔ACD̄, one arrives at a 81 × 81 partially

transposed matrix with respect B̄. Calculating the eigen-
values of such a large matrix is highly nontrivial computa-
tionally and beyond the scope of the present work.
However, we refer the reader to [38–41] wherein a detailed
discussion of the above monogamy inequality for nega-
tivity can be found.

V. DISCUSSION

We have shown that a classical supertranslation hair
implanted on a Rindler horizon by a shock wave induces in
quantum field theory a quantum supertranslation memory
that modulates the entanglement between the two opposing
Rindler wedges. In the Bogoliubov coefficient description,
this memory involves nontrivial alpha-coefficients and
nontrivial beta-coefficients, so that there is both particle
creation and mode mixing. Within an entanglement analy-
sis that truncates the number of field modes, we identified
subsystems whose entanglement is degraded and subsys-
tems whose entanglement is enhanced, and the entangle-
ment effect appears to be robust against the input used in
the truncation. Similar entanglement degradation and gen-
eration has been previously found in cavity systems in non-
inertial motion [36,42,43].
The linearized stress-energy tensor of the supertranslated

metric (2.5) is given in equation (2.9) of [24]. This stress-
energy tensor is linear in the function f that characterizes
the planar asymmetry of the shock wave, and for a generic
f the stress-energy tensor breaks the usual energy con-
ditions somewhere, in particular on crossing the Rindler
horizon from region I to region III in Fig. 1. Further, for a
given f, these violations become arbitrarily large near I−:
this phenomenon stems from the diverging norm of the
Rindler Killing vector ∂v near the infinity, and indicates
that linearized perturbation theory is not reliable to arbi-
trarily large r. However, it is possible to amend the shock
wave by adding to Tvv a uniform surface energy density μ,
as shown in Eq. (2.10) of [24], and for a wave released at
any finite value of r. The amended stress-energy tensor may
still break the energy condition due to quantum effects,
however we note that the time averaged quantity,R
v0þϵ
v0−ϵ dvTvv then satisfies the null energy condition pro-
vided μ is chosen sufficiently large. This is similar to the
shock wave in the Schwarzschild black hole case consid-
ered in [2], where a sufficiently large μ makes the null
energy condition hold everywhere except possibly near the
singularity where the linearized theory becomes unreliable.
Within our linearized treatment, the Bogoliubov coeffi-
cients for the amended supertranslated wave in Rindler
would contain a new additive term coming from μ. The
explicit form of the correction would need to be determined
by an analysis similar to that in Sec. III.
We anticipate that a similar analysis can be carried out

for a shock wave that implants supertranslations on a
Schwarzschild black hole [2], as shown in Fig. 3, leading to
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nontrivial Bogoliubov coefficients in the region v > v0
outside the black hole. There are now pairs of Hawking
quanta created near the horizon, depicted as the pair A ↔ B
and the pair C ↔ D in the figure, such that A and C are
behind the Killing horizon while B and D are outgoing
modes which an asymptotic observer at infinity will
eventually detect as Hawking radiation. Each of the pairs
A ↔ B and C ↔ D is maximally entangled. The infalling
shock wave will then affect the entanglement between the
interior quanta and the escaping quanta very much as in our
Rindler analysis, so that the shock wave imprints its
information on the Hawking quanta as a quantum memory.
This may counteract the conventional argument that any
characteristic information about infalling matter or radia-
tion is lost in the Hawking evaporation [44,45], and it may
have a role in the proposal that supertranslations provide a
solution to the black hole information paradox [1–3] and in
establishing a quantum version of black hole hair theorems.
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APPENDIX A: BESSEL INTEGRA IDENTITY

The evaluation of the Bogoliubov coefficients in Sec. III
uses the identity

Z
∞

0

dx
x
KiΩðaxÞKiΩ0 ðbxÞ

¼ π2ðb=aÞiΩ
2ΩsinhðπΩÞ

�
1þ iqΩ

2 2F1ð1þ iΩ;1;2;qÞ
	
δðΩ−Ω0Þ

þπ2qðb=aÞiΩ0

8 2F1

�
1þ iðΩþΩ0Þ

2
;1þ iðΩ0−ΩÞ

2
;2;q

�

×
1

sinhðπðΩþΩ0Þ=2ÞP
�

1

sinhðπðΩ−Ω0Þ=2Þ
�
; ðA1Þ

where a > 0, b > 0, Ω > 0, Ω0 > 0, q ¼ 1 − b2=a2, 2F1 is
the Gaussian hypergeometric function [25] and P denotes
the Cauchy principal value.
To verify (A.1), let ϵ > 0. We then have

Z
∞

0

dx
x1−ϵ

KiΩðaxÞKiΩ0 ðbxÞ ¼ ðb=aÞiΩ0
a−ϵ

23−ϵΓðϵÞ




Γ
�
ϵþ iðΩþΩ0Þ

2

�
Γ
�
ϵþ iðΩ−Ω0Þ

2

�




2

2F1

�
ϵþ iðΩþΩ0Þ

2
;
ϵþ iðΩ0 −ΩÞ

2
;ϵ;q

�

¼ Qϵπ
2ðb=aÞiΩ0 ðΩ−Ω0Þ

2ðΩþΩ0ÞsinhðπðΩþΩ0Þ=2Þ sinhðπðΩ−Ω0Þ=2Þ

×
ϵ

ðΩ−Ω0Þ2þ ϵ2 2
F1

�
ϵþ iðΩþΩ0Þ

2
;
ϵþ iðΩ0 −ΩÞ

2
;ϵ;q

�
ðA2Þ

FIG. 3. The extended Schwarzschild spacetime with an infalling, supertranslation-implanting shock wave at v ¼ v0 [2]. Two Hawking
pairs are shown, A ↔ B (red) and C ↔ D (blue).
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where Qϵ has the property that Qϵ → 1 as ϵ → 0. The first
equality in (A.2) follows from formula 6.576.4 in [28], and
the second equality follows using standard properties of the
Gamma-function [25].
To evaluate the ϵ → 0 limit in (A.2), we expand 2F1 in its

power series [25] and use in each term the distributional
identity

lim
ϵ→0þ

1

x� iϵ
¼ P

�
1

x

�
∓ iπδðxÞ; ðA3Þ

with the outcome (A.1).

APPENDIX B: NEGATIVITY

For all of our bipartite quantum systems, we quantify the
entanglement by the negativity, defined by [46–48]

N ¼ 1

2
ðjjρT jj − 1Þ; ðB1Þ

where ρ is the density matrix, the superscript T denotes the
partial transpose, that is, the transpose in one of the

subsystems, and jj · jj is the trace norm. An equivalent
formula is

N ¼
X
i

1

2
ðjλij − λiÞ; ðB2Þ

where λi are the eigenvalues of ρT .
N is non-negative, and a strictly positive value of N

implies that the system is not separable. N does not in
general coincide with the entanglement entropy, but it is an
entanglement monotone, and although its operational
meaning is subtle [49,50], it provides a convenient inter-
polation between other entanglement monotones with a
more direct operational meaning [51].
The main advantage of N is that it is easy to compute in

systems of arbitrary dimension. In this paper we consider
applications to finite-dimensional Hilbert spaces; however,
N generalizes to infinite-dimensional Hilbert spaces, and it
has a particularly convenient form for Fock state spaces in
the continuous-variable formalism [52,53].
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