
HAL Id: hal-01774642
https://hal.science/hal-01774642v1

Submitted on 23 Apr 2018 (v1), last revised 10 Oct 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bridging the gap between flat and hierarchical low-rank
matrix formats: the multilevel BLR format

Patrick Amestoy, Alfredo Buttari, Jean-Yves L’Excellent, Théo Mary

To cite this version:
Patrick Amestoy, Alfredo Buttari, Jean-Yves L’Excellent, Théo Mary. Bridging the gap between flat
and hierarchical low-rank matrix formats: the multilevel BLR format. [Research Report] University
of Manchester. 2018. �hal-01774642v1�

https://hal.science/hal-01774642v1
https://hal.archives-ouvertes.fr


Bridging the gap between flat and hierarchical low-rank
matrix formats: the multilevel BLR format

Patrick R. Amestoy* Alfredo Buttari† Jean-Yves L’Excellent‡

Theo Mary§

Abstract

Matrices possessing a low-rank property arise in numerous scientific applications. This prop-
erty can be exploited to provide a substantial reduction of the complexity of their LU or LDLT

factorization. Among the possible low-rank formats, the flat Block Low-Rank (BLR) format is
easy to use but achieves superlinear complexity. Alternatively, the hierarchical formats achieve
linear complexity at the price of a much more complex, hierarchical matrix representation. In
this paper, we propose a new format based on multilevel BLR approximations: the matrix is
recursively defined as a BLR matrix whose full-rank blocks are themselves represented by BLR
matrices. We call this format multilevel BLR (MBLR). Contrarily to hierarchical matrices, the
number of levels in the block hierarchy is fixed to a given constant; while this format can still
be represented within the H formalism, we show that applying the H theory to it leads to very
pessimistic complexity bounds. We therefore extend the theory to prove better bounds, and show
that the MBLR format provides a simple way to finely control the desired complexity of dense
factorizations. By striking a balance between the simplicity of the BLR format and the low com-
plexity of the hierarchical ones, the MBLR format bridges the gap between flat and hierarchical
low-rank matrix formats. The MBLR format is of particular relevance in the context of sparse
direct solvers, for which it is able to trade off the optimal dense complexity of the hierarchical
formats to benefit from the simplicity and flexibility of the BLR format while still achieving O(n)
sparse complexity. We finally compare our MBLR format with the related BLR-H (or Lattice-H )
format; our theoretical analysis shows that both formats achieve the same asymptotic complexity
for a given top level block size.

1 Introduction
Efficiently computing the solution of a dense linear system is a fundamental building block of

numerous scientific computing applications. Let us refer to such a system as

FuF = vF , (1)

where F is a dense matrix of order m, uF is the unknown vector of size m, and vF is the right-hand
side vector of size m.

This paper focuses on solving (1) with direct approaches based on Gaussian elimination, which
consist in factorizing matrix F as F = LU or F = LDLT , depending on whether the matrix is
unsymmetric or symmetric, respectively.

In many applications (e.g., Schur complements arising from the discretization of elliptic partial
differential equations), the matrix F has been shown to have a low-rank property: conveniently
defined off-diagonal blocks can be approximated by low-rank matrices [10].

Several formats have been proposed to exploit this property. The simplest one is the Block
Low-Rank (BLR) format [2], which partitions the matrix with a flat, 2D blocking and approximates
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(a) BLR partitioning
(weak admissibility).

(b) BLR partitioning
(strong admissibility).

(c) HODLR partitioning
(weak admissibility)

(d) H partitioning (strong
admissibility)

Figure 1: Illustration of different low-rank formats. Gray blocks are stored in full-rank whereas
white ones are approximated by low-rank matrices.

its off-diagonal blocks by low-rank submatrices, as illustrated in Figure 1(a). Compared with the
cubic O(m3) complexity of the dense full-rank LU or LDLT factorizations, the complexity of the
dense BLR factorization can be as low as O(m2) [4].

More advanced formats are based on a hierarchical partitioning of the matrix: the matrix F is
partitioned with a 2×2 blocking and the two diagonal blocks are recursively refined, as illustrated
in Figures 1(c) and 1(d). Different hierarchical formats can be defined depending on whether the
off-diagonal blocks are directly approximated (so-called weakly-admissible formats) or further re-
fined (so-called strongly-admissible formats). The most general of the hierarchical formats is the
strongly-admissible H -matrix format [10, 20, 11]; the HODLR format [6] is its weakly-admissible
counterpart. These hierarchical formats can factorize a dense matrix in near-linear complexity
O(m logq m), where q is a small integer that depends on which factorization algorithm is used; in
the following, we will consider q = 2. The log factor can be removed by using a so-called nested-basis
structure. The strongly-admissible H 2-matrix format [11] and the weakly-admissible HSS [30, 12]
and HBS [18] formats exploit such nested basis structures to achieve linear complexity O(m).

In this paper, we propose a new format based on multilevel BLR approximations. The matrix F
is recursively represented as a BLR matrix whose full-rank blocks are themselves BLR matrices.
We call this format multilevel BLR (MBLR). In the hierarchical format, the matrix is refined until
the diagonal blocks are of constant size; this therefore leads to a number of levels in the block
hierarchy which is nonconstant (usually O(log2 m)). With the MBLR format, we propose to make
this number of levels a tunable parameter to be set to a given value ` that does not asymptotically
depend on the matrix size m. We prove that this parameter provides a simple way to finely control
the complexity of the dense MBLR factorization. The complexity varies from O(m2) for monolevel
BLR down to nearly O(m) for an infinite number of levels. By striking a balance between the
simplicity of the BLR format and the low complexity of the hierarchical ones, the MBLR format
bridges the gap between flat and hierarchical low-rank matrix formats.

We will show that the MBLR format is of particular relevance in the context of sparse direct
solvers, which aim to compute the solution of a sparse linear system

AuA = vA , (2)

where A is a sparse matrix of order n, uA is the unknown vector of size n, and vA is the right-hand
side vector of size n. Two widely studied classes of sparse direct methods are the multifrontal [14,
23] and supernodal [9, 13] approaches.

Sparse direct methods rely on a sequence of partial factorizations of dense matrices F, referred
to as supernodes or fronts. Therefore, the complexity of sparse direct methods is directly derived
from the complexity of the factorization of each dense matrix F. For example, with an adequate
reordering, a well-known result is that the dense standard full-rank O(m3) factorization leads to a
O(n2) sparse complexity for regular 3D problems [15]. The low-rank formats described above can
be efficiently exploited within sparse solvers to provide a substantial reduction of their complexity.

2



The potential of BLR sparse solvers has been first investigated in [2]; the simplicity and flexi-
bility of the BLR format makes it easy to use in the context of a general purpose, algebraic solver,
as presented in [5, 3, 27, 25]. [5] focuses on the multicore performance of BLR multifrontal solvers,
while [3] and [27] present their use in two real-life industrial applications coming from geosciences.
[25] present the use of the BLR format in supernodal solvers. Furthermore, it has been proved in [4]
that the theoretical complexity of the BLR multifrontal factorization may be as low as O(n4/3) (for
3D problems with constant ranks).

Alternatively, most sparse solvers based on the more complex hierarchical formats have been
shown to possess near-linear complexity. To cite a few, [29, 28, 17, 16] are HSS-based, [18] is
HBS-based, [7] is HODLR-based, and [26] is H 2-based.

However, a critical observation is that achieving O(n) sparse complexity does not actually re-
quire a linear dense complexity O(m). For instance, for 3D problems, all that is required is a dense
complexity lower than O(m1.5). Therefore, we will prove that the MBLR format is able to trade
off the optimal dense complexity of the hierarchical formats to benefit from the simplicity and
flexibility of the flat BLR format while still achieving O(n) sparse complexity.

We now describe the organization of the rest of this paper. In Section 2, we provide some
background on the BLR factorization and its complexity and we motivate the key idea behind
MBLR approximations. We explain in Section 3 how the MBLR format can be described using the
cluster tree representation commonly used in the H literature; this provides a convenient way to
explain the key difference between the MBLR and H formats. We show that, similarly to the BLR
case, the H theoretical formalism leads to MBLR complexity bounds that are very pessimistic. We
therefore extend the theory, beginning by the two-level case in Section 4. We prove that two levels
can already significantly improve the theoretical complexity of the factorization. In Section 5, we
generalize the previous proof to the MBLR format with an arbitrary number of levels; we prove
that, for constant ranks, only four levels are already enough to reach O(n) sparse 3D complexity
(and three levels already achieve near-linear O(n logn) complexity). In Section 6, we validate our
theoretical results with numerical experiments. In Section 7, we compare our MBLR format to a
related format, the BLR-H format (also referred to as “Lattice-H ”). We provide our concluding
remarks in Section 8. In the main body of this article, we consider for the sake of simplicity the
weakly-admissible case, in which only the diagonal blocks are refined. In the appendix, we provide
the extension of the MBLR format to the strongly-admissible case, in which off-diagonal full-rank
blocks are also recursively refined. We prove that our complexity bounds remain valid in this
context.

2 Background and motivation

2.1 Block Low-Rank approximations
The BLR format is based on a flat, non-hierarchical blocking of the matrix which is defined

by conveniently clustering the associated unknowns. A BLR representation F̃ of a dense matrix
F is shown in (3), where we assume that p× p blocks have been defined. Off-diagonal blocks Fi j
(i 6= j) of size mi ×n j and numerical rank kεi j are approximated by a low-rank matrix F̃i j = X i jY T

i j
at accuracy ε, where X i j is a mi × kεi j matrix and Yi j is a n j × kεi j matrix. The diagonal blocks Fii

are stored as full-rank matrices (F̃ii = Fii).

F̃ =


F̃11 F̃12 · · · F̃1p

F̃21 · · · · · · ...
... · · · · · · ...

F̃p1 · · · · · · F̃pp

 . (3)

Throughout this article, we will note Fi j the (i, j)-th block of F and F:,k its k-th block-column.
We will also assume that all blocks have a size of order b, i.e., mi = n j =O(b).

Computing the low-rank approximation F̃i j to each block, referred to as the compression step,
can be performed in different ways. We have chosen to use a truncated QR factorization with
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column pivoting; this corresponds to a QR factorization with pivoting which is truncated as soon
as a diagonal coefficient of the R factor falls below the prescribed threshold ε. For a block of size
b×b and rank r, the cost of the compression is O(b2r), whereas computing the exact singular value
decomposition of the block would require O(b3) operations. This choice thus allows for a convenient
compromise between cost and accuracy of the compression operation.

2.2 Block Low-Rank dense factorization
We describe in Algorithm 1 the CUFS variant of the BLR factorization algorithm for dense

matrices, introduced in [4]. Algorithm 1 is presented in its LU version, but it can easily be adapted
to the symmetric case.

In order to perform the LU or LDLT factorization of a dense BLR matrix, the standard block
LU or LDLT factorization has to be modified so that the low-rank blocks can be exploited to per-
form fast operations. Many such algorithms can be defined depending on where the compression
step is performed. As described in [4], the CUFS variant achieves the lowest complexity of all BLR
variants by performing the compression as early as possible.

Algorithm 1 Dense BLR LU factorization: CUFS variant.
Input: a p× p block matrix F of order m.
Output: F overwritten by its BLR LU factors F̃.

1: for k = 1 to p do
2: for i = k+1 to p do
3: Compress (L): Fik ← F̃ik = X ikY T

ik
4: Compress (U): Fki ← F̃ki =Yki X T

ki
5: end for
6: for i = k to p do
7: for j = 1 to k−1 do
8: Update (L): F̃ik ← F̃ik − X i jY T

i j Y jk X T
jk

9: Update (U): F̃ki ← F̃ki − Xk jY T
k jY ji X T

ji
10: end for
11: F̃ik ←Recompress

(
F̃ik

)
12: F̃ki ←Recompress

(
F̃ki

)
13: end for
14: Factor: Fkk = LkkUkk
15: for i = k+1 to p do
16: Solve (L): F̃ik ← F̃ikU−1

kk = X ikY T
ikU−1

kk
17: Solve (U): F̃ki ← L−1

kkF̃ki = L−1
kk XkiY T

ki
18: end for
19: end for

This algorithm is referred to as CUFS (standing for Compress, Update, Factor, and Solve), to
indicate the order in which the steps are performed. All low-rank updates of a given block F̃ik are
accumulated together before being recompressed, in order to achieve the smallest rank possible for
F̃ik.

The CUFS BLR variant is referred to as fully-structured, which means the off-diagonal low-
rank blocks F̃ik are never stored in full-rank again after being initially compressed. Furthermore,
in the rest of this article, we will assume that the matrix is already available under compressed
form, i.e., the Compress step is free or at least it can be performed at a cost that is small enough
(e.g., by means of a fast matrix-vector multiply such as SpMV) so that it is negligible with regard
to the total complexity of the factorization.

One of the main results of [4] is that the storage complexity of the factorization of a dense
matrix of order m with off-diagonal blocks of rank at most r is equal to

S 1
ds(m, r)=O(m1.5pr) (4)
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Table 1: Flop and storage complexities of the factorization of a sparse system of n = N×N (2D case)
or n = N ×N ×N (3D case) unknowns, assuming a dense factorization complexity O(mβ).

2D 3D

β> 2 O(nβ/2) β> 1.5 O(n2β/3)
β= 2 O(n logn) β= 1.5 O(n logn)
β< 2 O(n) β< 1.5 O(n)

and the flop complexity is
F 1

ds(m, r)=O(m2r). (5)

The proof of this result will be recalled in Section 2.4. The 1 superscript refers to the monolevel
BLR factorization. This notation will be generalized in the next sections.

2.3 BLR sparse factorization
Because sparse direct factorizations such as multifrontal or supernodal approaches rely on

dense factorizations, block low-rank approximations can easily be incorporated into the sparse
factorization by representing the fronts (or supernodes) with the chosen low-rank format. For
example, in the BLR case, the fronts are represented as defined by (3), and Algorithm 1 is adapted
to perform their partial factorization. This is described in detail in [2, 24].

As a consequence, the complexity of the sparse factorization can be directly computed from the
complexity of the dense factorization. We consider a matrix of order n = Nd , where d denotes
the problem dimension, that is reordered using nested dissection [15]: the domain is recursively
partitioned by so-called separators. The sparse complexity is then computed as follows (assuming
cross-shaped separators): at each level ` of the separator tree, we need to factorize (2d)` fronts of
order O((N/2`)d−1), for ` ranging from 0 to L = log2(N). Therefore, the flop complexity Fsp(N) is
equal to

Fsp(N)=
L∑
`=0

(2d)`Fds((
N
2`

)d−1), (6)

where Fds(m) is the dense flop complexity. In BLR, it is given by (5). Similarly, the storage com-
plexity Ssp(N) is equal to

Ssp(N)=
L∑
`=0

(2d)`Sds((
N
2`

)d−1), (7)

where Sds(m) is the dense storage complexity. In BLR, it is given by (4).
Assuming a dense complexity O(mβ), it can easily be shown from (6) and (7) that the sparse

complexities only depend on the dense complexity exponent β and the dimension d. This corre-
spondence is reported in Table 1. The key observation is that a linear O(m) dense complexity is not
required to achieve a linear O(n) sparse complexity. In fact, a dense complexity lower than O(m2)
and O(m1.5) suffices for 2D and 3D problems, respectively.

Then, assuming a constant rank bound r =O(1), the sparse complexities are reported in Table 2,
for the FR, BLR, and H factorizations. Thanks to the key observation above, the BLR sparse
complexities are not that far from the H complexities. For example, the BLR 2D storage complexity
is already optimal; furthermore, the 2D flop and 3D storage complexities are nearly linear, with
only an additional O(logn) factor compared with H . More importantly, thanks to the same key
observation, we only need a modest improvement of the dense complexity to reach O(n) complexity.
Specifically:

• To drop the O(logn) factor in the 2D flop complexity, the dense complexity Fds(m) only needs
to be strictly inferior to O(m2);

• Similarly, to drop the O(logn) factor in the 3D storage complexity, the dense complexity
Sds(m) only needs to be strictly inferior to O(m1.5);
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Table 2: Flop and storage complexities of the FR, BLR, and H factorizations of a sparse system
of n = N ×N (2D case) or n = N ×N ×N (3D case) unknowns, derived from the complexities of the
factorization of a dense matrix of order m. We consider a constant rank bound r = O(1). The BLR
variant considered is CUFS.

Fds(m) Fsp(n) Sds(m) Ssp(n)
2D 3D 2D 3D

FR O(m3) O(n1.5) O(n2) O(m2) O(n logn) O(n4/3)
BLR O(m2) O(n logn) O(n4/3) O(m1.5) O(n) O(n logn)
H O(m log2 m) O(n) O(n) O(m logm) O(n) O(n)

• Finally, the superlinear 3D flop complexity can be made linear with a dense complexity
Fds(m) strictly inferior to O(m1.5).

The main motivation behind the MBLR format is to find a simple modification of the BLR fac-
torization, that preserves its simplicity and flexibility, while improving the complexity just enough
to get the desired exponent. We will prove in Section 5 that this complexity improvement can be
controlled by the number of levels.

2.4 Complexity analysis for BLR
To motivate the key idea behind MBLR, let us summarize the dense storage and flop complexity

analysis found in [4] that leads to the formulas (4) and (5). We consider the CUFS variant of the
BLR factorization. As indicated in the introduction, we first consider the weakly-admissible case:
we assume that all off-diagonal blocks are low-rank. The extension to the strongly-admissible case
is provided in the appendix.

We consider a dense BLR matrix of order m. We note b the block size and p = m/b the number
of blocks per row and/or column. The amount of storage required to store the factors of such a
matrix can be computed as the sum of the storage for the full-rank diagonal blocks and that for the
low-rank off-diagonal blocks:

S 1
ds(b, p, r)=O(pb2)+O(p2br). (8)

Then, we assume that the block size b is of order O(mx), where x is a real value in [0,1], and thus
the number of blocks p per row and/or column is of order O(m1−x). We also assume that the rank
bound is of the form r = O(mα). By replacing b, p, and r by their expression in (8), we obtain an
expression of S 1

ds which depends on (m, x,α) instead of (b, p, r):

S 1
ds(m, x,α)=O(m1+x)+O(m2−x+α). (9)

We then define x∗ as the optimal choice of x which minimizes the asymptotic complexity of (9). x∗
can be computed as the value which makes each term in (9) asymptotically equal. We obtain

x∗ = (1+α)/2, (10)

which means the optimal choice of block size is

b∗ =O(
p

mr). (11)

This leads to the final dense complexity (already given in (4))

S 1
ds(m, r)=O(m1.5pr). (12)

Next, to compute the flop complexity, we compute the cost of the Factor, Solve, Product, and
Recompress steps and report them in Table 3 (third column). This cost depends on the type (full-
rank or low-rank) of the block(s) on which the operation is performed (second column). Note that
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Table 3: Main operations for the BLR factorization of a dense matrix of order m, with blocks of size
b, and low-rank blocks of rank at most r. We note p = m/b. Type: type of the block(s) on which
the operation is performed. cost1

Step: cost of performing the operation once. numberStep: number
of times the operation is performed. F 1

Step: obtained by multiplying the cost1
Step and numberStep

columns (equation (13)). The first expression is given as a function of b, p, and r, while the second is
obtained with the assumption that b =O(mx) (and thus p =O(m1−x)) and r =O(mα), for x,α ∈ [0,1].

Step Type cost1
Step numberStep F 1

Step(b, p, r) = F 1
Step(m, x,α)

Factor FR O(b3) O(p) O(pb3) = O(m1+2x)
Solve FR-LR O(b2r) O(p2) O(p2b2r) = O(m2+α)
Product LR-LR O(br2) O(p3) O(p3br2) = O(m3−2x+2α)
Recompress LR O(bpr2) O(p2) O(p3br2) = O(m3−2x+2α)

the Product operation can only take the form of a product of two low-rank blocks (LR-LR), because
it involves only off-diagonal blocks, which are low-rank in the weakly-admissible case. We also
remind that we have assumed that the matrix is already available under compressed form and
thus we do not report the Compress step in Table 3.

In the weakly-admissible case, there is only one full-rank block on each block-row (the diagonal
one); therefore, we can easily count the number of blocks on which each step is performed; we
report it on the fourth column of Table 3. The BLR factorization cost of each step is then equal to

F 1
Step = cost1

Step ×numberStep (13)

and is reported in the fifth and sixth columns of Table 3. In the fifth column, its expression depends
on b, p, and r, while in the sixth column it is given as a function of m, x, and α by by substituting
b, p, and r by O(mx), O(m1−x), and O(mα), respectively.

The total flop complexity of the dense BLR factorization is equal to the sum of the cost of all
steps

F 1
ds(m, x,α)=O(m1+2x +m2+α+m3−2x+2α). (14)

We compute x∗, the optimal choice of x which minimizes the complexity, and find again x∗ = (1+
α)/2, which means that the same x∗ value minimizes both the storage and flop complexities, a
valuable property. We finally obtain

F 1
ds(m, r)=O(m2r). (15)

2.5 Key idea of the MBLR format
Let us now consider each step of Table 3 with the objective of reducing the total cost of the

factorization. The Product and Recompress steps involve exclusively low-rank blocks and their
cost is already optimal as it is linear with respect to the block size b. Therefore, we focus on the
Factor and Solve steps. These steps have superlinear cost with respect to b because they involve
the diagonal full-rank blocks.

Thus, the key idea of the MBLR format is to further refine these full-rank diagonal blocks
by replacing them by BLR matrices. This is illustrated in Figure 2(b). Compared with the BLR
format (Figure 2(a)), we will show in Section 4 that this more compressed representation decreases
the cost of performing the Factor and Solve steps, which allows to increase the block size to achieve
a lower complexity. However, it also remains very different from a hierarchical format (Figure 2(c)).
First, the diagonal blocks are represented by the simple BLR format, rather than a more complex
hierarchical format. Second, while larger than in the BLR case, the off-diagonal blocks are in
general still much smaller than in the H case. This has several advantages:

• No relative order is needed between blocks; this allows the clustering to easily be computed
and delivers a great flexibility to distribute the data in a parallel environment.
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(a) Weakly-admissible,
monolevel BLR partition-
ing.

(b) Weakly-admissible, two-
level BLR partitioning.

(c) Weakly-admissible,
HODLR partitioning

Figure 2: Comparison of BLR, MBLR, and hierarchical formats in the weakly-admissible case.

• The size of the blocks can be small enough to fit on a single shared-memory node; therefore,
in a parallel environment, each processor can efficiently and concurrently work on different
blocks.

• To perform numerical pivoting, the quality of the pivot candidates can be estimated with the
entries of the low-rank basis of the off-diagonal blocks, as explained in [24]. However, the
quality of this estimation depends on the size of the block; smaller blocks lead to a tighter
estimate. This makes the BLR format particularly suitable to handle numerical pivoting, a
critical feature lacking in most hierarchical solvers presented in the literature.

While many advantages of the BLR and MBLR formats lie in their efficiency and flexibility in the
context of a parallel execution, the parallel implementation of the MBLR format is out of the scope
of this paper. Similarly, we omit a detailed description of the algorithmics necessary to handle
numerical pivoting; see [24] for a thorough discussion. In this paper, we focus on the theoretical
complexity analysis of the MBLR factorization.

3 Difference between MBLR and H matrices
In this section, we first explain how MBLR matrices can be represented using the cluster tree

modelization typically used in the H literature; this provides a convenient tool to formalize the
key difference between the MBLR and hierarchical formats that was informally presented in the
previous section: the number of levels in the cluster tree is a constant in the MBLR format, while
it is logarithmically dependent on the problem size in the H format.

Using this formalism, H theory is thus applicable to the MBLR format; however, we show in
Section 3.3 that it leads to very pessimistic complexity bounds. We must therefore develop a new
theory to compute satisfying bounds, which is the object of Sections 4 and 5. Since the proofs and
computations in these sections are not based on the H theory, this section may be skipped by the
reader, at least on a first read.

3.1 The hierarchical case
Here, we briefly remind the definition of cluster trees, and how they are used to represent

hierarchical partitionings. We refer to [10, 21] for a formal and detailed presentation.
Let us note I the set of unknowns. We assume that the sets of row and column indices of the

matrix are the same, for the sake of simplicity, and because we do not need to distinguish them for
the purpose of this section.

Computing a recursive partition S(I ) of I can be modeled with a so-called cluster tree.

Definition 1 (Cluster tree). Let I be a set of unknowns and TI a tree whose nodes v are associated
with subsets σv of I . TI is said to be a cluster tree iff:
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I

I1 I2

I3 I4 I5 I6

I7 I8 I9 I10 I11 I12 I13 I14

(a) Cluster tree.

I

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

(b) HODLR block-clustering.

Figure 3: An example of cluster tree and its associated HODLR block-clustering.

I

I1 I2 I3 I4 I5

(a) Flat cluster tree.

I

I1

I2

I3

I4

I5

(b) BLR block-clustering.

Figure 4: An example of flat cluster tree and its associated BLR block-clustering.

• The root of TI , noted r, is associated with σr =I ;

• For each non-leaf node v ∈ TI , with children noted CTI
(v), the subsets associated with the

children form a partition of σv, i.e., ⋃
c∈CTI

(v)
σc =σv.

An example of cluster tree is provided in Figure 3(a). As illustrated, cluster trees establish a
hierarchy between clusters. A given cluster tree uniquely defines a weakly-admissible, hierarchical
block-clustering (so-called HODLR), as illustrated in Figure 3(b).

Note that the cluster tree is not enough to define general, strongly-admissible hierarchical
block-clusterings such as an H block-clustering. In that case, a new tree structure, so-called
block-cluster tree, must be introduced. For the sake of simplicity, we do not discuss them here,
since cluster trees (and weakly-admissible hierarchical block-clusterings) are enough to explain
the difference between MBLR and hierarchical matrices.

3.2 The BLR and MBLR formats, explained with cluster trees
It is interesting to first mention how the BLR format can be viewed as a very particular kind

of H -matrix. In [4], we made a first attempt to model BLR partitionings with cluster trees, where
the BLR partitioning is defined using only the leaves of the cluster tree. However, this model is
inadequate because the other nodes of the tree are unnecessary (and thus there are several possible
cluster trees for a unique BLR partitioning).

Therefore, we newly propose to define a given BLR partitioning with a unique, flat cluster tree
of depth 1, as illustrated in Figure 4.

9
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(b) Two-level BLR block-clustering.

Figure 5: An example of cluster tree of depth 2 and its associated two-level BLR block-clustering.

With this definition, it is straightforward to extend the model to the MBLR format. An `-level
BLR block-clustering can be represented by a cluster tree of depth `. This is illustrated in Figure 5
in the two-level case.

It is thus clear that, just like the BLR format, the MBLR one can also be viewed as a very
particular kind of H -matrix, since any MBLR matrix can be represented with a cluster tree that
satisfies Definition 1. However, while H -matrices are indeed also represented by cluster trees, in
practice, they are virtually always built with an implicit assumption: the number of children of any
node in the cluster tree is constant with respect to the size of the matrix. Most commonly, cluster
trees are binary trees, and thus this number is 2. Since the diagonal blocks of an H -matrix are of
constant size, this leads to O(logm) levels in the cluster tree.

The MBLR format is based on the converse approach: the number of levels is fixed to some
constant ` = O(1), which in turn leads to a number of children per node that is asymptotically
dependent on m. For example, assuming a constant rank r =O(1), we will prove in Section 4 that a
two-level BLR matrix is represented by a cluster tree with O(m1/3) nodes on the first level (children
of the root node), and each of these nodes has O((m2/3)1/2)=O(m1/3) children on the second level.

While this is technically not prohibited by the general H -format definition, it has, to the best of
our knowledge, never been considered in the H literature. As a matter of fact, in his recent book,
Hackbusch writes ([21], p.83): ‘The partition should contain as few blocks as possible since the
storage cost increases with the number of blocks”. While that is true, we believe that the smaller
size and greater number of blocks can provide a gain in flexibility that can be useful in a parallel
solver.

One may in fact find it surprising that this simple idea of having a constant number of levels
has never been proposed before. We believe that this is mainly explained by the fact that the
H theoretical formalism does not provide a satisfying result if applied to the MBLR format, as
explained in the following.

3.3 H theory leads to pessimistic MBLR complexity bounds
In [4, Section 3.2], we explained that applying the H theoretical complexity formulas to the

BLR format does not provide a satisfying complexity bound. Here, we show this remains the case
for the MBLR format.

The storage and flop complexities of the factorization of a dense H -matrix of order m have been
shown [19] to be

S H
ds (m)=O(mLcsp max(rmax,bdiag)), (16)

FH
ds (m)=O(mL2c3

sp max(rmax,bdiag)2). (17)

L is the depth of the cluster tree. csp is the so-called sparsity constant, defined as the maximum
number of blocks of a given level in the cluster tree that are in the same row or column of the
matrix; it is a measure of how much the original matrix has been refined. rmax is the maximal
rank of all the blocks of the matrix, while bdiag is the size of the diagonal blocks.
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Under some assumptions on how the partition S(I ) is built [19, Lemma 4.5], the sparsity
constant can be bound by O(1) in the H case. By recursively refining the diagonal blocks until
they become of constant size, we have bdiag = O(1) and L = O(logm). Therefore, (16) and (17) lead
to S H

ds (m)=O(rm logm) and FH
ds (m)=O(r2m log2 m).

In the BLR case, we have L = 1 and bdiag = b; the sparsity constant is equal to the number of
blocks per row m/b, a high value that translates the fact that BLR matrices are much more refined
than hierarchical ones. This leads to S

H ,1
ds (m) = O(m2) and F

H ,1
ds (m) = O(m4/b) ≥ O(m3), where

the notation S
H ,1

ds and F
H ,1
ds signifies “H complexity formula applied to the monolevel BLR case”.

We thus obtain a very pessimistic complexity bound, which is due to the fact that the diagonal
blocks are of the same size as all the other blocks, i.e., bdiag = b.

Applying the formulas to the MBLR case leads to the same problem. Assuming that r = O(1)
for the sake of simplicity, let us consider the two-level case and denote by b1 and b2 the outer and
inner blocks sizes, respectively. We have L = 2, bdiag = b2, and csp =max(m/b1,b1/b2). The storage
complexity

S
H ,2

ds (m)=O(max(m2b2/b1,mb1))

is minimized for b1 = O(
p

m) and b2 = O(1), and equal to O(m3/2), which is not a satisfying result
since we have proven in Section 2.4 that this is the BLR complexity. A similarly unsatisfying result
is obtained for the flop complexity, again minimized for b1 =O(

p
m) and b2 =O(1) and equal to

F
H ,2
ds (m)=O(max(m4b2

2/b3
1,mb3

1/b2))=O(m5/2).

Does the problem persist with a higher number of levels `? The answer is unfortunately positive.
Indeed, we have

S
H ,`

ds (m)=O( max
i=0,`−1

(
mbib`
bi+1

)),

with the notation b0 = m. To minimize the expression, we equilibrate each term in the maximum,
which leads to the recursive relation b2

i = bi−1bi+1. Noting b1 = b the outer block size, it is clear
that the closed-form expression of bi is bi = bi/mi−1. Since the smallest block size bl must be at
least O(1), this leads to

b`

m`−1 ≥O(1)

and thus b ≥O(m(`−1)/`), which in turn leads to the complexity bound

S
H ,`

ds (m)≥O(
m2b`

b1
)≥O(m(`+1)/`).

In Section 5, we will prove that for r = O(1) we have S `
ds(m) = O(m(`+2)/(`+1)), which is a much

better bound. The analysis for the flop complexity leads to the same expression of bi and to the
complexity bound F

H ,`
ds (m) ≥ O(m(`+3)/`), which is again overly pessimistic compared with the

bound F `
ds(m)=O(m(`+3)/(`+1)) that we will prove in Section 5.

We summarize the result of applying the H complexity formulas in Table 4.
It is therefore clear that we must develop a new theory extending the H formalism to be able

to prove better MBLR complexity bounds, just as we did in [4] for the BLR case. We begin by the
two-level case in the next section.

4 Two-level BLR matrices
In this section, we compute the theoretical complexity of the two-level BLR factorization. The

proofs and computations on this particular two-level case are meant to be illustrative of those of
the general multilevel case with an arbitrary number of levels, which is discussed in Section 5.

We remind that in this section, we are considering the weakly-admissible case only.
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Table 4: Applying the H theoretical complexity formulas to the BLR or MBLR cases does not
provide a satisfying result. We have assumed that r = O(1) for the sake of clarity, but the bounds
would remain pessimistic for general ranks.

H BLR MBLR

L O(logm) 1 `

csp O(1) m/b maxi=1,`
bi−1
bi

∗

bdiag O(1) b b`
S H

ds O(m logm) O(m2) O(m(`+1)/`)
FH

ds O(m log2 m) O(m3) O(m(`+3)/`)
∗with the notation b0 = m

4.1 Two-level kernels description
In order to adapt Algorithm 1 to two-level BLR matrices, two modifications must be performed.
First, the Factor kernel is not a full-rank factorization of the diagonal blocks Fkk anymore, but

a BLR factorization. Thus, line 14 must be replaced by

F̃kk = L̃kkŨkk =BLR-Factor (Fkk) , (18)

where BLR-Factor refers to the BLR factorization described in Algorithm 1.
Second, the FR-LR Solve kernel at lines 16 and 17 must be changed to a BLR-LR Solve:

F̃ik ←BLR-LR-Solve
(
Ũkk, F̃ik

)
(19)

F̃ki ←BLR-LR-Solve
(
L̃kk, F̃ki

)
, (20)

where F̃ik and F̃ki are LR matrices and L̃kk and Ũkk are lower and upper triangular BLR matrices.
We describe in Algorithm 2 the BLR-LR-Solve kernel, in the upper triangular case, omitting the

lower triangular case which is very similar. The kernel consists in applying a triangular solve with
a upper triangular BLR matrix Ũ to a low-rank matrix B̃ = ΦΨT . We remind that Ũi j denotes
the (i, j)-th low-rank sub-block of Ũ (with the notation Ũ j j = U j j), and that Ψi,: denotes the i-th
block-row of Ψ.

Algorithm 2 BLR-LR-Solve kernel (upper triangular case)

Input: a p× p block upper triangular BLR matrix Ũ ; Ũ = [
Ũi j

]
i=1: j, j=1:p such that Ũi j =Yi j X T

i j for
i 6= j and Ũ j j =U j j is a full-rank matrix; a LR matrix B̃ =ΦΨT .
Output: overwritten Ψ (modified in-place) corresponding to the operation B̃ ← B̃Ũ−1.

1: for j = 1 to p do
2: ΨT

j,: ←ΨT
j,: −

∑ j−1
i=1Ψ

T
i,:Yi j X T

i j
3: ΨT

j,: ←ΨT
j,:U

−1
j j

4: end for

Two main operations must be performed: a triangular solve using the full-rank diagonal blocks
Uii of Ũ , and an update using the low-rank off-diagonal blocks Ũi j =Yi j X T

i j of Ũ . Both are applied
on the low-rank block-columns B̃:,i =ΦΨT

i,: of B̃. These two operations take place at lines 3 and 2
of Algorithm 2, respectively.

The FR-LR triangular solve can be written as

B̃:,i ← B̃:,iU−1
ii =Φ

(
ΨT

i,:U
−1
ii

)
(21)

and thus only ΨT
i,: needs to be updated, as shown at line 3.
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Figure 6: The BLR-LR-Solve kernel

The LR-LR update takes the following form:

B̃:,i ← B̃:,i −∑i−1
j=1 B̃:,iŨi j =ΦΨT

i,: −
∑i−1

j=1Φ
(
ΨT

i,:Yi j X T
i j

)
=Φ

(
ΨT

i,: −
∑i−1

j=1Ψ
T
i,:Yi j X T

i j

) (22)

and thus, again, only ΨT
i,: needs to be updated, as shown at line 2.

The BLR-LR-Solve kernel is illustrated in Figure 6.
It can easily be computed that the cost of applying the BLR-LR-Solve kernel once is equal to the

storage complexity times the rank bound r:

cost2
Solve =O(r)×S 1

ds(b, r). (23)

Injecting (12) into (23) leads to
cost2

Solve =O(b3/2r3/2). (24)

4.2 Two-level complexity analysis
We now compute the complexity of the two-level BLR factorization of a dense matrix F of order

m. We reuse the monolevel notations for the top level. We note b the size of the first-level blocks
and p = m/b the number of of block-rows and block-columns. We assume that b is of the form
b = mx, for x ∈ [0,1]. We also assume that the ranks of the off-diagonal blocks are bounded by
r =O(mα).

The size required to store the factors is again the sum of the storage for the diagonal and
off-diagonal blocks, as in (8). The difference is that the diagonal blocks are not full-rank but BLR
matrices. They are further refined into smaller blocks whose size should be chosen of order O(

p
br),

as determined by (11) in the BLR complexity analysis. Therefore, in the two-level case, (8) becomes

S 2
ds(b, p, r)= p×S 1

ds(b, r)+O(p2br). (25)

By replacing S 1
ds(b, r) by its second expression computed in (12), we obtain

S 2
ds(b, p, r)=O(pb3/2r1/2)+O(p2br) (26)

Finally, we replace b, p, and r by their expression O(mx), O(m1−x), and O(mα), respectively, to
obtain

S 2
ds(m, x,α)=O(m1+(x+α)/2 +m2−x+α). (27)

This leads to
x∗ = (2+α)/3, (28)

where x∗ defines the optimal choice of the first-level block size b. We thus obtain a final two-level
storage complexity of

S 2
ds(m, r)=O(m4/3r2/3). (29)
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Table 5: Two-level equivalent of Table 3. The legend of the table is the same. The differences
between the two tables are highlighted in gray.

Step Type cost2
Step numberStep F 2

Step(b, p, r) = F 2
Step(m, x,α)

Factor BLR O(b2r) O(p) O(pb2r) = O(m1+x+α)
Solve BLR-LR O(b3/2r3/2) O(p2) O(p2b3/2r3/2) = O(m2−x/2+3α/2)
Product LR-LR O(br2) O(p3) O(p3br2) = O(m3−2x+2α)
Recompress LR O(bpr2) O(p2) O(p3br2) = O(m3−2x+2α)

We now compute the flop complexity F 2
ds(m, r) of the two-level BLR dense factorization. We

compute the cost of each step and report it in Table 5, which is the two-level equivalent of Table 3;
the differences between the two tables are highlighted in gray. The Product and Recompress steps
have not changed and thus have the same cost. The Factor step consists in factorizing the p
diagonal blocks which are now represented by BLR matrices; thus its cost is directly derived from
the BLR complexity computed in (15):

F 2
Factor(b, p, r)= p×F 1

ds(b, r)=O(pb2r). (30)

It remains to compute the cost of the Solve step, which now takes the form of O(p2) calls to the
BLR-LR-Solve kernel whose cost is given by (24). Thus, the overall cost of the Solve step is

F 2
Solve(b, p, r)=O(p2b3/2r3/2). (31)

This concludes the computations for the third, fourth, and fifth columns of Table 5. Just as in
the monolevel case, the sixth column is obtained by replacing b, p, and r by their expression O(mx),
O(m1−x), and O(mα), respectively.

We can finally compute the total flop complexity as the sum of the costs of all steps

F 2
ds(m, x,α)=O(m1+x+α+m2−x/2+3α/2 +m3−2x+2α) (32)

We then compute x∗ which is again equal to the same value as the one that minimizes the storage
complexity, x∗ = (2+α)/3. Therefore, the final two-level dense flop complexity is

F 2
ds(m, r)=O(m5/3r4/3). (33)

The two-level BLR format therefore significantly improves the asymptotic storage and flop
complexity compared with the monolevel format. Our analysis shows that the top level block
size should be set to b∗ = O(mx∗ ) = O(m2/3r1/3). This is an asymptotically larger value than the
monolevel optimal block size computed in (11), which translates the fact that by refining the diag-
onal blocks, we can afford to take a larger block size to improve the overall asymptotic complexity.
However, contrarily to hierarchical matrices, b∗ remains asymptotically much lower than O(m);
this makes the format much more flexible for the reasons described in Section 2.5. In short, we
have traded off some of the flexibility of the monolevel format to improve the asymptotic complexity.

This improvement of the dense flop and storage complexities is translated into an improvement
of the sparse complexities. Assuming a rank bound in O(1), we quantify this improvement in
Table 6. Compared with the monolevel BLR format, the two-level BLR format drops the O(logn)
factor in the 2D flop and 3D storage complexities, which become linear and thus optimal. The two-
level BLR format can thus achieve, in these two cases, the same O(n) complexity as the hierarchical
formats while being almost as simple and flexible as flat formats.

Finally, the 3D flop complexity remains superlinear but is significantly reduced, from O(n4/3)
to O(n10/9). As the problem size gets larger and larger, even small asymptotic improvements can
make a big difference. Therefore, we now generalize the two-level analysis to the multilevel case
with an arbitrary number of levels.
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Table 6: Flop and storage complexities of the monolevel and two-level BLR factorizations of a
sparse system of n = N × N (2D case) or n = N × N × N (3D case) unknowns, derived from the
complexities of the factorization of a dense matrix of order m. We consider a constant rank bound
r =O(1). The BLR variant considered is CUFS.

Fds(m) Fsp(n) Sds(m) Ssp(n)
2D 3D 2D 3D

Monolevel BLR O(m2) O(n logn) O(n4/3) O(m1.5) O(n) O(n logn)
Two-level BLR O(m5/3) O(n) O(n10/9) O(m4/3) O(n) O(n)

5 Generalization to `-level BLR matrices
In this section, we generalize two-level proof and computations of the previous section to an

arbitrary number of levels ` by computing recursive complexity formulas. We remind that in this
section, we are still considering the weakly-admissible case only.

5.1 Recursive complexity analysis
Just as for the two-level case, one can compute the three-level asymptotic complexities, and so

on until the general formula becomes clear. We state the result for an arbitrary number of levels `
in the following theorem.

Theorem 1 (Storage and flop complexity of the `-level BLR factorization). Let us consider a dense
`-level BLR matrix of order m. We note b the size of the top level blocks, and p = m/b. Let r =O(mα)
be the bound on the maximal rank of any block on any level. Then, the optimal choice of the top
level block size is b = O(mx∗ ), with x∗ = (`+α)/(`+1), which leads to the following storage and flop
complexities:

S `
ds(m, r)=O(m(`+2)/(`+1)r`/(`+1)); (34)

F `
ds(m, r)=O(m(`+3)/(`+1)r2`/(`+1)). (35)

Proof. The proof is inductive. The formulas hold for ` = 1 and 2, as proven in the Sections 2.4
and 4.2, respectively. Let us assume that they are true for the (`−1)-level BLR factorization and
prove that they still hold for the `-level one.

S `
ds(m, r) can be computed as the storage cost for the O(p2) off-diagonal low-rank blocks plus

that of the O(p) diagonal blocks, which are represented as (`−1)-level BLR matrices of order b and
with blocks of rank at most r =O(mα):

S `
ds(b, p, r)= p×S `−1

ds (b, r)+O(p2br). (36)

By induction, the previous equation becomes

S `
ds(b, p, r)= p×O(b(`+1)/`r(`−1)/`)+O(p2br). (37)

We replace b, p, and r by their expression O(mx), O(m1−x), and O(mα), respectively, to obtain

S `
ds(m, x,α)=O(m1−x+(`+1)x/`+α(`−1)/`)+O(m2−x+α). (38)

S `
ds(m, x,α) is therefore minimized for an x∗ satisfying

1− x∗+ (`+1)x∗/`+α(`−1)/`= 2− x∗+α, (39)

which leads to
x∗ = (`+α)/(`+1) (40)
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Table 7: `-level equivalent of Tables 3 and 5. The legend of the table is the same. The differences
between this table and the previous two are highlighted in gray.

Step Type cost`Step numberStep F`
Step(b, p, r) = F`

Step(m, x,α)

Factor BLR(`−1) O(b(`+2)/`r2(`−1)/`) O(p) O(pb(`+2)/`r2(`−1)/`) = O(m1+2x/`+2α(`−1)/`)
Solve BLR(`−1)-LR O(b(`+1)/`r(2`−1)/`) O(p2) O(p2b(`+1)/`r(2`−1)/`) = O(m2+(1−`)x/`+α(2`−1)/`)
Product LR-LR O(br2) O(p3) O(p3br2) = O(m3−2x+2α)
Recompress LR O(bpr2) O(p2) O(p3br2) = O(m3−2x+2α)

and thus (34) stands proven.
Similarly to the two-level case, F `

ds(m, r) can be computed as the sum of the costs of the Factor,
Solve, Product and Recompress steps. We provide the `-level equivalent of Tables 3 and 5 in
Table 7. As previously, the costs of the Product and Recompress steps do not depend on ` and are
simply equal to O(p3br2), and thus

F `
Product(m,α, x)=F `

Recompress(m,α, x)=O(m3−2x+2α). (41)

The Solve step consists in applying O(p2) times the BLR(`−1)-LR-Solve kernel, described in
Algorithm 3, where BLR(`−1) denotes a (`−1)-level BLR matrix (with the convention that BLR0
denotes a FR matrix). It can easily be proven by induction that the cost of applying the BLR(`−1)-
LR-Solve kernel is O(r)×S `−1

ds (b, r), just as in the two-level case (see (23)). Therefore, it holds

F `
Solve(p,b, r)=O(p2r)×S `−1

ds (b, r), (42)

which, according to (34) which we have already proven, leads to

F `
Solve(p,b, r)=O(p2b(`+1)/`r(2`−1)/`) (43)

and thus
F `

Solve(m,α, x)=O(m2+(1−`)x/`+α(2`−1)/`). (44)

The Factor step consists in factorizing p diagonal (`−1)-level BLR matrices of order b and rank
at most r =O(mα). Therefore,

F `
Factor(p,b, r)= p×F `−1

ds (b, r), (45)

which, by induction, leads to

F `
Factor(p,b, r)=O(pb(`+2)/`r2(`−1)/`) (46)

and thus
F `

Factor(m,α, x)=O(m1+2x/`+2α(`−1)/`). (47)

Finally, we compute x∗ as the value of x that minimizes the sum of the cost of all steps (given
by (41), (44), and (47)). We find again

x∗ = (`+α)/(`+1) (48)

and therefore (35) stands proven.

5.2 Influence of the number of levels `
With the formulas from Theorem 1 proven, we now analyze their practical implications. It

is clear that both the storage and flop asymptotic complexities decrease monotonically with the
number of levels, while the top level block size increases.

In Figure 7, we plot the value of the exponent of the asymptotic complexities as a function of
the number of levels, for different rank bounds r =O(mα).

16



Algorithm 3 BLR`-LR-Solve kernel, `> 1 (upper triangular case)

Input: a p×p block upper triangular BLR` matrix Ũ ; Ũ = [
Ũi j

]
i=1: j, j=1:p such that Ũi j =Yi j X T

i j for
i 6= j and Ũ j j is a BLR(`−1) matrix; a LR matrix B̃ =ΦΨT .
Output: overwritten Ψ (modified in-place) corresponding to the operation B̃ ← B̃Ũ−1.

1: for j = 1 to p do
2: ΨT

j,: ←ΨT
j,: −

∑ j−1
i=1Ψ

T
i,:Yi j X T

i j

3: BLR(`−1)-LR-Solve
(
Ũ j j,ΦΨT

j,:

)
4: end for
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Figure 7: Theoretical asymptotic exponent of the storage and flop complexity of the dense MBLR
factorization
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Let us first consider the case of r = O(1) (i.e., α= 0). We have already shown that, in this case,
the two-level BLR factorization has O(m5/3) flop complexity, which leads to O(n10/9) 3D sparse
complexity. With a third level, the dense complexity decreases to O(m3/2), which is precisely the
3D sparse breaking point (see Table 1), and thus leads to O(n logn) complexity. The log factor can
be dropped by adding a fourth level. The dense complexity tends towards O(m) as the number of
levels increases, but the sparse complexity cannot be further improved after the optimal O(n) has
been reached. This illustrates that only a small number of levels is necessary to reach low sparse
complexity. In particular, with four levels, the number of blocks on the top level is p = O(m1/5),
which is still a quite large number which, as previously described, provides more flexibility to
address issues such as data distribution, parallel implementation, numerical pivoting, etc.

The picture is different with higher rank bounds. Indeed, the higher the rank, the more diffi-
cult it is to reach a low complexity and thus more levels are required. For example, with r =O(

p
m)

(α= 1/2), it is actually not possible to reach a O(n) 3D flop complexity since the dense complexity is
at best O(mr2)=O(m2). This is the dense complexity achieved by the hierarchical formats, as well
as the MBLR format with an infinite number of levels, and leads to O(n4/3) sparse complexity. It is
therefore not possible to achieve this complexity with a constant number of levels. However, a cru-
cial observation is that the rate of improvement of the exponent, which follows (`+3+2α`)/(`+1),
is rapidly decreasing as ` increases. For example, with α = 1/2, one level decreases the full-rank
O(m3) complexity to the BLR O(m2.5) complexity; it would require an infinite number of levels to
achieve another O(m0.5) factor of gain. Similarly, adding two more levels leads to O(m2.25), achiev-
ing a O(m0.25) gain which can only be achieved again with infinitely more levels! This illustrates
the critical observation that the first few levels achieve most of the asymptotic gain. We therefore
believe that the MBLR factorization with only a small number of levels can be of practical interest,
even for problems with larger ranks.

6 Numerical experiments
In this section we compare the experimental complexities of the full-rank, BLR, and MBLR

formats (with different numbers of levels) for the factorization of dense matrices arising from Schur
complements of sparse problems.

6.1 Experimental setting
We have developed a MATLAB code to perform the BLR and MBLR factorization of a dense

matrix, which we use to run all experiments. Numerical experiments with sparse factorizations
are out of the scope of this article.

To compute the low-rank form of the blocks, we perform a truncated QR factorization with
column pivoting (i.e., a truncated version of LAPACK’s [8] _geqp3 routine). We use a a mix of
fixed-accuracy and fixed-rank truncation: we stop the factorization after either an accuracy of ε
has been achieved or at most rmax columns have been computed. In the following experiments, we
have set ε= 10−14 and rmax = 10.

All the experiments were performed on the brunch computer from the LIP laboratory (ENS
Lyon), a shared-memory machine equipped with 24 Haswell processors and 1.5 TB of memory.

To validate our theoretical complexity results, we use a Poisson problem, which generates the
symmetric positive definite matrix A from a 7-point finite-difference discretization of equation

∆u = f

on a 3D domain of size n = N ×N ×N with Dirichlet boundary conditions. We compute the dense
MBLR factorization of the matrices corresponding to the root separator of the nested dissection
partitioning, which are of order m = N2.

We compute the experimental asymptotic complexities by means of the least-squares estimation
of the coefficients {βi}i of a regression function f such that X f it = f (N, {βi}i) fits the observed data
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(a) Storage complexity. (b) Flop complexity.

Figure 8: Experimental complexity of the dense MBLR factorization of the root separator of order
m = N2 of a 3D Poisson problem of order n = N3.

Table 8: Comparison between theoretical and experimental complexities.

`= 1 `= 2 `= 3 `= 4

Storage complexity
Theoretical O(m1.50) O(m1.33) O(m1.25) O(m1.20)
Experimental O(m1.47) O(m1.36) O(m1.32) O(m1.27)

Flop complexity
Theoretical O(m2.00) O(m1.67) O(m1.50) O(m1.40)
Experimental O(m1.97) O(m1.68) O(m1.62) O(m1.51)

Xobs. We use the following regression function:

X f it = eβ
∗
1 Nβ∗2 with β∗

1 ,β∗
2 = argmin

β1,β2
‖ log Xobs −β1 −β2 log N‖2.

6.2 Experimental complexity results
We report in Figure 8 the experimental storage and flop complexity of the dense MBLR factor-

ization, using a number of levels ` varying from 1 to 4. We summarize the asymptotic exponents
obtained by fitting the data points in Table 8. The experimental complexities are in relatively good
agreement with the theoretical ones.

While there is an almost perfect match for the first two levels, the gap between theory and
practice increases as more levels are added. This is due to the increasing difficulty of tuning the
different block sizes at each level. This is a practical limitation that should be further investigated.
Nevertheless, an asymptotic gain is achieved by each addition of a new level, at least up to `= 4.

Overall, these experimental results therefore support the capacity of the MBLR format to sig-
nificantly reduce the asymptotic complexity of the factorization, even when only a small number of
levels is used.

7 Comparison with the BLR-H format
In this section, we compare our MBLR format to the related BLR-H format, sometimes also

referred to as “Lattice-H ”. It consists in representing the matrix using the BLR format, and then

19



(a) MBLR format. (b) BLR-H format.

Figure 9: Comparison of the MBLR and BLR-H formats.

approximating its diagonal blocks with H -matrices. This is illustrated in Figure 9: contrarily
to our MBLR format (Figure 9(a)), the BLR-H format (Figure 9(b)) uses the more complex H

representation to approximate the diagonal blocks.
The BLR-H format has been little studied from a theoretical standpoint in the literature, even

though it has been considered as a simple way to use hierarchical matrices in a distributed-memory
setting [22, 1].

Since the MBLR and BLR-H formats have essentially the same objective, in this section we
provide a theoretical analysis comparing them in terms of asymptotic complexity and simplicity of
the format.

As illustrated in Figure 9, the BLR-H format is obviously more complex than the MBLR one,
since the diagonal blocks are represented as H -matrices and thus refined with a nonconstant
number of levels, rather than a constant one. The question is thus whether these additional levels
improve the asymptotic complexity of the format. In the following, we prove it is not the case and
therefore recommend the use of the MBLR format over that of the BLR-H one.

The complexity of the BLR-H format is entirely determined by the block size b used for the
BLR partitioning. Indeed, the storage complexity can be computed as the sum of the storage for
the off-diagonal low-rank blocks and that of the diagonal H blocks:

S BLR−H
ds (p,b, r)=O(p2br)+O(pbr logb)=O(p2br),

where p = m/b and q is a small integer. Thus, the term corresponding to the off-diagonal low-rank
blocks is dominant and we obtain

S BLR−H
ds (m,b, r)=O(

m2r
b

). (49)

Similarly, the flop complexity of the BLR-H factorization can be computed as the sum of the cost
of the H -Factor, H -LR-Solve, LR-LR-Product, and Recompress steps:

F BLR−H
ds (p,b, r)=O(pbr2 log2 b)+O(p2br2 logb)+O(p3br2)+O(p3br2)=O(p3br2),

which is dominated by the LR-LR-Product and Recompress steps and therefore leads to

F BLR−H
ds (m,b, r)=O(

m3r2

b2 ). (50)

The question is now how this result compares to the MBLR complexities computed in the pre-
vious sections. Let us first take an example: assume that the matrix has been partitioned in blocks
of size b =p

mr. Then, applying (49) and (50), we obtain the same asymptotic complexity as that
of the monolevel BLR format:

S BLR−H
ds (m, r)=S 1

ds(m, r)=O(m3/2r1/2);

F BLR−H
ds (m, r)=F 1

ds(m, r)=O(m2r).
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This result means that representing the diagonal blocks as H matrices does not improve the
asymptotic complexity, since the BLR format (in which the diagonal blocks are stored in full-rank)
already achieves the same complexity. This result generalizes independently of the choice of the
block size b. Indeed, if we apply (49) and (50), with the optimal choice of block size for the `-level
BLR format, b = O(m`/(`+1)r1/(`+1)), we obtain the same asymptotic complexity as that proved in
Section 5 (Theorem 1):

S BLR−H
ds (m, r)=S `

ds(m, r)=O(m(`+2)/(`+1)r`/(`+1));

F BLR−H
ds (m, r)=F `

ds(m, r)=O(m(`+3)/(`+1)r2`/(`+1)).

This result can be interpreted as follows: for any given block size b, there exists a constant number
of levels `b such that representing the diagonal blocks of the matrix as `b-level BLR matrices
suffices to achieve the lowest possible complexity. As far as asymptotic complexity is concerned, it
is thus not necessary to represent these diagonal blocks with the H format. Note that the value of
`b can easily be computed as

`b =min
{
` : m`/(`+1)r1/(`+1) ≥ b

}
−1.

Also note that if b = O(m), then `b asymptotically tends towards infinity and then the MBLR and
BLR-H formats are equivalent, in the sense that they both lead to b = m/c for some c =O(1). They
are however still different from the typical H format with c = 2; moderately large, albeit constant,
values of c (e.g., 10 or 100) could be of high practical interest.

8 Conclusion
We have proposed a new multilevel BLR (MBLR) format to bridge the gap between flat and

hierarchical low-rank matrix formats. Contrarily to hierarchical formats for which the number of
levels in the block hierarchy is logarithmically dependent on the size of the problem, the MBLR
format only uses a constant number of levels `.

We had previously explained why the H -matrix theory, while applicable to the BLR format,
leads to very pessimistic complexity bounds and is therefore not suitable. Here, we have shown
that this remains true for the MBLR format and we therefore extended the theory to compute bet-
ter bounds. We proved that both the storage and flop complexities of the factorization can be finely
controlled by `. We theoretically showed that the first few levels achieve most of the asymptotic
gain that can be expected. In particular, for a sparse 3D problem with constant ranks, two lev-
els suffice to achieve O(n) storage complexity and three levels achieve O(n logn) flop complexity,
suggesting that a small number of levels may be enough in practice. Our numerical experiments
confirm this trend.

Having a small number of levels leads to a greater freedom to distribute data in parallel; in
particular blocks are small enough for several of them to fit in shared-memory, allowing an effi-
cient parallelization. Finally, a small number of levels greatly simplifies the implementation of the
format, making it easy to handle important features such as dynamic data structures and numer-
ical pivoting. The related BLR-H (or Lattice-H ) format targets a similar objective; however, our
theoretical analysis shows that using more levels to refine the diagonal blocks actually does not
improve the asymptotic complexity with respect to the MBLR format.

In short, the MBLR format aims to strike a balance between asymptotic complexity and actual
performance on parallel computers by trading off the optimal hierarchical complexity to retrieve
some of the simplicity and flexibility of flat monolevel formats. We believe that this increased
simplicity and flexibility will prove to be useful in a parallel, algebraic, fully-featured, general
purpose sparse direct solver. The implementation of the MBLR format in such a solver will be the
object of future work.
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Ã23Ã21
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Figure 10: The BLR-LR-Product kernel.

A Appendix: extension to the strongly-admissible case
In Sections 4 and 5, we were considering the weakly-admissible case only. In this section, we

extend the proofs and computations to the strongly-admissible case. This requires the introduction
of new kernels involving computations on off-diagonal non-admissible blocks that are represented
as MBLR matrices. We prove that the theoretical complexity results established in the weakly-
admissible case still hold in the strongly-admissible one. The proof involves two main ingredients.
First, the fact that the number of non-admissible blocks per row or column on any level of the block
hierarchy can be bounded by a constant. Second, the computation of the cost of the new kernels,
which we show do not asymptotically increase the overall cost of the factorization.

A.1 New kernels description
Let us consider an `-level BLR matrix. In the strongly admissible case, not all off-diagonal

blocks are admissible and thus low-rank; some must therefore be further refined by representing
them by (`−1)-level BLR matrices.

This introduces three new kernels: the BLR(`−1)-LR and BLR(`−1)-BLR(`−1) products, and the
BLR(`−1)-BLR(`−1) triangular solve.

Algorithm 4 BLR`-LR-Product kernel

Input: a p× p BLR` matrix Ã and a LR matrix C̃ =ΦΨT .
Output: a LR matrix C̃out =ΦoutΨT = ÃC̃

1: for i = 1 to p do
2: Φout

i,: Ψ
T ←BLR(`−1)-LR-Product

(
Ã ii,Φi,:Ψ

T)
3: Φout

i,: ←Φout
i,: +∑p

j=1; j 6=i X i jY T
i jΦ j,:

4: end for

The BLR`-LR-Product is described in Algorithm 4 and illustrated (with `= 1) in Figure 10. Note
that the algorithm can easily be adapted to define the similar LR-BLR`-Product. The BLR`-BLR`-
Product is described in Algorithm 5. Finally, the BLR`-BLR`-Solve is described in Algorithm 6 in
its upper triangular version; the lower triangular version is similar and is omitted for the sake of
conciseness.

To prove that the strong admissibility case does not increase the asymptotic complexity of the
`-level BLR factorization, we thus need to compute the cost of these three new steps. To do so, two
ingredients are necessary. First, we prove in Section A.2 that the number of non-admissible blocks
at any level of the block hierarchy is bounded by a constant (Lemma 1). Then, in Section A.3, we
compute their cost by induction (Lemma 2).
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Algorithm 5 BLR`-BLR`-Product kernel

Input: two p× p BLR` matrices Ã and B̃.
Output: a p× p BLR` matrix C̃ = ÃB̃.

1: for i = 1 to p do
2: for j = 1 to p do
3: C̃i j ← [ ] (rank-0 matrix)
4: for k = 1 to p do
5: if Ã ik and B̃k j are LR then
6: C̃i j ← C̃i j + Ã ikB̃k j
7: else if Ã ik is LR then
8: C̃i j ← C̃i j +LR-BLR(`−1)-Product

(
Ã ik, B̃k j

)
9: else if B̃k j is LR then

10: C̃i j ← C̃i j +BLR(`−1)-LR-Product
(
Ã ik, B̃k j

)
11: else
12: C̃i j ← C̃i j +BLR(`−1)-BLR(`−1)-Product

(
Ã ik, B̃k j

)
13: end if
14: end for
15: end for
16: end for

Algorithm 6 BLR`-BLR`-Solve kernel (upper triangular case)

Input: two p× p BLR` matrices Ũ and Ã; Ũ is upper triangular.
Output: overwritten Ã (modified in-place) corresponding to the operation Ã ← ÃŨ−1.

1: for k = 1 to p do
2: for i = 1 to p do
3: if Ã ik is LR then
4: Ã ik ←BLR(`−1)-LR-Solve

(
Ũkk, Ã ik

)
5: else
6: Ã ik ←BLR(`−1)-BLR(`−1)-Solve

(
Ũkk, Ã ik

)
7: end if
8: for j = k+1 to p do
9: if Ã ik and Ũk j are LR then

10: Ã i j ← Ã i j − Ã ikŨk j
11: else if Ã ik is LR then
12: Ã i j ← Ã i j −LR-BLR(`−1)-Product

(
Ã ik,Ũk j

)
13: else if Ũk j is LR then
14: Ã i j ← Ã i j −BLR(`−1)-LR-Product

(
Ã ik,Ũk j

)
15: else
16: Ã i j ← Ã i j −BLR(`−1)-BLR(`−1)-Product

(
Ã ik,Ũk j

)
17: end if
18: end for
19: end for
20: end for
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A.2 Boundedness of the number of non-admissible blocks
In this section, we seek to compute a bound on Nna, the maximal number of non-admissible

blocks per row and column at any level of the block-hierarchy.
The result is directly derived from Lemma 2 in [4], whose result on BLR matrices we reproduce

here.

Lemma 1. For any BLR matrix, it is possible to build a partition such that the number of non-
admissible blocks per row and column is bounded by Nna =O(1).

Proof. See [4], Lemma 2.

Since this result holds for any BLR matrix, it can be recursively applied to the non-admissible
blocks of a `-level matrix, and therefore the result trivially holds at any level of the block hierarchy.

As a consequence, the `-level BLR factorization of a dense matrix clustered into p = m/b blocks
requires O(p2) BLR(`−1)-LR products and O(p) BLR(`−1)-BLR(`−1) products and triangular solves
to be performed.

Now that we have bounded the number of times these kernels are performed, let us bound the
cost of performing them once.

A.3 Recursive complexity analysis of the new kernels
Lemma 2. Let A, B, and U be three `-level BLR matrices of order m and with blocks of rank at
most r on any level; in addition, let U be upper triangular. Let also C be a low-rank matrix of order
m and rank r. Then, the costs F `

AB, F `
AU−1 , and F `

AC of performing the BLR`-BLR` product AB
and triangular solve AU−1, and the BLR`-LR product AC, respectively, are:

F `
AB(m, r)=F `

AU−1 (m, r)=F `
ds(m, r), (51)

F `
AC(m, r)=O(r)×S `

ds(m, r), (52)

where F `
ds(m, r) and S `

ds(m, r) are given by Theorem 1.

Proof. We proceed by induction. Let us note b =O(mx) the top level block size of the matrices and
p = m/b =O(m1−x). Let us also assume that r =O(mα).

We begin with the initial case ` = 1. The AB product requires O(p3) LR-LR products of cost
O(br2), O(p2) LR-FR products of cost O(b2r), and O(p) FR-FR products of cost O(b3). Its total cost
is therefore F 1

AB =O(p3br2+p2b2r+pb3)=O(m3−2x+2α+m2+α+m1+2x), which, for x = x∗ = (1+α)/2,
attains its optimal value F 1

AB(m, r)=O(m2r)=F 1
ds(m, r). The AU−1 triangular solves requires the

same computations and therefore has the same asymptotic cost. For the AC product, the fact
that C = ΦΨT is low-rank means that the products can be performed only on Φ, as described in
Algorithm 4. Therefore, it only requires O(p2) LR-LR products and O(p) LR-FR products, which
results in a total cost F 1

AC = O(p2br2 + pb2r) = O(m2−x+2α+m1+x+α) which, for x = x∗ = (1+α)/2,
attains its optimal value F 1

AC(m, r)=O(m3/2r3/2)=O(r)×S 1
ds(m, r).

We now assume that the formulas hold for (`−1)-level BLR matrices and prove them for `-level
ones. The AB product requires O(p3) LR-LR products of cost O(br2), O(p2) BLR(`−1)-LR products
of cost O(r)×S `−1

ds (b, r) (by induction), and O(p) BLR(`−1)-BLR(`−1) products of cost F `−1
ds (b, r) (also

by induction). Using (34) and (35), its total cost is therefore

F `
AB(m, x,α)=O(m3−2x+2α+m(2`+(1−`)x+(2`−1)α)/`+m(`+2x+2(`−1)α)/`). (53)

Taking x = x∗ = (`+α)/(`+1), we obtain F `
AB(m, r)=F `

ds(m, r). The AU−1 triangular solve requires
the same computations and therefore has the same asymptotic cost. Finally, the AC product re-
quires O(p2) LR-LR products of cost O(br2) and O(p) BLR(`−1)-LR products of cost O(r)×S `−1

ds (b, r),
by induction. Therefore, using (34), we obtain the total cost of

F `
AC(m, x,α)=O(m2−x+2α+m(`+x+(2`−1)α)/`). (54)

Again, for x = x∗ = (`+α)/(`+1), we obtain F `
AC(m, r)=O(r)×S `

ds(m, r).
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Theorem 2. The complexity formulas of Theorem 1 established in the weakly-admissible case also
hold in the strongly-admissible case.

Proof. Lemma 1 states that there are only O(1) non-admissible blocks per row and column on any
level of the block hierarchy. From this we can already deduce that the storage complexity S `

ds is
asymptotically the same in the weakly- and strongly-admissible cases. Moreover, using the costs
computed in Lemma 2, we can compute the overall cost associated with the new kernels required
to be performed in the strongly-admissible case as

F `
New Kernels(b, p, r)=O(p)×F `−1

ds (b, r)+O(p2r)×S `−1
ds (b, r) (55)

=F `
Factor(b, p, r)+F `

Solve(b, p, r) (56)

which clearly does not asymptotically increase the total, thus proving that F `
ds is also unchanged

by the strong admissibility condition.
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