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Interplay between spontaneous decay rates and Lamb shifts in open photonic systems

Emmanuel Lassalle,∗ Nicolas Bonod, Thomas Durt, and Brian Stout†

Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
(Dated: April 23, 2018)

In this letter, we describe the modified decay rate and photonic Lamb (frequency) shift of quantum
emitters in terms of the resonant states of a neighboring photonic resonator. This description
illustrates a fundamental distinction in the behaviors of closed (conservative) and open (dissipative)
systems: the Lamb shift is bounded by the emission linewidth in closed systems while it overcomes
this limit in open systems.

I. INTRODUCTION

The coupling between quantum emitters (QE) and res-
onant photonic nanostructures is at the heart of nanopho-
tonics [1]. The resonances of a given structure charac-
terize its optical response to an excitation electromag-
netic (EM) field, and can be of different nature: Mie
resonances in dielectric structures [2], or surface plas-
mons in metallic ones [3]. A powerful tool to describe
both types of resonances is the use of resonant states,
also called quasi-normal modes (QNMs), which are the
natural modes of the photonic system. A remarkable
advantage of this framework is that it allows to gener-
alize the usual cavity-quantum electrodynamics (cQED)
figures of merit characterizing the interaction between
a dipole source and the resonance of a cavity, such as
the quality factor Q or mode volume V , to the case of
open and/or absorbing systems (and also taking into ac-
count material dispersion) that are almost always found
in nanophotonics [4–6]. For instance, the use of QNMs
has been proposed to express the spontaneous decay rate
of a QE coupled to an open photonic resonator in [5, 6].

In this work, we express the photonic Lamb shift (i.e.
the shift of the emission frequency due to the neighbor-
ing environment) in terms of the QNMs. We start from
the general quantum optics results, valid in the weak-
coupling regime, that relate the spontaneous decay rate
and photonic Lamb shift of a two-level QE to the Green
tensor. We then make use of the resonant states of the
photonic system to which the QE couples to expand the
Green tensor and derive analytic expressions for the de-
cay rate and Lamb shift involving the following figures
of merit: quality factor, mode volume and Purcell fac-
tor. The derived expressions reveal an interplay between
the decay rate and the Lamb shift, and in the single-
resonance limit, we show that: (i) for conservative (Her-
mitian) systems, i.e. closed and non-absorbing, or for
systems with small losses characterized by high qual-
ity factors, the Lamb shift always lies within the emis-
sion linewidth (equal to the decay rate), whereas (ii) for
dissipative, i.e. open and/or absorbing, systems (non-
Hermitian), the Lamb shift can go beyond this funda-
mental limit (see [7] with references therein and [8]).
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II. LAMB SHIFT AND DECAY RATE
INTERPLAY

In the presence of a neighboring photonic structure,
a two-level QE will experience a new decay rate γ∗ and
emission frequency ω∗ compared to the case of free-space
denoted by γ0 and ω0, respectively. Using the macro-
scopic quantum optics results for a two-level atom cou-
pled to a general dispersive and absorbing medium, one
can write the environment-modified decay rate γ∗ and
photonic Lamb shift ∆ω defined by ∆ω ≡ ω∗ − ω0 in

terms of the Green tensor
↔
G (defined in Appendix VI A)

that fully contains all the properties of the EM environ-
ment of the emitter (we assume a constant relative per-
meability µ = 1) [9, 10]

γ∗

γ0
= 1 +

6πc

ω0
× up · Im(

↔
Gs(r0, r0, ω0)) · up , (1)

∆ω

γ0
= −3πc

ω0
× up · Re(

↔
Gs(r0, r0, ω0)) · up , (2)

where c is the speed of light in vacuum, r0 the atom posi-
tion and up the unit vector in the direction of its electric
dipole moment: p0 = p0up. Note that in these expres-

sions, the total Green tensor
↔
G has been decomposed

into the ”free-space” part
↔
G0 (i.e. the Green tensor in

the absence of the neighboring structure) and a ”scat-

tered” part
↔
Gs (which defines the contribution of the

photonic system) as:
↔
G =

↔
G0 +

↔
Gs, and the quanti-

ties have been normalized by the free-space decay rate

γ0 = 2ω2
0/(ε0~c2)|p0|2up · Im(

↔
G0(r0, r0, ω0)) · up where

up · Im(
↔
G0(r0, r0, ω0)) · up = ω0/6πc. Moreover, as far

as the Lamb shift is concerned, the integral part over all
frequencies (see [10]) has been omitted. Eqs. (1) and (2)
obtained within a two-level system model are the same as
the ones of the decay rate and radiative frequency-shift
of a classical electric dipole normalized by the classical
decay rate in free space [11]. A more complete treatment
of the Lamb shift for real multilevel atoms can be found
in [12].

We assume that the scattered part of the Green tensor
↔
Gs can be expanded in terms of the resonant states of the
photonic system, and we use the spectral representation
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of the Green tensor [6, 13, 14]

↔
Gs(r, r

′, ω) ' c2
∑
α

Eα(r)⊗Eα(r′)

2ω(ωα − ω)
(3)

where Eα are the QNM fields normalized according to
Muljarov et al. [6, 14], ωα ≡ ω′α + iω′′α are the QNM
complex frequencies and ⊗ denotes the tensor product
(definitions in Appendix VI B). When plugging Eq. (3)
in Eqs. (1) and (2), one immediately gets

γ∗

γ0
= 1 +

3π c3

ω2
0

∑
α

Im

(
1

Vα(ωα − ω0)

)
(4)

∆ω

γ0
= −3π c3

2ω2
0

∑
α

Re

(
1

Vα(ωα − ω0)

)
(5)

where Vα is the mode volume of the QNM α defined as

Vα ≡
1

(up ·Eα(r0))2
(6)

in which the QNM field Eα is taken at the QE position
r0. This figure of merit characterizes the coupling be-
tween the QE and the resonance α through the real part
(the larger Re(1/Vα), the better is the coupling) [15], and
also energy dissipations through the presence of an imag-
inary part (a large Im(1/Vα) indicates important energy
dissipations) [5]. We next introduce the Purcell factor
Fα, which corresponds to the enhancement of the total
decay rate γ∗ in comparison to γ0 due the the resonance
α and for a perfect spectral match (ω0 = ω′α),

Fα ≡
6π c3

ω′3α
QαRe (1/Vα) , (7)

with the usual quality factor Qα defined as Qα ≡
−ω′α/(2ω′′α) (ω′′α < 0 due to the convention used for the
Fourier transform “ e−iωt ”). Expressions (4) and (5)
can then be recast in a form revealing an interplay be-
tween Lamb shift and decay rate (see derivation in Ap-
pendix VI C)

γ∗

γ0
= 1 +

∑
α

{
γHα
γ0
− 2

∆ωHα
γ0

Im(1/Vα)

Re(1/Vα)

}
(8)

∆ω

γ0
=
∑
α

{
∆ωHα
γ0

+
1

2

γHα
γ0

Im(1/Vα)

Re(1/Vα)

}
(9)

where the expressions of γHα /γ0 and ∆ωHα /γ0 are

γHα
γ0

= Fα

(
ω′α
ω0

)2
ω′′2α

(ω′α − ω0)2 + ω′′2α
(10)

∆ωHα
γ0

= Fα

(
ω′α
ω0

)2
ω′′α
2

ω′α − ω0

(ω′α − ω0)2 + ω′′2α
. (11)

The superscript H indicates “Hermitian”, because for
conservative systems, and more realistically for systems
with small losses, Im(Vα) ' 0 and one recovers the sum of
Lorentzians which is phenomenologically used for high-Q
cavities [5]: γ∗/γ0 = 1+

∑
α γ

H
α /γ0. In contrast, for dissi-

pative systems characterized by Im(Vα) 6= 0 [5], Eqs. (8)
and (9) reveal an interplay between the “Hermitian” de-
cay rates γHα and Lamb shifts ∆ωHα . This constitutes our
first result.

III. EXAMPLE

As an example, let us apply Eqs. (8) and (9) to two sit-
uations of a QE coupled to an open photonic system: (i)
dielectric silicon (Si) nanosphere with no absorption (and
no dispersion) and (ii) plasmonic silver (Ag) nanosphere
with absorption (and dispersion) (see insets in Fig. 1 (a-
c)). For spherical resonators, the QNM fields are the mul-
tipolar fields, labeled by four numbers {q, n,m, l} where
q labels a magnetic (q = 1) or an electric (q = 2) mode,
n = 1, 2, ...,∞ is the multipolar order, m = −n, ..., n is
the orbital (or azimutal) number, and l numerates the
different QNM complex frequencies ωq,n,m,l found for a
fixed combination of {q, n,m}, which are the poles of
the Mie coefficients [8, 15, 16]. Therefore, for spherical
resonators the sums over α in Eqs. (8) and (9) become:∑
α →

∑
q,n,m,l. Moreover, for a given set of {q, n, l},

the QNMs with a different number m are degenerate (i.e.
have the same complex frequency ωq,n,m,l), and the sum
can be recast in the form

∑
q,n,l with “effective” mode

volumes defined as 1/Vq,n,l ≡
∑
m 1/Vq,n,m,l (see Ap-

pendix E in [6] and also [8]).
In the following, the mode volumes given by Eq. (6),

and appearing in the QNM formulas Eqs. (8) and (9), are
computed using the analytical expressions of the QNM
fields Eα derived for a spherical resonator shape in [14]
for non-dispersive materials (i.e. with a constant per-
mittivity) and in [6] for dispersive materials (i.e. with
a permittivity that depends on the frequency ω). The
QNM complex frequencies are found by solving a tran-
scendental equation (giving the poles of the Mie coeffi-
cients) with the FindRoot function of Mathematica, and
where we use an analytic continuation of the permittivity
in the complex plane in the case of dispersive materials.

For the calculations, we consider an electric dipole
emitter radially oriented (and therefore only coupled to
the electric modes q = 2 [17]) and located at a distance
d = 10 nm from the sphere. The Si nanosphere (dielec-

α = (n, l) λα (nm) Vα (nm3)

Si
(2, 1) 547.3 + i4.7 (17.573 − i6.974) · 106

(2, 2) 329.7 + i106.3 (1.222 + i1.063) · 106

Ag (1, 1) 375.6 + i15.5 (0.525 − i0.023) · 106

TABLE I. QNMs complex wavelengths λα and mode volumes
Vα appearing in Eqs. (8) and (9) and used to obtain the results
of Fig. 1.
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FIG. 1. Comparison between QNM calculations using Eqs. (8)
and (9) (lines) and exact calculations using Mie theory (cir-
cles) of the decay rate γ∗ and Lamb shift ∆ω (normalized
by γ0) as a function of the emitter transition wavelength
λ0 = 2πc/ω0, for two configurations: (a-b) silicon (Si) and (c-
d) silver (Ag) nanospheres of radii a = 120 nm and a = 20 nm,
respectively. In all cases, the emitter (red arrow) is radially
oriented and located at a distance d = 10 nm from the sphere.
For Si [Ag], only the electric quadrupolar [dipolar] contribu-
tion to the decay rate (a) [(c)] and Lamb shift (b) [(d)] is
shown.

tric permittivity ε = 16) has a radius of a = 120 nm,
exhibiting a dominant electric quadrupolar resonance at
547 nm, and the Ag nanosphere (Drude-Lorentz model
for the dielectric permittivity taken from [18]) has a ra-
dius of a = 20 nm, exhibiting a dominant electric dipo-
lar resonance at 375 nm. For the Si configuration, we
show in Figs. 1 (a-b) the electric quadrupolar contri-
bution (n = 2) to the decay rate γ∗ and Lamb shift
∆ω as a function of the emitter transition wavelength
λ0 = 2πc/ω0, calculated from the QNM formulas (8)
and (9) (solid green line), and compared with the exact
Mie theory (green dots). We find several QNMs associ-
ated with this quadrupolar resonance, and by using the
two dominant QNMs (whose mode volumes and com-
plex wavelengths defined as λα ≡ 2πc/ωα are given in
Table I), the QNM formulas work very well, with a bet-
ter result for the decay rate than for the Lamb shift for
which one can see a certain discrepancy at high wave-
lengths. The two individual contributions of the QNMs
used in the expansion are also shown (dashed black lines
in (a-b)).

For the Ag configuration we show in Figs. 1 (c-d)
the dominant dipolar contribution (n = 1) to the decay
rate γ∗ and Lamb shift ∆ω as a function of the emitter
transition wavelength λ0, calculated from Eqs. (8) and
(9) (solid red lines) and compared with the Mie theory
(red dots). We only find a single QNM associated with
this dipolar resonance (whose mode volume and complex
wavelength are given in Table I). The agreements are
quite good for the decay rate, but one can see certain
discrepancies for the Lamb shift (the resonance around
250 nm is a spurious resonance peculiar to the model of

permittivity used [19]). These Lamb shift discrepancies
(more important in the metallic case) appear to be re-
lated to omitted non-resonant contributions (see Eq. (4)
in [20] and Eq. (16) in [21]), which impact more the Lamb
shift than the decay rate in the near field. Finally, let us
emphasize the presence of an imaginary part in the mode
volumes displayed in Table I. In the dielectric case, the
imaginary part characterizes the radiative losses and in
the plasmonic case, it characterizes both radiative and
absorption losses.

IV. MAXIMUM LAMB SHIFTS IN THE
SINGLE-RESONANCE APPROXIMATION

From here on, we work under the assumption that the
QE couples to a single resonance α. First, we revisit
the case of conservative or low-loss systems for which
Im(Vα) ' 0. In this case, Eqs. (8) and (9) become
γ∗/γ0 = 1 + γHα /γ0 and ∆ω/γ0 = ∆ωHα /γ0, and we can
see that the decay rate γHα and the Lamb shift ∆ωHα are
dissociated and there is no interplay. We want to assess
the maximum frequency shift ∆ωmax, that occurs when
the QE natural frequency ω0 is detuned by ±ω′′α com-
pared to the QNM resonance frequency ω′α. At these
particular frequencies ω0 = ω′α ∓ ω′′α, the decay rate and
Lamb shift (pointed out with arrows in Fig. 1) are (see
Appendix VI D)

γ∗

γ0
= 1 +

1

2
Fα +O(Q−1α ) (12)

∆ωmax

γ0
= ±1

4
Fα +O(Q−1α ) (13)

(∆ωmax ' +1/4Fα when ω0 = ω′α − ω′′α and ∆ωmax '
−1/4Fα when ω0 = ω′α + ω′′α). We retrieve in this ideal
case the expressions for the maximum frequency shift
that were derived in [22], Eq. (35), where they consid-
ered a two-level atom inside a cavity whose resonance
was phenomenologically described by a Lorentzian. For
large decay rate enhancements γ∗ � γ0, the first term
in the right hand side of Eq. (12) can be omitted and we
finally end up with the following relations for the maxi-
mum photonic Lamb shift

∆ωmax = ±γ
∗

2
. (14)

Before commenting this result, let us first recall that in
the weak-coupling regime, the emitted-light spectrum of
the QE has a Lorentzian line shape [9], and one usually
takes the full width at half maximum (FWHM) ~γ∗ as
a measure of the energy spread δE, called energy level
width or emission linewidth. This leads to the relation
between the energy level width and the lifetime of the ex-
cited state (defined as τ ≡ 1/γ∗): δE τ = ~, which can be
seen as a time-energy uncertainty relation (see e.g. [23]).
Thus — and this is our second result — for conservative
systems, or systems with weak energy dissipations, and in
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the single-resonance approximation, Eq. (14) shows that
the photonic Lamb shift always lies within the emission
linewidth. As already pointed out in [22], this makes it
difficult to observe as a shift of the spectral line.
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FIG. 2. Inverse of the mode volume 1/Vα of the dipolar QNM
of a silver nanosphere (radius a = 50 nm), as a function of
the distance d (real part in orange and imaginary part in
blue), for an emitter radially oriented (red arrow). Note that
1/Vα has been multiplied by the cube of the QNM resonance
wavelength λ′α = 411.6 nm.

Let us now turn to the case of dissipative systems, for
which Im(Vα) 6= 0. In this case, the decay rate and Lamb
shift are described by Eqs. (8) and (9), respectively. At
the frequencies ω0 = ω′α ∓ ω′′α, these expressions reduce
to (see Appendix VI D)

γ∗

γ0
= 1 +

1

2
Fα

[
1∓ Im(1/Vα)

Re(1/Vα)

]
+O(Q−1α ) (15)

∆ωmax

γ0
= ±1

4
Fα

[
1± Im(1/Vα)

Re(1/Vα)

]
+O(Q−1α ) (16)

(when ω0 = ω′α − ω′′α one must take the upper sign and
when ω0 = ω′α + ω′′α one must take the lower sign). For
large decay rate enhancements γ∗ � γ0, the first term in
the right hand side of (15) can be neglected and we get
the following relation between the maximum Lamb shift
and decay rate

∆ωmax = ± [Re(1/Vα)± Im(1/Vα)]

[Re(1/Vα)∓ Im(1/Vα)]

γ∗

2
. (17)

In sharp contrast with Eq. (14) valid for conservative
or high-Q systems, Eq. (17) shows that for dissipative
systems, the Lamb shift is not bounded by the emission
linewidth, and can go beyond this limit. This is our third
result.

To illustrate this fundamental distinction in the behav-
ior of conservative and dissipative systems, we consider
in the following a QE radially oriented and coupled to
the plasmonic dipolar resonance of a silver nanoparticle
of radius a = 50 nm (see inset in Fig. 2). The com-
plex wavelength λα = λ′α + iλ′′α of the dipolar QNM is
calculated to be λα = 411.6 + i50.8 nm, which gives a
quality factor Qα = λ′α/(2λ

′′
α) = 4. The QE transition

wavelength λ0 = 2πc/ω0 is assumed to be λ0 = 372 nm.

This corresponds to the case ω0 = ω′α−ω′′α for which the
Lamb shift ∆ωmax is maximum and positive and given
by Eq. (16) (taking the positive sign), and the decay rate
γ∗ is the one given by Eq. (15) (taking the negative sign).
First, we plot in Fig. 2 (the inverse of) the mode volume
Vα of the dipolar QNM as a function of the distance d
between the QE and the nanoparticle. One can see that
Re(1/Vα), which characterizes the coupling between the
QE and the nanoparticle, increases as d decreases (or-
ange curve), which is in accordance with the expecta-
tion that the coupling increases as the QE gets closer
to the resonator. Moreover, one can see the presence
of energy dissipations through a non-negligible Im(1/Vα)
(blue curve), which is expected when considering the low
quality factor of the resonance Qα = 4.

Accordingly, the decay rate γ∗ [Eq. (15)] and max-
imum Lamb shift ∆ωmax [Eq. (16)] will increase as d
decreases in a similar way as Re(1/Vα) in Fig. 2 (be-
cause the Purcell factor appearing in their expression is
Fα ∝ Re(1/Vα) [see Eq. (7)]). More importantly, dissi-
pations, through the presence of Im(1/Vα) in Eqs. (15)
and (16), will weaken the decay rate (due to the negative
sign in Eq. (15)) and increase the Lamb shift (due to the
positive sign in Eq. (16)), compared to the conservative
case where Im(1/Vα) = 0. To see this effect, we plot in
Fig. 3 the ratio ∆ωmax/γ

∗ as a function of the distance
d, for the dissipative case (blue curve) and the ideal con-
servative case (orange curve). The limit ∆ω = γ∗/2 is
also shown (dashed black line). One can see that con-
trary to the conservative case where the Lamb shift is
bounded by γ∗/2, dissipations allow to fulfill the condi-
tion ∆ω > γ∗/2. We compare this result with the Mie
calculations taking into account only the electric dipolar
(n = 1) response of the nanoparticle (red curve). Despite
a decrease of the magnitude (that might be explained by
the non-resonant contributions discussed previously), the
Mie calculations still show a Lamb shift that overcomes
the limit of conservative systems under a dipolar approx-
imation.
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FIG. 3. Ratio between the Lamb shift ∆ωmax and the de-
cay rate γ∗ as a function of the distance d, calculated from
Eqs. (15) and (16) (in blue), from Eqs. (12) and (13) (in
orange), and from the Mie theory (in red), for the same con-
figuration as in Fig. 2. A guide-to-the-eye shows the limit
∆ω = γ∗/2.
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V. CONCLUSION

To sum up, using a quasi-normal mode description, we
derive general expressions for the environment-modified
decay rate and photonic Lamb shift, valid for open (dis-
sipative) resonators. In the single-resonance approxi-
mation, we consider the maximum level shift that can
be expected, and we show a remarkable difference be-
tween closed (conservative) and open (dissipative) sys-
tems: while for conservative systems, the Lamb shift re-
mains within the emission linewidth, it can go beyond
this fundamental range for dissipative systems.

VI. APPENDIX

A. Definition of the Green tensor

The Green tensor
↔
G(r, r′, ω) is defined as the solution

of the classical Maxwell’s equations with a δ function
source term

∇×∇×
↔
G− ω2

c2
ε
↔
G =

↔
I δ(r− r′) (18)

with the proper boundary conditions.
↔
I is the unit tensor

and ε(r, ω) is the relative permittivity. Note that we as-
sume a constant relative permeability µ = 1. The Green

tensor defined by this equation has the units: [
↔
G] = m−1.

B. Definition of the resonant states

The resonant states Eα(r) of the photonic system are
defined as the solutions of the Maxwell’s equations in the
absence of source

∇×∇×Eα =
ω2
α

c2
ε(r, ω)Eα (B1)

where ε is the relative permittivity of the resonator and
where a constant relative permeability µ = 1. Moreover,
these eigenmodes satisfy outgoing wave boundary condi-
tions [4, 5, 14]. Because of the boundary conditions, the
eigenfrequencies ωα associated to the eigenmodes Eα are
complex: ωα = ω′α + iω′′α, where ω′′α < 0 due to the con-
vention used for the Fourier transform “ e−iωt ”. In this
letter, we follow the normalization condition of Doost et
al. [6, 14] where the resonant modes are normalized ac-
cording to

1 =
1

2

∫
V

Eα ·
[
∂(ωε)

∂(ω)
+ ε

]
Eα dr

+
c2

2ω2
α

∮
∂V

[
Eα ·

∂

∂s
(r · ∇)Eα − (r · ∇)Eα ·

∂Eα
∂s

]
dS .

(B2)

All the quantities that depend on ω are taken at ω = ωα.
The first integral is taken over a volume V enclosing the

photonic system, and the second integral is taken over
a closed surface ∂V of the volume V , with the normal
derivative ∂/∂s = n ·∇, n being the outward unit vector
normal to the surface. This normalization sets the unity
of the electric fields as: [Eα] = m−3/2.

C. Derivation of Eqs. (8), (9), (10) and (11)

Here we derive the interplay relations between the de-
cay rate and Lamb shift (8), (9), (10) and (11). For
Hermitian systems, Im(1/Vα) = 0. In this case, Eqs. (4)
and (5) (main text) can be written as

γ∗

γ0
= 1 +

3π c3

ω2
0

∑
α

Re

(
1

Vα

)
Im

(
1

ωα − ω0

)
(B3)

∆ω

γ0
= −3π c3

2ω2
0

∑
α

Re

(
1

Vα

)
Re

(
1

ωα − ω0

)
. (B4)

We then define the Hermitian decay rate and Lamb shift
associated to the resonance α as

γHα
γ0
≡ 3π c3

ω2
0

Re

(
1

Vα

)
Im

(
1

ωα − ω0

)
(B5)

∆ωHα
γ0

≡ −3π c3

2ω2
0

Re

(
1

Vα

)
Re

(
1

ωα − ω0

)
, (B6)

so that the total decay rate and Lamb shift read γ∗ =
γ0 +

∑
α γ

H
α and ∆ω =

∑
α ∆ωHα respectively.

For non-Hermitian systems, Im(1/Vα) 6= 0. In this
case, Eqs. (4) and (5) present an extra term compared to
the Hermitian case

γ∗

γ0
= 1 +

3π c3

ω2
0

∑
α

Re

(
1

Vα

)
Im

(
1

ωα − ω0

)
+

3π c3

ω2
0

∑
α

Im

(
1

Vα

)
Re

(
1

ωα − ω0

)
(B7)

∆ω

γ0
= −3π c3

2ω2
0

∑
α

Re

(
1

Vα

)
Re

(
1

ωα − ω0

)
+

3π c3

2ω2
0

∑
α

Im

(
1

Vα

)
Im

(
1

ωα − ω0

)
. (B8)

By making use of (B5) and (B6), these expressions can
be recast in the form

γ∗

γ0
= 1 +

∑
α

{
γHα
γ0
− 2

∆ωHα
γ0

Im(1/Vα)

Re(1/Vα)

}
(B9)

∆ω

γ0
=
∑
α

{
∆ωHα
γ0

+
1

2

γHα
γ0

Im(1/Vα)

Re(1/Vα)

}
(B10)
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which are the expressions (8) and (9) of the main text.
Now, we show how the expressions (B5) and (B6) for

γHα and ∆ωHα respectively can be rewritten in the form
of Eqs. (10) and (11) (main text). First, by multiplying
by the complex conjugate, we can explicitely write (we
remind that we defined ωα ≡ ω′α + iω′′α)

Re

(
1

ωα − ω0

)
=

ω′α − ω0

|ωα − ω0|2
=

ω′α − ω0

(ω′α − ω0)2 + ω′′2α
(B11)

Im

(
1

ωα − ω0

)
=

−ω′′α
|ωα − ω0|2

=
−ω′′α

(ω′α − ω0)2 + ω′′2α
(B12)

By reporting these expressions into Eqs. (B5) and (B6),
we get

γHα
γ0

=
3π c3

ω2
0

Re

(
1

Vα

)
−ω′′α

(ω′α − ω0)2 + ω′′2α
(B13)

∆ωHα
γ0

= −3π c3

2ω2
0

Re

(
1

Vα

)
ω′α − ω0

(ω′α − ω0)2 + ω′′2α
(B14)

Finally, by introducing the Purcell factor defined in
Eq. (7) (main text), we end up with the Eqs. (10) and
(11) of the main text, that is

γHα
γ0

= Fα

(
ω′α
ω0

)2
ω′′2α

(ω′α − ω0)2 + ω′′2α
(B15)

∆ωHα
γ0

= Fα

(
ω′α
ω0

)2
ω′′α
2

ω′α − ω0

(ω′α − ω0)2 + ω′′2α
. (B16)

D. Derivation of Eqs. (12), (13), (15) and (16)

Here we derive the expressions of the decay rate and
Lamb shift, in the single-resonance approximation, for
two particular detunings of the natural QE frequency ω0

compared to the QNM resonance frequency ω′α: ω0 =
ω′α∓ω′′α, for which the Lamb shift presents an extremum
(indicated by arrows in Fig. 1 (b) and (d) in the main
text).

We start with the detuning ω0 = ω′α+ω′′α. By replacing
ω0 by ω′α + ω′′α in Eqs. (10) and (11), one gets

γHα
γ0

=
1

2
Fα

(
ω′α

ω′α + ω′′α

)2

=
1

2
Fα

(
1

1− 1
2Qα

)2

(B17)

∆ωHα
γ0

= −1

4
Fα

(
ω′α

ω′α + ω′′α

)2

= −1

4
Fα

(
1

1− 1
2Qα

)2

(B18)

where we used the fact that Qα = −ω′α/(2ω′′α). In the
single-resonance approximation, Eqs. (8) and (9) thus re-
duce to

γ∗

γ0
= 1 +

γHα
γ0
− 2

∆ωHα
γ0

Im(1/Vα)

Re(1/Vα)
(B19)

∆ω

γ0
=

∆ωHα
γ0

+
1

2

γHα
γ0

Im(1/Vα)

Re(1/Vα)
, (B20)

and by employing the previous expressions of γHα and
∆ωHα , one gets

γ∗

γ0
= 1 +

1

2
Fα

(
1

1− 1
2Qα

)2 [
1 +

Im(1/Vα)

Re(1/Vα)

]
(B21)

∆ω−

γ0
= −1

4
Fα

(
1

1− 1
2Qα

)2 [
1− Im(1/Vα)

Re(1/Vα)

]
. (B22)

Similarly, for the detuning ω0 = ω′α−ω′′α, replacing ω0

in Eqs. (10) and (11) yields

γHα
γ0

=
1

2
Fα

(
ω′α

ω′α − ω′′α

)2

=
1

2
Fα

(
1

1 + 1
2Qα

)2

(B23)

∆ωHα
γ0

=
1

4
Fα

(
ω′α

ω′α − ω′′α

)2

=
1

4
Fα

(
1

1 + 1
2Qα

)2

.

(B24)
Then, by plugging these equations in the expressions of
the decay rate and Lamb shift in the single-resonance
case as previously, one gets

γ∗

γ0
= 1 +

1

2
Fα

(
1

1 + 1
2Qα

)2 [
1− Im(1/Vα)

Re(1/Vα)

]
(B25)

∆ω+

γ0
=

1

4
Fα

(
1

1 + 1
2Qα

)2 [
1 +

Im(1/Vα)

Re(1/Vα)

]
. (B26)

Note that for the Hermitian systems, the decay rate and
Lamb shift for these two particular detunings are given by
Eqs. (B21), (B22), (B25) and (B26) with Im(1/Vα) = 0,
and one ends up with the Eqs. (12) and (13) of the main
text.
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[10] H. T. Dung, L. Knöll, and D.-G. Welsch, Physical Re-

view A 64, 013804 (2001).
[11] L. Novotny and B. Hecht, Principles of nano-optics

(Cambridge university press, 2012).
[12] J. M. Wylie and J. E. Sipe, Phys. Rev. A 32, 2030 (1985).

[13] C. Sauvan, J.-P. Hugonin, R. Carminati, and P. Lalanne,
Physical Review A 89, 043825 (2014).

[14] M. Doost, W. Langbein, and E. A. Muljarov, Physical
Review A 90, 013834 (2014).

[15] X. Zambrana-Puyalto and N. Bonod, Physical Review B
91, 195422 (2015).

[16] B. Stout, A. Devilez, B. Rolly, and N. Bonod, JOSA B
28, 1213 (2011).

[17] B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod,
Physical Review B 85, 245432 (2012).
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