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ABSTRACT. Recently, there have been a variety of in-
triguing discoveries regarding the symbolic computation of
series containing central binomial coefficients and harmonic-
type numbers. In this article, we present a vast generaliza-
tion of the recently-discovered harmonic summation formula
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through creative applications of an integration method that
we had previously introduced and applied to prove new
Ramanujan-like formulas for 1

π
. We provide explicit closed-

form expressions for natural variants of the above series that
cannot be evaluated by state-of-the-art computer algebra
systems, such as the elegant symbolic evaluation
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introduced in our present paper. We also discuss some re-
lated problems concerning binomial series containing alter-
nating harmonic numbers. We also introduce a new class of
harmonic summations for Catalan’s constant G and 1

π
such

as the series
∞∑
n=1
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n

)2
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= 16 +

32G− 64 ln(2)

π
− 16 ln(2)

which we prove through a variation of our previous integra-
tion method for constructing 1

π
series.
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1. Introduction. In [6], it was noted that the elegant Ramanujan-
like formula

(1.1)

∞∑
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Hn

16n(2n− 1)2
=

12− 16 ln(2)

π

may be proven through an application of a differential operator with
respect to a parameter involved in a known hypergeometric identity;
this technique is also used in [7] to prove (1.1). A similar strategy was
also applied to prove an equivalent formulation of the known equation

(1.2)

∞∑
n=1

(
2n
n

)2
Hn

(n+ 1)16n
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π

in 2017 in [11]. Both (1.1) and (1.2) are special cases of a very useful
result introduced in [4] on the evaluation of series containing factors

of the form
(

2n
n

)2
Hn for indices n ∈ N, which was proven through

the use of a beta-like integral transform. While applying parameter
derivatives to classical hypergeometric identities only produces specific
results on harmonic summations containing squared central binomial
coefficients as a factor in the summand, the integration technique
presented in [4] may be applied much more generally. The power of
the integration strategy considered in [4] motivates the exploration of
further applications of the integral transform given in [4], as well as
investigations on applications of analogues and variants of this integral
transform.

On this latter note, a new integral transform Tln,arcsin given in [5] in
2017 was used to evaluate new series for 1

π containing factors of the form(
2n
n

)2
H ′2n in [5], letting H ′2n = 1− 1

2 + · · · − 1
2n denote the alternating

harmonic number of order 2n for n ∈ N. The operator Tln,arcsin, which
is analogous to the integral transform introduced in [4], is used in [5]
to prove the elegant formula

(1.3)
4G− 12 ln 2 + 6

π
=

∞∑
n=1

(
2n
n

)2
H2n

16n(2n− 1)2

for Catalan’s constant G, which is also proven through the use of the
generating function for (CnH

′
2n : n ∈ N0) that was evaluated in [3],

letting Cn denote the nth entry in the Catalan sequence. As discussed
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in [4], it is not in general feasible to use known generating functions for
sequences such as

((
2n
n

)
Hn : n ∈ N0

)
to evaluate series with summands

containing expressions of the form
(

2n
n

)2
Hn. In general, the evaluation

of infinite series involving products of entries of the harmonic sequence

and expressions such as
(

2n
n

)2
is difficult, and often leads to surprising

and elegant results in the field of classical analysis.

The problem of determining explicit symbolic evaluations for sum-
mations containing entries of harmonic-type sequences and central bi-
nomial coefficients is a deep and interesting subject that has been ex-
plored through the use of many different kinds of classical analysis-
based techniques. In [9], a variety of infinite summations involving gen-
eralized harmonic numbers and central binomial coefficients are evalu-
ated through the use of beta-like integrals. In [8], a more abstract way
of “depicting” harmonic-like numbers is used, writing

Hn = σ1
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2
,

1

3
, . . . ,
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)
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n −H
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2
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1

2
,

1

3
, . . . ,

1

n

)
,

letting

σm (x1, x2, . . . , xn) =
∑

1≤k1<k2<···<km≤n

xk1xk2 · · ·xkm

denote the elementary symmetric function of order m. The authors
in [8] mainly explore the symbolic evaluation of infinite series in-
volving central binomial coefficients as well as expressions such as

σm

(
1, 1

32 , . . . ,
1

(2n−1)2

)
and σm

(
1, 1

22 , . . . ,
1

(n−1)2

)
. The results put

forth in [8] are nicely representative of how mathematical problems
concerning the symbolic computation of series involving harmonic-like
numbers can be closely connected with seemingly unrelated subjects in
the theory of symmetric functions and in number theory.

The series expansions for powers of the inverse sine mapping proven
in [2] involve central binomial coefficients and “nested” harmonic-type
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multisums, including
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Motivated in part by the main results from [2], and in particular the
classical infinite series identity

2
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known to Ramanujan [1], the authors in [12] determine congruences
for

p
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Hn−1(2)

nd
(
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) tn (mod p)

for prime numbers p and for special values of d, generalizing congruence
results given by Zhi-Wei Sun in [15], in which the elegant formula

π3

48
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(2)
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n
(
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)
is also introduced. This discussion further illustrates how researching
new kinds of subjects concerning summations containing harmonic-
like numbers together with central binomial coefficients can lead to
unexpected results in both applied analysis and number theory, and
surprising connections between these disciplines.

In [10], new hypergeometric identities related to Ramanujan-like
series for 1

π are proven using WZ-pairs, and an equivalent formulation
of the beautiful Ramanujan-type [17] formula
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)n(
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is employed in the derivation of one of the main identities given in [10].
The related formula
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)4
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was recently proven in [17] through the use of a parameter derivative
applied to a classical 6F5(−1) series identity. These striking results
strongly inspire us to explore new techniques for computing series with
summands with a factor of the form Hn and fixed powers of

(
2n
n

)
in the

numerator.

The beautiful formula

(1.4)

∞∑
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(
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n

)3
H ′2n
28n

=
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)
(8
√

3 ln 2− 3π)

24 · 22/3π4

is proven in [18] through the use of special values of the multi-
dimensional integral

(1.5) Wn(s) :=

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx,

which, as discussed in [18], is used in the analysis of uniform planar
random walks in the case whereby every step is a unit step, with the
direction being random. In particular, the definite integral in (1.5)
is equal to the sth moment of the distance in a given random walk,
measured from the origin of the plane after a total of n ∈ N steps
are taken. The delightful binomial-harmonic series given in (1.4) is
proven through an identity for W3(s), which shows how series with
binomial powers and entries in harmonic-like sequences can have direct
applications in the theory of random walks, further motivating the
exploration of new applications of the main techniques introduced in
[4].

The conjectural equality

(1.6)

∞∑
n=1

(
2n
n

)2
n16n

H ′2n =
2

3

∞∑
n=0

(
2n
n

)2
H2n

(2n+ 1)16n

was introduced in 2014 by Sun, with this conjecture being given
alongside a number of conjectural p-adic congruences for truncated
sums involving squared central binomial coefficients and harmonic
numbers, in [14]. Considering the striking similarity between the right-
hand side of (1.6) and the series evaluated in (1.3), it is conceivable
that the operator Tln,arcsin and the integral transform from [4] could
be used to prove the conjecture due to Sun in (1.6) as well as related
results in the theory of p-adic congruences. Sun also introduced a
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plethora of conjectural formulas for infinite sums involving harmonic
numbers and centered binomial coefficients in [16]. From the preceding
discussion, we are highly motivated to pursue research endeavors on
further applications of the integration methods from [4] and [5].

The application of parameter derivatives to hypergeometric identi-
ties to prove new results on binomial series containing harmonic num-
bers was recently discussed in [13]. In [13], formulas for evaluating har-
monic summations of the following forms are proven using this method.

∞∑
n=1

(2a)n(1− 2a)n
(n!)2

Hn

2n

∞∑
n=1

(2a)n(2b)n

n!
(
a+ b+ 1

2

)
n

Hn

n+ 1

Letting the parameter a given in the former series be equal to 1
4 , we

obtain the series

(1.7)

∞∑
n=1

(
2n

n

)2
Hn

32n

which is evaluated in terms of the gamma function in [13]. Since the
integration technique introduced in [4] is very useful for evaluating
many different kinds of summations involving factors of the form(

2n
n

)2
Hn, whereas the summation techniques considered [13] are given

by differentiating specific hypergeometric identities, it is natural to
consider the problem of evaluating generalizations of the series in
(1.7), through the use of the integration method given in [4], which
is described in Section 1.1. In particular, for a rational function r(n),
it is not obvious as to how to compute generalizations of (1.7) of the
form

(1.8)

∞∑
n=1

(
2n

n

)2
Hn · r(n)

32n

following the strategies outlined in [13], or using the generating func-
tions for sequences involving products of harmonic numbers and central
binomial coefficients given in [3].

The infinite series in (1.7) also recently appeared in [17]. In [17], it
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is noted that by Bailey’s theorem, we have that

(1.9) 2F1

[
a, 1− a

c

∣∣∣∣∣ 1

2

]
=

Γ
(
c
2

)
Γ
(
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2

)
Γ
(
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2

)
Γ
(

1−a+c
2

) ,
and that (1.7) may be computed in terms of the gamma function by
applying the operator ∂

∂c to both sides of (1.9) in the case whereby

a = 1
2 . A formula for a p-adic analogue of (1.7) is also proven in

[17], and many supercongruences for finite sums with central binomial
coefficients and harmonic-type numbers are established. The lovely
formula

∞∑
n=1

(
2n

n

)3
Hn

64n
=

2π(π − 3 ln 2)

3Γ4
(

3
4

)
is also proven in [17] following the “usual” method of applying a param-
eter derivative to both sides of a known hypergeometric identity; in this
case, the classical result known as Dixon’s theorem is used. Instead of
applying partial derivative operators to classical hypergeometric series
identities, in our present article we make use of something of an inverse
approach by showing how the integration method explored in [4] can
be used in a very general way to evaluate series involving harmonic
numbers and squared central binomial coefficients.

From the above discussion, we see that the problem of determining
closed-form expressions for harmonic summations of the form in (1.8) is
an intriguing subject with many potential applications. In our present
article, we offer vast generalizations of the formula

(1.10)

∞∑
n=1

(
2n

n

)2
Hn

32n
=

√
π (π − 4 ln 2)

2Γ2
(

3
4

)
that had been noted by Tauraso in 2017 in [17] and by Nicholson in
2018 in [13] by showing how creative applications of the integration
strategy we had previously introduced in [4] can be used to evaluate
series of the following forms for z ∈ Z>0.∑

n∈N

(
2n
n

)2
Hn

32n(n+ z)

∑
n∈N

(
2n
n

)2
Hn

32n(2n− 2z + 1)

∑
n∈N

(
2n
n

)2
Hn

32n(2n− 2z + 1)2

In Section 1.1, we briefly review some preliminary results that we
need for the main proofs in our article. In Section 2, we offer a new
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proof of the evaluation for (1.7) using the integral transform from [4],
to illustrate the idea of applying this integration technique with respect
to summations of the form given in (1.8), and we prove the following
new formulas.

∞∑
n=1
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32

)n (2n
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√
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(π − 4 ln(2))Γ
(

1
4

)2
8π3/2

−
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(π + 4 ln(2)− 6)Γ
(

3
4

)
Γ
(
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4

) .

In Section 3, we show how the proof techniques applied in Section
2 can be generalized, and in Section 4 we introduce a new class of
Ramanujan-like series for 1

π using a proof technique from Section 3.
Finally, in Section 5, we discuss some future avenues of research related
to the main results in our present article.

1.1. Preliminaries. The equality whereby

2

∞∑
n=1

(2a)n(2b)n

n!
(
a+ b+ 1

2

)
n

Hn

2n
=

∞∑
n=1

(a)n(b)n

n!
(
a+ b+ 1

2

)
n

Hn,

is proven in [13], for elements a and b in the set of complex numbers
such that a + b − 1

2 6∈ Z<0, and this identity is used to prove that the

series
∑∞
n=1

(2a)n(1−2a)n
(n!)2

Hn
2n is equal to

(1.11) √
π

2Γ(1− a)Γ
(
a+ 1

2

) (ψ (1− a) + ψ

(
a+

1

2

)
− ψ (1)− ψ

(
1

2

))
,
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letting ψ(x) = Γ′(x)
Γ(x) denote the digamma function, thus leading to

the evaluation of (1.7) noted in Theorem 2.1 below. We present a
generalization of this theorem in our present article, using the main
method applied in [4], which may be summarized in Lemma 1.1 below.

As noted above, the elegant formula in (1.10), which has motivated
much of the work put forth in our present paper, also appears in
[17] and is proven through a straightforward application of Bailey’s
theorem. We offer a new proof of (1.10) that is significantly different
compared to the proofs of this result from both [17] and [13]. Variants
of our proof of (1.10) may be used to greatly generalize the formula in
(1.10) through the use of the following fundamental lemma from [4],
as we later discuss.

Lemma 1.1. Letting f : N0 → C and g(n) = f(n)
16n(2n−1) , if f is such

that
∞∑
n=0

(−1)n
( 1

2

n

)
f(n)

x2n ln
(
1− x2

)
√

1− x2

is integrable on [0, 1], it follows that

∞∑
n=0

g(n)

(
2n

n

)2

Hn

is equal to 2
π times the sum of∫ 1

0

( ∞∑
n=0

(−1)n
( 1

2

n

)
f(n)

x2n ln
(
1− x2

)
√

1− x2

)
dx

and π ln(2)
∑∞
n=0

(2n
n )

2
f(n)

16n(1−2n) .

The above lemma often allows us to express an infinite series of the
form

(1.12)

∞∑
n=1

g(n)

(
2n

n

)2

Hn

in a convenient way in terms of a relatively “manageable” definite
integral over an elementary function. As discussed in [4], this is very
useful because it is not obvious in general how to symbolically compute
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series of the form noted in (1.12) by applying parameter derivatives to
known hypergeometric identities.

We remark that throughout the course of our present article, expres-
sions such as “closed form” are meant to include evaluations involving
the gamma function. Also, it is useful to note that it is convenient
for our purposes to use the “Mathematica definition” of the complete
elliptic integral of the first kind K whereby

K(k) =
π

2
· 2F1

[
1
2 ,

1
2

1

∣∣∣∣∣ k
]
,

with E defined so that

E(k) =
π

2
· 2F1

[
− 1

2 ,
1
2

1

∣∣∣∣∣ k
]
.

2. Motivating examples. As we previously noted, the following
theorem follows immediately from the formula for (1.11) given in [13].
We offer a new proof of this result, to illustrate how the main technique
in [4] can be used to evaluate series as in (1.8).

Theorem 2.1.
∑∞
n=1

(
2n
n

)2 Hn
32n =

Γ2( 1
4 )

4
√
π

(
1− 4 ln(2)

π

)
[13].

Proof. Letting f(n) be equal to 2−n(2n− 1) in Lemma 1.1, we find
that the series given in the above theorem is equal to:

−2
√

2

π

∫ 1

0

ln
(
1− x2

)
√

1− x2
√

2− x2
dx−

Γ
(

1
4

)2
ln(2)

π3/2
.

Using the substitution u = 1− x2 in the above integrand, we find that

∞∑
n=1

(
2n

n

)2
Hn

32n
= −
√

2

π

∫ 1

0

ln(u)√
1− u2

√
u
du−

Γ
(

1
4

)2
ln(2)

π3/2
.

The Mathematica computer algebra system is able to evaluate the
above integral directly, yielding the desired result. Alternatively, the
substitution of the Maclaurin series for 1√

1−u2
in the above integrand

also may be used to symbolically compute the above integral. �
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To show how Lemma 1.1 may be applied in a non-trivial way to
evaluate classes of variants of the summation given in Theorem 2.1, we
consider the problem of evaluating the following natural analogue of
the harmonic summation given in the above theorem.

(2.1)

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ 1)

It is not obvious as to how to evaluate this series following the
techniques given in [13]. Mathematica 11 is not able to provide any
kind of closed-form evaluation for the series in (2.1), and it is not
obvious as to how to apply known integral formulas for harmonic
numbers to evaluate this sum. For example, through an application
of the formula ∫ 1

0

1− xn

1− x
dx = Hn

we see that the summation in (2.1) may be expressed as

∫ 1

0

8E( x2 )+4(x−2)K( x2 )
πx −

√
2
πΓ( 3

4 )
Γ( 5

4 )

x− 1
dx,

but it is not at all obvious how to compute the difficult integral given
above. Similarly, through the use of the integral identity whereby

Hn = −n ·
∫
x∈[0,1]

ln(1− x) · xn−1 dx

for n ∈ N0, we find that the problem of symbolically computing (2.1) is
equivalent to the difficult problem of evaluating the following integrals.

− 1

16

∫ 1

0
2F1

[
3
2 ,

3
2

3

∣∣∣∣∣ x2
]

ln(1− x) dx =

4

π

∫ 1

0

(
E
(
x
2

)
x2

+

(
x
2 − 2

)
K
(
x
2

)
x2

)
ln(1− x) dx

In a similar fashion, it appears that it would be infeasible to make
use of known integral formulas for central binomial coefficients or
Catalan-type numbers to determine a closed-form expression for the
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infinite series in (2.1). To illustrate this assertion, if we factor out the
expression Cn = 1

n+1

(
2n
n

)
in the summand in this series and replace

this factor with a standard integral expression for the Catalan number
Cn of order n, we see that the infinite sum in (2.1) may be expressed
as

2
√

2

π

∫ 4

0

√
4− x

x(8− x)
ln

(
1

2
+

√
2

8− x

)
dx,

which cannot be evaluated by state-of-the-art CAS programs. Simi-
larly, if we substitute a Wallis-type integral into the summand in (2.1),
this would yield a very recalcitrant integral such as that given below.

1

π

∫ 2π

0

(
4 sec2(t)

(√
1− cos2(t)

2
ln

(
2

√
1− cos2(t)

2

)
−(√

1− cos2(t)

2
+ 1

)
ln

(√
1− cos2(t)

2
+ 1

)
+ ln(2)

))
dt

The above discussion shows that it is not feasible to use standard or
conventional integration methods to evaluate

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ 1)
,

which shows, in part, why determining the closed-form evaluation
given below is challenging. Our proof of the following theorem nicely
illustrates how the technique introduced in [4] can be applied in a
creative way to produce a simple closed-form evaluation that does not
follow immediately from Lemma 1.1.

Theorem 2.2. The series

∞∑
n=1

(
1

32

)n (2n
n

)2
Hn

n+ 1

is equal to

8−
2Γ
(

1
4

)2
π3/2

− 4π3/2 + 16
√
π ln(2)

Γ
(

1
4

)2 .



NEW SERIES INVOLVING
(2n
n

)2
Hn 13

Proof. Letting f(n) =
(

1
2

)n 2n−1
n+1 , by Lemma 1.1, we have that the

series
∑∞
n=0

(
1
32

)n (2n
n )

2
Hn

n+1 is equal to the following expression:

4

π

∫ 1

0

(√
4− 2x2 − 2

)
ln
(
1− x2

)
x2
√

1− x2
dx− 16

√
π ln(2)

Γ
(

1
4

)2 .

So, the problem of computing the series given in Theorem 2.2 is
equivalent to the problem of evaluating the following integrals, neither
of which can be directly evaluated in closed form by state-of-the-art
computer algebra systems.∫ 1

0

(√
4− 2x2 − 2

)
ln
(
1− x2

)
x2
√

1− x2
dx =

∫ 1

0

(√
2
√

1 + u− 2
)

ln(u)

2(1− u)3/2
√
u

du

Rewriting the expression∫ 1

0

(
−2 +

√
2
√

1 + u
)

ln(u)

(1− u)3/2
√
u

du

as

(2.2) 4π +
√

2

∫ 1

0

√
1 + u ln(u)

(1− u)3/2
√
u
du,

we find that current CAS software also cannot compute this latter
integral.

Our strategy for computing (2.2) in closed form is to: find a formula

for the Maclaurin series coefficients for the expression
√

1+u
(1−u)3/2

in the

integrand in (2.2), then multiply each term in the corresponding series

expansion by ln(u)√
u

, and then integrate term-by-term. This may appear

to be a very roundabout way of determining the symbolic value of
the definite integral in (2.2), but it is not at all clear what kinds of
integration methods could be successfully applied to find (2.2) in closed
form.

Since

(2.3)

√
1 + u

(1− u)3/2
=

∞∑
n=0

u2n(1 + 2u+ 4n(1 + u))Γ
(

1
2 + n

)
√
πΓ(1 + n)
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we have that
√

1 + u

(1− u)3/2
=

∞∑
n=0

(1 + 4n)u2nΓ
(

1
2 + n

)
√
πΓ(1 + n)

+

∞∑
n=0

4u1+2nΓ
(

3
2 + n

)
√
πΓ(1 + n)

so that we may evaluate the definite integral in (2.2) explicitly as
follows: ∫ 1

0

√
1 + u ln(u)

(1− u)3/2
√
u
du =

∞∑
n=0

(1 + 4n)(−4)Γ
(

1
2 + n

)
(1 + 4n)2 (

√
πΓ(1 + n))

+

∞∑
n=0

4(−4)Γ
(

3
2 + n

)
(3 + 4n)2 (

√
πΓ(1 + n))

= −
Γ
(

1
4

)2
+ πΓ

(
3
4

)2
√

2π
.

We thus obtain the desired result. �

As discussed in the Introduction, the integration strategy given in [4]
is much more versatile compared to the use of specific hypergeometric
identities to produce specific results on harmonic summations. To
further illustrate this idea, we offer a complete proof of the following
new evaluation.

Theorem 2.3. The following equality holds:

∞∑
n=1

(
2n
n

)2
Hn

32n(2n− 1)
=

2Γ
(

5
4

)2
(4 ln(2)− π)

π3/2
+

Γ
(

3
4

)
(4 ln(2) + π − 4)
√

2πΓ
(

1
4

) .

Proof. We observe that

∞∑
n=0

32−n
(

2n
n

)2
Hn

2n− 1

is equal to

(2.4)

2

(∫ 1

0

√
2−x2 ln(1−x2)√

2
√

1−x2
dx+ π ln(2)

(
2
√
π

Γ( 1
4 )

2 +
4Γ( 5

4 )
2

π3/2

))
π
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from the main lemma given in [4], and we thus observe that the series
given in Theorem 2.3 is also equal to

(2.5)

2

( ∫ 1
0

√
1+u ln(u)√
1−u
√
u
du

2
√

2
+ π ln(2)

(
2
√
π

Γ( 1
4 )

2 +
4Γ( 5

4 )
2

π3/2

))
π

.

The Mathematica computer algebra system is able to directly evaluate
the datum from (2.5), yielding the desired result. �

Theorem 2.4. The series

∞∑
n=1

(
1

32

)n (2n
n

)2
Hn

(2n− 1)2

is equal to

(π − 4 ln(2))Γ
(

1
4

)2
8π3/2

−
√

2

π

(π + 4 ln(2)− 6)Γ
(

3
4

)
Γ
(

1
4

) .

Proof. We begin by noting that a direct application of the funda-
mental lemma from [4] shows that the series given in the above theo-
rem, which cannot be evaluated using computer algebra systems such
as Mathematica 11, is equal to the following expression.

−
√

2

π

∫ 1

0

(√
2− x2 + x sin−1

(
x√
2

))
ln
(
1− x2

)
√

1− x2
dx

−

√
2
π

(
Γ
(

3
4

)2
+ 2Γ

(
5
4

)2)
ln(2)

Γ
(

3
4

)
Γ
(

5
4

)
Expanding the above integrand, we again encounter the integral∫ 1

0

√
2− x2 ln

(
1− x2

)
√

1− x2
dx

which we had previously seen in (2.4). So, we find that the infinite sum
given in Theorem 2.4 is also equal to the following.

−
√

2

π

∫ 1

0

x sin−1
(
x√
2

)
ln
(
1− x2

)
√

1− x2
dx
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+
Γ
(

1
4

)
(π − 4 ln(2))

4
√

2πΓ
(

3
4

) −
Γ
(

3
4

)2
(π + 8 ln(2)− 4)

2π3/2

By rewriting the above integral as

(2.6)

∫ 1

0

sin−1
(√

1−u√
2

)
ln(u)

2
√
u

du

and then substituting the expression
√

1−u√
2

into the Maclaurin series

for the inverse sine, we see that the definite integral given in (2.6) is
also equal to

−2−
5
2π

∞∑
n=0

2−5n
(

2n
n

)2
Hn+1

n+ 1
−
√
πΓ
(

3
4

)
ln(4)

4Γ
(

5
4

)
and we may thus apply Theorem 2.2 to yield the desired result. �

3. Generalizations and variations. We begin by noting that one
of the key ingredients in our proof of Theorem 2.2 was based on the
the use of a Maclaurin-type series for the expression

(3.1)

√
1 + u

(1− u)3/2

for u ∈ [0, 1), and that the determination of a suitable power series
expansion for this expression was nontrivial in that it is not obvious
as to how to find explicit formulas for the Taylor series coefficients for
(3.1) without already knowing the formula we had introduced in (2.3).
For our strategy in computing the Maclaurin series coefficients for (3.1),
we had planned to make use of known results on the series expansion
for √

1 + u

1− u
and then “interpret” the left-hand factor in the left-hand side of

1

1− u

√
1 + u

1− u
=

√
1 + u

(1− u)3/2

as a partial sum operator. The preceding discussion nicely illustrates
how successful applications of the fundamental lemma from [4] often
require creative manipulations of generating functions.
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It seems that applying the proof technique for Theorem 2.2 to try
to determine the value of

(3.2)

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ 2)

may be cumbersome or infeasible. However, by means of a simple
re-indexing argument, we see that there is a very elegant connection
between (3.2) and Theorem 2.2, Theorem 2.3, and Theorem 2.4.

Theorem 3.1. The series

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ 2)

is equal to

64

9
−

Γ
(

1
4

)2
(π − 4 ln(2) + 18)

9π3/2
−

2
√

2
πΓ
(

3
4

)
(9π + 36 ln(2)− 16)

9Γ
(

1
4

) .

Proof. Apply the re-indexing technique outlined below.

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ 2)

=

∞∑
n=2

(
1

32

)n−1
(

2n−2
n−1

)2
Hn−1

n+ 1

=

∞∑
n=2

(
1

32

)n−1
(

2n−2
n−1

)2 (
Hn − 1

n

)
n+ 1

=

∞∑
n=2

321−n(2n−2
n−1

)2
Hn

n+ 1
−

321−n(2n−2
n−1

)2
n(n+ 1)


= −

√
2
πΓ
(

1
4

)
− 3Γ

(
7
4

)
6Γ
(

7
4

) + 32

∞∑
n=2

32−n
(

2n−2
n−1

)2
Hn

n+ 1

= −

√
2
πΓ
(

1
4

)
− 3Γ

(
7
4

)
6Γ
(

7
4

) + 8

∞∑
n=2

2−5nn2
(

2n
n

)2
Hn

(n+ 1)(2n− 1)2
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= −

√
2
πΓ
(

1
4

)
− 3Γ

(
7
4

)
6Γ
(

7
4

) +

8

∞∑
n=2

2−5n

(
2n

n

)2

Hn

(
1

9(n+ 1)
+

1

6(2n− 1)2
+

5

18(2n− 1)

)
We now have that the desired result follows immediately from Theorem
2.2, Theorem 2.3, and Theorem 2.4. �

To compute a given series of the form

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ z)

in closed form for z ∈ Z>0, we make use of the inductive approach
described below. We begin by re-writing the above summation as
suggested below.

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ z)

=

∞∑
n=1

(
2n
n

)2
Hn

32n((n+ 1) + z − 1)

=

∞∑
n=2

(
2n−2
n−1

)2
Hn−1

32n−1(n+ z − 1)

= 8

∞∑
n=2

2−5nn2
(

2n
n

)2
Hn−1

(2n− 1)2(n+ z − 1)

= 8

∞∑
n=2

2−5nn2
(

2n
n

)2 (
Hn − 1

n

)
(2n− 1)2(n+ z − 1)

= 8

∞∑
n=2

2−5nn2
(

2n
n

)2
Hn

(2n− 1)2(n+ z − 1)
− 8

∞∑
n=2

2−5nn
(

2n
n

)2
(2n− 1)2(n+ z − 1)

It is easily seen that hypergeometric series of the form

∑
n

(
1

32

)n n
(

2n
n

)2
(2n− 1)2(n+m)
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always have closed-form evaluations for m ∈ N, as may be verified by
writing

∞∑
n=0

n
(

2n
n

)2
xn+m−1

32n(2n− 1)2
=

1

8
xm2F1

[
1
2 ,

1
2

2

∣∣∣∣∣ x2
]

and evaluating the above expressions as

1

8
xm

(
4
(
1− 2

x

)
K
(
x
2

)
π

+
8E
(
x
2

)
πx

)
and then using known results on moments of complete elliptic integrals.
Now, we observe that we may expand the factor

n2

(2n− 1)2(n+ z − 1)

from the summand in the series∑
n

n2

(2n− 1)2(n+ z − 1)

(
1

32

)n(
2n

n

)2

Hn

as follows.

n2

(2n− 1)2(n+ z − 1)
=(

z − 1

2z − 1

)2

· 1

n+ z − 1
+

4z − 3

2(2z − 1)2
· 1

2n− 1
+

1

2(2z − 1)
· 1

(2n− 1)2

So, in our attempts to compute

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ z)

in closed form, we see that this problem amounts to the symbolic
computation of the following series.

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ (z − 1))

∞∑
n=1

(
2n
n

)2
Hn

32n(2n− 1)

∞∑
n=1

(
2n
n

)2
Hn

32n(2n− 1)2
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So, we see that Theorem 2.2 may be regarded as the “base case” for
our inductive technique, with Theorem 2.3 and Theorem 2.4 providing
the required evaluations for the latter two sums given above, thus
highlighting the import and the utility of the theorems given in Section
2. Through an application of the technique described above, we obtain
the following new results.

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ 3)
=

2048

225
− 4
√
π(297π + 1188 ln(2)− 800)

225Γ
(

1
4

)2 −

2Γ
(

1
4

)2
(313 + 25π − 100 ln(2))

225π3/2

∞∑
n=1

(
2n
n

)2
Hn

32n(n+ 4)
=

16384

1225
+

Γ
(

1
4

)2
(−15974− 1425π + 5700 ln(2))

3675π3/2
−

4
√
π(−7984 + 2401π + 9604 ln(2))

1225Γ
(

1
4

)2
∞∑
n=1

(
2n
n

)2
Hn

32n(n+ 5)
=

2097152

99225
+

2Γ
(

1
4

)2
(−1071611− 98550π + 394200 ln(2))

297675π3/2
−

4
√
π(−391872 + 102851π + 411404 ln(2))

33075Γ
(

1
4

)2
We encounter computational obstacles in attempting to apply the

same kind of inductive procedure with respect to summations of the
form ∑

n∈N

(
2n
n

)2
Hn

32n(2n− 2z + 1)
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for z ∈ Z>0. This illustrates how the problem of computing general-
izations of (1.7) can be very complicated and often requires a degree of
ingenuity in the application of the fundamental lemma from [4]. The
problem of evaluating

(3.3)

∞∑
n=0

(
2n
n

)2
Hn

32n(2n− 3)

is especially interesting, since there is a beautifully unexpected corollary
of the symbolic evaluation for the infinite summation given above that
we discuss in Section 5.

Suppose that we were to attempt to evaluate the series in (3.3) using
Theorem 2.3, following the inductive strategy that had been employed
in our generalization of the proof for Theorem 3.1. So, we must re-index
(3.3) as demonstrated below.

∞∑
n=1

32−n
(

2n
n

)2
Hn

2n− 3

∞∑
n=0

32−n−1
(

2n+2
n+1

)2
Hn+1

2n− 1

1

8

∞∑
n=0

2−5n(2n+ 1)2
(

2n
n

)2 (
Hn + 1

n+1

)
(n+ 1)2(2n− 1)

1

8

∞∑
n=0

2−5n(2n+ 1)2
(

2n
n

)2
Hn

(n+ 1)2(2n− 1)
+

1

8

∞∑
n=0

2−5n(2n+ 1)2
(

2n
n

)2
(n+ 1)3(2n− 1)

However, modern computer algerba systems cannot evaluate the sum

∞∑
n=0

(
1

32

)n (
2n
n

)2
(2n+ 1)2

(n+ 1)3(2n− 1)

in closed form. Moreover, if we apply partial fraction decomposition
with respect to the factor

(2n+ 1)2

(n+ 1)2(2n− 1)

in the “re-indexed” harmonic summation given above, we obtain the
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expression
16

9(2n− 1)
+

10

9(n+ 1)
− 1

3(n+ 1)2
,

but it is not at all clear as to how the series∑
n∈N

(
2n
n

)2
Hn

32n(n+ 1)2

could be evaluated, even through an application of the main lemma
from [4], since this would require the symbolic computation of a difficult
integral such as ∫ 1

0

ln(u) ln
(

1 +
√

1+u√
2

)
(1− u)3/2

√
u

du

and it is not clear as to how to apply the Maclaurin series substitution
strategy employed to evaluate (2.2).

To evaluate series of the form∑
n∈N

(
2n
n

)2
Hn

32n(2n− 2z + 1)

for z ∈ Z>0, we may apply the following procedure inspired by our
proofs for Theorem 2.2 and Theorem 2.3. We leave it as an exercise to
verify the efficacy of this algorithm.

(1) Let f(n) = 2n−1
2n(2n−9) , apply the funamental lemma from [4],

and evaluate the corresponding hypergeometric series

∑
n∈N

(
2n
n

)2
32n(2n− 2z + 1)

in closed form;
(2) Through the application of Lemma 1.1 noted above, we obtain

an integrand of the form√
2− x2

1− x2
ln
(
1− x2

)
p(x)

for a polynomial p(x) with algebraic coefficients. Apply the
substitution u = 1− x2;
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(3) We thus obtain an integrand of the form√
1 + u

1− u
· ln(u)√

u
· q(u)

for a polynomial q(u) with algebraic coefficients. Replace the

expression
√

1+u
1−u with its Maclaurin series

1 +

∞∑
n=1

21−nun
(
n− 1⌊
n−1

2

⌋)
in the above integrand and integrate term-by-term.

Using the above procedure, we obtain the following results, thus
illustrating the versatility of the main lemma from [4].

∞∑
n=0

(
2n
n

)2
Hn

32n(2n− 3)
=

36Γ
(

3
4

)2
(π + 4 ln(2)− 4)− Γ

(
1
4

)2
(15π − 60 ln(2) + 8)

216π3/2

∞∑
n=0

(
2n
n

)2
Hn

32n(2n− 5)
=

11π3/2

75Γ
(

1
4

)2 − Γ
(

1
4

)2
(32 + 51π − 204 ln(2))

1080π3/2
+

4
√
π(55 ln(2)− 51)

375Γ
(

1
4

)2
∞∑
n=0

(
2n
n

)2
Hn

32n(2n− 7)

√
π(65π + 260 ln(2)− 212)

875Γ
(

1
4

)2 +
Γ
(

1
4

)2
(5796 ln(2)− 856− 1449π)

41160π3/2

Using a similar algorithm, we may evaluate series of the form

∑
n∈N

(
2n
n

)2
Hn

32n(2n− 2z + 1)2
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in closed form for z ∈ Z>0, and we leave it as an exercise to formalize
this idea. For example, using an analogue of the procedure described
above, we obtain the following result.

∞∑
n=0

32−n
(

2n
n

)2
Hn

(2n− 3)2
=

4
√
π(7− π − 4 ln(2))

9Γ
(

1
4

)2 +
Γ
(

1
4

)2
(8 + 7π − 28 ln(2))

216π3/2

4. Ramanujan-type formulas. Inspired by the method we had
applied to generalize Theorem 3.1, we consider the use of similar
strategies to determine explicit evaluations for new 1

π series with
summands containing factors of the form(

2n
n

)2
Hn

16n
,

which were the main kinds of mathematical objects under investigation
in [4], as opposed to expressions of the form(

2n
n

)2
Hn

32n

which served as something of a basis for Section 2 and Section 3. To
illustrate this idea, we begin by considering the problem of finding a
symbolic evaluation for the simple and natural-looking series

∞∑
n=1

C2
nHn

16n
,

letting Cn denote the nth Catalan number, as above. Summations of
the form

(4.1)

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ z)2

for z ∈ Z>0 had not been discussed in [4]; series of the form in (4.1)
cannot be evaluated through a direct or straightforward application of
Lemma 1.1, as is easily verified. We thus make use of a more “unusual”
approach to prove the following result, which serves as the base case
for an inductive generalization.
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Theorem 4.1. The following equation holds:

∞∑
n=0

(
2n
n

)2
Hn

16n(n+ 1)2
= 16 +

32G− 64 ln(2)

π
− 16 ln(2).

Proof. We begin by making use of the following result that had been
introduced in [4]:

∞∑
n=1

(
2n
n

)2
Hn

16n(2n− 3)
=
−68 + 120 ln(2)

27π
.

We remark that the above result follows directly from the fundamental
lemma from [4] by letting f(n) = 2n−1

2n−3 . Now apply the following re-
indexing argument.

−68 + 120 ln(2)

27π
=

∞∑
n=1

16−n
(

2n
n

)2
Hn

2n− 3
=

∞∑
n=0

16−(n+1)
(

2n+2
n+1

)2
Hn+1

2n− 1
=

1

4

∞∑
n=0

4−2n(2n+ 1)2
(

2n
n

)2
Hn+1

(n+ 1)2(2n− 1)
=

1

4

∞∑
n=0

4−2n

(
2n

n

)2

Hn

(
− 1

3(n+ 1)2
+

10

9(n+ 1)
+

16

9(2n− 1)

)
+

1

4

∞∑
n=0

4−2n

(
2n

n

)2
(
− 1

3(n+ 1)3
+

10

9(n+ 1)2
−

16

27(n+ 1)
+

32

27(2n− 1)

)
=

− 1

12

∞∑
n=0

(
2n
n

)2
Hn

16n(n+ 1)2
− 1

12

∞∑
n=0

(
2n
n

)2
16n(n+ 1)3

− 24 ln(2)− 40

27π

We remark that for the final equality given above, we implicitly made
use of Lemma 1.1 in the case whereby f(n) = 1. So, we have shown
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that the problem of symbolically computing the infinite series given in
the above theorem is equivalent to the remarkably simpler problem of
computing the hypergeometric series given below.

(4.2)

∞∑
n=0

(
2n
n

)2
16n(n+ 1)3

Surprisingly, Mathematica is not able to compute the above series.
Making use of the Catalan number integral formula whereby(

2n
n

)
n+ 1

=
1

2π

∫ 4

0

xn
√

4− x
x

dx,

we find that the series in (4.2) is also equal to

1

2π

∫ 4

0

−8
√

4− x

(
1

x

)3/2(
− 2 +

√
4− x+

2 ln(2)− 2 ln

(
1 +

√
1− x

4

))
dx.

which Mathematica is able to evaluate as − 32G
π − 16 + 48

π + 16 ln(2),
thus completing our proof. �

By analogy with our generalization of Theorem 3.1, we make use of
the following procedure to compute infinite series of the form

∞∑
n=0

(
2n
n

)2
Hn

16n(n+ z)2

for z ∈ Z>0. Begin by rewriting (4.1) as follows.

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ z)2
=

∞∑
n=2

(
2n−2
n−1

)2
Hn−1

16n−1(n+ z − 1)2
=

4

∞∑
n=2

4−2nn2
(

2n
n

)2
Hn

(2n− 1)2(n+ z − 1)2
− 4

∞∑
n=2

4−2nn
(

2n
n

)2
(2n− 1)2(n+ z − 1)2
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It is easily seen that

∑
n

4−2nn
(

2n
n

)2
(2n− 1)2(n+ z − 1)2

has a closed-form expression for z ∈ Z>0, and we leave it as an exercise
to show this. Through the use of partial fraction decomposition, expand
the quotient

n2

(2n− 1)2(n+ z − 1)2

as suggested below.

− 2z − 2

(2z − 1)3
· 1

n+ z − 1

+
1

(2z − 1)2
· 1

(2n− 1)2

+
(z − 1)2

(2z − 1)2
· 1

(n+ z − 1)2

+
4z − 4

(2z − 1)3
· 1

2n− 1

Starting with Theorem 4.1 as the base case, we may thus evaluate (4.1)
recursively since it is easily seen that series of the form

∞∑
n=1

(
2n
n

)2
Hn

16n(n+m)

for m ∈ N may be evaluated directly through Lemma 1.1. Following
this algorithm, we obtain the new results indicated below.

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ 2)2

=
112

27
− 64 ln(2)

9
+

16(13 + 24G− 44 ln(2))

27π

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ 3)2
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=
6272

3375
− 1024 ln(2)

225
+

23632 + 30720G− 54208 ln(2)

3375π

∞∑
n=1

(
2n
n

)2
Hn

16n(n+ 4)2

=
129536

128625
− 4096 ln(2)

1225
+

783408 + 860160G− 1484864 ln(2)

128625π

5. Conclusion. Our explorations on the symbolic computation of
series with summands containing(

1

32

)n(
2n

n

)2

Hn

as a factor lead us to a very surprising discovery concerning a new series
involving alternating harmonic numbers, as elaborated below. It seems
that the problem of generalizing this discovery would form a promising
area of research.

By Lemma 1.1, by letting f(n) = 2−n(2n−1)
2n−3 , we find that the infinite

series

(5.1)

∞∑
n=0

32−n
(

2n
n

)2
Hn

2n− 3

is equal to the following.

2

π

∫ 1

0

(√
2− x2 + x2

√
2− x2

)
ln
(
1− x2

)
3
√

2
√

1− x2
dx+

5Γ
(

1
4

)
ln(2)

9
√

2πΓ
(

3
4

) +
2
√

2
πΓ
(

3
4

)
ln(2)

3Γ
(

1
4

)
Mathematica 11 is not able to evaluate the above expression in closed
form. However, interestingly, if the function Simplify is applied to
this expression, Mathematica produces the following output, after
11 minutes of computation, letting γ denote the Euler–Mascheroni
constant, and letting regularized hypergeometric functions be denoted
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with pF̃q.

1

18
√

2π

(
10
√
πΓ
(

1
4

)
ln(2)

Γ
(

3
4

) +
24
√
πΓ
(

3
4

)
ln(2)

Γ
(

1
4

) +

3

(
4γE(−1) + π

(
−
√
π

(
2
∂

∂x
3F̃2

[
− 1

2 ,
1
2 ,

1
2

1, x

∣∣∣∣∣ − 1

] ∣∣∣∣∣
x= 1

2

+

∂

∂x
3F̃2

[
− 1

2 ,
1
2 ,

1
2

2, x

∣∣∣∣∣ − 1

] ∣∣∣∣∣
x= 1

2

+

2
∂

∂x
2F1

[
− 1

2 ,
1
2

x

∣∣∣∣∣ − 1

] ∣∣∣∣∣
x=1

+

∂

∂x
2F̃1

[
− 1

2 ,
1
2

x

∣∣∣∣∣ − 1

] ∣∣∣∣∣
x=2

)))
It can be shown that from the above output, together with the symbolic
calculation for (5.1) that we had provided in Section 3, we have that
the series

(5.2)

∞∑
n=1

(
− 1

16

)n(
2n

n

)2
(2n+ 3)H ′2n

(2n− 1)(n+ 1)

is may be evaluated as

5Γ
(

1
4

)2
(π − 4 ln(2))

12
√

2π3/2
−

Γ
(

3
4

)
(3π + 12 ln(2)− 20)

3
√
πΓ
(

1
4

) − 2

3
.

This is very interesting because it is unexpected that the main inte-
gration technique from [4] can also be applied to determine new series
involving alternating harmonic numbers, and this suggests that there
may be a deep connection between the fundamental lemma from [4]
and the main integration technique from [5]. How can we obtain new
classes of series containing harmonic-like numbers of the form H ′2n as
in (5.2) by showing how the definite integral in Lemma 1.1 can be ex-
pressed in terms of parameter derivatives of hypergeometric expressions
of the form pFq(−1), as above?
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