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Abstract

This paper presents a novel algorithm for performing inference and/or
clustering in semiparametric copula-based mixture models. The algo-
rithm replaces the standard kernel density estimator by a weighted ver-
sion that permits to take into account the constraints put on the under-
lying marginal densities. Lower misclassification error rates and better
estimates are obtained on simulations. The pointwise consistency of the
weighted kernel density estimator is established under an assumption on
the rate of convergence of the sample maximum.
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1 Introduction

In modern data science, the observations of heterogeneous clusters is not un-
common. An example is given in [4] where one can observe two heterogeneous
clusters of data points described by blood pressure and medical costs. The
first dimension has a skewed Gaussian distribution and the second a log-normal
distribution. The first cluster has negative dependency and the second pos-
itive dependency. These data cannot be captured by the standard Gaussian
mixture model. The Student-t mixture model [10][15] is not able to deal with
heterogeneous clusters either.

Recently more flexible models have been considered. On the one hand, there
are copula-based methods. Copula-based methods allow for a separate analysis
of the marginals and the dependence structure. They have been successfully ap-
plied in Pattern Recognition [23], Machine Learning [22], Knowledge Discovery
and Database Management [4]. Copulas allow for concatenating discrete and
continuous data, too [13]. For a statistical perspective, see e.g. [9, 8].

On the other hand, there are nonparametric methods. Nonparametric meth-
ods do not need to pick parametric families for the component distributions (i.e.,
the distributions of the clusters) but at the cost of assuming independence within
each component [1, 12]. In nonparametric mixture models, the parameters are
probability density functions, which are estimated by kernel density estimators
embedded in pseudo-EM algorithms [2].
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In this paper, following the work in [14], we combine both the copula frame-
work and nonparametric estimation into a single mixture model. This permits
to capture a wide spectrum of dependence structures while avoiding the choice
of setting up the parametric families for the marginals. However, there is an
important difference between the model of [14] and ours. In the former, the dis-
tributions in the clusters were not allowed to vary in scale. In the latter, change
in scale is possible. This additional degree of freedom induces a structural con-
straint on the component marginal densities of the mixture. The constraint is
not satisfied by the kernel density estimator used in the algorithm in [14]. How
can we take the constraint into account? Will the inference be improved? To
answer the first question, we have built a random weighted kernel density esti-
mator and proved its pointwise consistency. To answer the second, we compared
the algorithms on simulated and real data.

The rest of this paper is as follows. We present the models in Section 2.
The first part reviews the paradigms under which one can build mixture models
(Gaussian, copula-based, nonparametric and semiparametric) and the second
part presents the model of interest in this paper. We give the learning algorithms
in Section 3. Section 4 contains the definition and the consistency result for the
weighted kernel density estimator. This section is written in a generic framework
and therefore can be read independently. Section 5 and Section 6 contain the
simulation experiments and the real data analysis, respectively. A Summary
closes the paper.

2 Four kinds of mixture models

2.1 A review of paradigms for mixture models

We consider mixture models of the form

f(x1, . . . , xd) =

K∑
z=1

πzfz(x1, . . . , xd),(1)

where π1, . . . , πK are the proportions of the K components (or clusters) and
f1, . . . , fK are the corresponding densities. The choice of the structure for the
component densities fz specifies the kind of mixture model.

The first kind of mixture model is as follows. One picks a multivariate
parametric family for the component densities and estimate their parameters
by maximum likelihood through an EM algorithm. In the majority of cases
one usually picks the multivariate Gaussian family, or, perhaps, the multivari-
ate Student-t family. Note that all coordinates of a vector of variables are
distributed according to the same distribution up to their parameters. For
instance, all the coordinates of a vector distributed according to a Gaussian
mixture model are Gaussian. This is an homogeneity assumption. We refer to
a standard textbook [15] for further details.

The second kind of mixture model arises when one chooses to use the copula
decomposition for each of the component densities, that is, one writes

fz(x1, . . . , xd) = cz(F1,z(x1), . . . , Fd,z(xd))

d∏
j=1

fj,z(xj),(2)
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where cz is the copula density corresponding to, and f1,z, . . . , fd,z are the
marginals of, fz. Here F1,z, . . . , Fd,z are the corresponding (cumulative) dis-
tribution functions. Sklar’s theorem [25, 16] states that for any distribution
function Fz with continuous marginals F1,z, . . . , Fd,z, there exists a function
Cz : [0, 1]d → [0, 1], called the copula, such that

Fz(x1, . . . , xd) = Cz(F1,z(x1), . . . , Fd,z(xd)),(3)

for any (x1, . . . , xd) in the domain of definition of Fz. The decomposition (2) fol-
lows from Sklar’s theorem by differentiation. The copula Cz encodes the depen-
dence structure of a random vector. One easily checks that Cz is the distribution
function of the random vector (F1,z(X1), . . . , Fd,z(Xd)) if Fz is the distribution
function of (X1, . . . , Xd). Copulas are typically parametrized by considering
families of the form {Cz(·, . . . , ·; θz), θz} for some parameters θz. An example
is given in Section 5. If in (3) Cz(u1, . . . , ud) = u1 · · ·ud, then cz = 1 in (2).
This means that the variables are independent conditionally on belonging to the
cluster z. In copula-based models, one can choose different parametric families
for the marginals within the same cluster but this heterogeneity property comes
at a price. Indeed, the specification of all the parametric families (there are dK
marginals) can be a daunting task. Estimation of copula-based mixture models
can be performed by EM or EM-like algorithms [9].

The third kind of mixture model is of nonparametric flavor. In nonparamet-
ric mixture models, one assumes

f(x1, . . . , xd) =

K∑
z=1

πz

d∏
j=1

fj,z(xj).

That is, conditionally on the labels (i.e. conditionally on being in a certain clus-
ter), the variables are assumed to be independent. But, in contrast to copula-
based mixture models, one does not assume parametric marginals. Nonpara-
metric estimation can be performed with kernel density estimators embedded
in EM-like algorithms [1]. In [1], marginals of the form

fj,z(xj) =
1

σj,z
gj

(
xj − µj,z
σj,z

)
,(4)

where µj,z and σj,z are location and scale parameters, respectively, are also
considered. The case σj,z = 1 and d = 1 was considered in [2]. This work largely
inspired further work on nonparametric mixture models from the kernel density
estimation viewpoint. But nonparametric maximum likelihood estimation is
also possible if one assumes log-concavity of the component densities [7].

The fourth kind of mixture model combines nonparametric estimation and
copula modeling [14]. It is of the form (1), (2) and (4). In (2), the distribution
functions Fj,z are given by Fj,z(xj) = Gj((xj − µj,z)/σj,z) and

Gj(xj) =

∫ xj

−∞
gj(t) dt.(5)

The model [14] is a particular case where σj,z = 1. The gj (hereafter called the
generators) are estimated in a nonparametric way but the copula are entirely
parametric, thus the term semiparametric used for this kind of models. Inference
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can be performed with essentially the same algorithms as in [1, 2] but with an
additional step for estimating the copula parameters. Algorithm 1 in Section 3
is an example of such algorithms.

2.2 The model of interest

We consider a model of the fourth kind, a so called location-scale semiparametric
copula-based mixture model of the form

f(x1, . . . , xd) =

K∑
z=1

πzcz

(
G1

(
x1 − µ1,z

σ1,z

)
, . . . , Gd

(
xd − µd,z
σd,z

)) d∏
j=1

1

σj,z
gj

(
xj − µj,z
σj,z

)
,

that is, of the form (1), (2) and (4) where the generators gj , j = 1, . . . , d, satisfy∫
xjgj(xj) dxj = 0(6)

and ∫
x2jgj(xj) dxj = 1.(7)

Note that there is no loss of generality in assuming a unit variance in (7). Indeed,
if the variance would be σ2

j , say, then we could find a unique reparametrization
(given by g̃j(xj) = σjgj(σjxj) and σ̃j,z = σjσj,z) so that (7) would be true.
The copulas are parametrized by vectors θz. No specific parametric families are
assumed for the generators.

3 Estimation

Given the model of interest in Section 2.2, one needs to estimate the proportions
πz, locations µj,z, scales σj,z, generators gj and copulas parameters θz for z =
1, . . . ,K and j = 1, . . . , d. Note that the estimates of the distribution functions

Gj can be computed through (5). The sample is denoted by (x
(i)
1 , . . . , x

(i)
d ),

i = 1, . . . , n. Two learning algorithms are presented in this section. Algorithm 1,
is essentially the same as that in [14], which itself is inspired from the algorithms
in [1, 2]. Hence we do not consider that Algorithm 1 is a contribution of the
paper. The contribution is Algorithm 2.

Building upon the work of [2, 1, 14], the most natural algorithm one can build
is Algorithm 1. Algorithm 1 requires initial estimates π0

z , µ
0
j,z, σ

0
j,z, g

0
j , θ

0
z and

then produces a sequence πtz, µ
t
j,z, σ

t
j,z, g

t
j , θ

t
z, for t = 1, 2, . . . until some stop-

ping criterion has been reached. The first step is similar to the E step of any EM
algorithm. The second step is also similar to the EM algorithm for Gaussian
mixture models: the parameters are updated by computing weighted means
where the weights wti,z relate the observations to their probabilities of belonging
to the given clusters. The third step is similar to the computations undertaken

in [2]. Given the data x
(i)
j and given the weights computed at the t-th iteration,

one generates a random label Zi ∈ {1, . . . ,K} according to a multinomial distri-
bution Multi(wti,1, . . . , w

t
i,d). One then standardizes the data according to these

simulated labels, that is, builds a pseudo-sample x̃
(1)
j , . . . , x̃

(n)
j and constructs a
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Algorithm 1

Given initial estimates π0
z , µ

0
j,z, σ

0
j,z, g

0
j , θ

0
z and for t = 1, 2, . . . (until some stop-

ping criterion has been reached), follow the steps below.

1. Compute (for i = 1, . . . , n and z = 1, . . . ,K)

wti,z =

πtzcz

{
Gt1

(
x
(i)
1 −µ

t
1,z

σt
1,z

)
, . . . , Gtd

(
x
(i)
d −µ

t
d,z

σt
d,z

)
; θtz

}∏d
j=1

1
σt
j,z
gtj

(
x
(i)
j −µ

t
j,z

σt
j,z

)
∑K
z=1 π

t
zcz

{
Gt1

(
x
(i)
1 −µt

1,z

σt
1,z

)
, . . . , Gtd

(
x
(i)
d −µ

t
d,z

σt
d,z

)
; θtz

}∏d
j=1

1
σt
j,z
gtj

(
x
(i)
j −µt

j,z

σt
j,z

)
2. Process through the following steps (j = 1, . . . , d, z = 1, . . . ,K).

(a) Update the cluster proportions

πt+1
z =

1

n

n∑
i=1

wti,z.

(b) Update the location parameters

µt+1
j,z =

∑n
i=1 x

(i)
j wti,z∑n

i=1 w
t
i,z

.

(c) Update the scale parameters

(σt+1
j,z )2 =

∑n
i=1(x

(i)
j − µtj,z)2wti,z∑n
i=1 w

t
i,z

.

3. To update the generators, proceed through the following steps (j =
1, . . . , d).

(a) Generate a random variable Z(i) from Multi(wti,1, . . . , w
t
i,K),

(b) Define x̃ij = (xij − µtj,Z(i))/σ
t
j,Z(i) .

(c) Choose a bandwidth hj and update the generators

gt+1
j (xj) =

1

nhj

n∑
i=1

K

(
xj − x̃(i)j

hj

)
(8)

4. Update the copula parameters (z = 1, . . . ,K)

θt+1
z = arg max

θz

∑
i

wti,z log cz

Gt+1
1

(
x
(i)
1 − µ

t+1
1z

σt+1
1,z

)
, . . . , Gt+1

d

x(i)d − µt+1
dz

σd,z

t+1
 ;θz


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kernel density estimator on the top of it for updating the generators. The kernel
density estimator can be constructed by following the guidelines as those in a
standard textbook [24]. In (8), the kernel is denoted by K and the bandwidth
by hj . Thanks to a straightforward extension of Lemma 1 in [2], one has that,

at each iteration t of the algorithm, x̃
(1)
j , . . . , x̃

(n)
j is a sample from gtj and there-

fore the choice of the bandwidth can be based on that sample. Finally in the
last step, one maximizes a pseudo-likelihood for the copula parameters. See [14]
for more details about this step. Algorithm 1 empirically has been found to
perform well on simulations (see Section 5) whenever one is concerned with the
estimation of the parameters for their own sake. However, when one is inter-
ested in the task of clustering instead, Algorithm 1 appears to have no greater
value than a standard Gaussian mixture model. See Figure 1 and Section 5.

Interestingly, one can improve on Algorithm 1 by taking the inherent struc-
ture of the model into account. Note that in Algorithm 1 the estimator of the
generators is not a generator itself. That is, (6) and (7) hold true but in general∫

xjg
t+1
j (xj) dxj = 0 and

∫
x2jg

t+1
j (xj) dxj = 1(9)

do not. By letting the estimators gt unconstrained in spite of (6) and (7),
information may be lost. To overcome this problem, we propose to base inference
on Algorithm 2. Algorithm 2 takes into account the inherent constraints of the
model by replacing the standard kernel density estimator (8) by a weighted
version (10) satisfying the constraints at each iteration of the algorithm. The
proof of pointwise consistency of the the weighted kernel density estimator are
postponed to Section 4.

Algorithm 2 proceeds as follows. First one follows the instructions of Al-

gorithm 1 till the construction of the pseudo-samples x̃
(i)
j . Then one solves an

optimization problem for each marginal to get the weights of an adaptive kernel
density estimator which, at each iteration of the algorithm, satisfies the con-
straints (9) (see Section 4). The optimization problem is convex and easy to
solve. Consistency of the resulting estimator is studied in Section 4. Finally,
once the marginals have been updated, a last step is added to estimate the
copula parameters, as in Algorithm 1.

4 Kernel density estimation under moment con-
straints

We consider the problem of estimating the common density g of independent
random variables X1, . . . , Xn. We assume that g verifies the regularity condi-
tions in Assumption 1

Assumption 1. The density g is continuous on R, symmetric about zero and
obeys ∫

x2g(x) dx = 1 6=
∫
x4g(x) dx <∞.

Note that the assumed symmetry implies∫
xg(x)dx = 0.
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Algorithm 2

1. Follow the steps 1 and 2 in Algorithm 1.

2. Generate the random labels Z(i) ∼ Multi(wti,1, . . . , w
t
i,K) and build the

pseudo-sample x̃ij = (xij − µtj,Z(i))/σ
t
j,Z(i) as in Algorithm 1.

3. Choose a bandwidth hj and compute

M̂n,j =

 1 · · · 1

x
(1)
j · · · x

(n)
j

[x
(1)
j ]2 · · · [x

(n)
j ]2

 , and bn,j =

 1
0

1− h2j

 .

4. Solve the optimization problems

min
p∈Rn

‖p‖22

such that

{
M̂n,jp = bn,j

p ≥ 0,

and denote the solutions by p̃j = (p̃
(1)
j , . . . , p̃

(n)
j ).

5. Follow step 3 of Algorithm 1 but substitute (8) for

gt+1
j (xj) =

1

hj

n∑
i=1

p̃
(i)
j K

(
xj − x̃(i)j

hj

)
(10)

6. Follow step 4 of Algorithm 1 to update the copula parameters.
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Continuity is a standard assumption to ensure pointwise consistency of the
standard kernel density estimator [17] and the Nadaraya-Watson estimator [27].
The condition on the moment of second order stems from the structure of the
model in Section 2.2. The moment of fourth order must have a different value
than that of the moment of second order to ensure the convergence of a certain
quantity (see the proof of Theorem 1 for details). We view this rather as a
technical condition. For instance if g were the Gaussian density, its variance
would have to be not equal to 1/3.

As explained in Section 3, our aim is to construct an estimator ĝ that obeys∫
xĝ(x) dx = 0, and

∫
x2ĝ(x) dx = 1.(11)

We define the estimator

ĝ(x) =

n∑
i=1

p̂n,iKhn(Xi − x)(12)

where Khn
(y) = K(y/hn)/hn is a kernel depending on a positive sequence

hn and where p̂n = (p̂n,1, . . . , p̂n,n)′ (throughout ′ stands for the transpose
operation) is the unique solution of the random optimization problem

min
p∈Rn

‖p‖22(13)

such that

{
M̂np = bn

p ≥ 0,
(14)

where p = (p1, . . . , pn)′ and

M̂n =

 1 · · · 1
X1 · · · Xn

X2
1 · · · X2

n

 , and bn =

 1
0

1− h2n

 .

Each p̂n,i is a function of the random sample. For each realization of the sample,
the optimization problem (13) is convex and hence admits a unique solution
which is denoted by p̂n. The constraint (14) ensures that ĝ satisfies (11). Indeed,
elementary calculations show that (11) holds if and only if

n∑
i=1

p̂n,iXi = 0 and

n∑
i=1

p̂n,iX
2
i = 1− h2n,

respectively. The constraints
∑
i p̂n,i = 1 and p̂n,i ≥ 0, i = 1, . . . , n, must

always hold to ensure that ĝ is a density.
As soon as n > 3 the system M̂np = b has infinitely many solutions and

hence there are infinitely many estimators that satisfy (11). We chose to pick
the closest one to the standard kernel density estimator. The standard kernel
density estimator is an estimator of the form (12) where p̂n,i = 1/n, and the
solution of

min
(p1,...,pn)

E

∫
(

n∑
i=1

piKhn
(Xi − x)− g(x))2 dx.
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In our case, we cannot set p̂n,i = 1/n because the constraint (14) would not
be satisfied. But we can project (1/n, . . . , 1/n) onto the feasible space given
in (14), which amounts to solve the optimization problem (13) because mini-
mizing ‖p‖2 is the same as minimizing ‖p − e‖2, where e = (1, . . . , 1)′. Thus,
the minimization of ‖p‖2 is a heuristic justified by an analogy. Moreover, the
minimization of ‖p‖2 is quite convenient from a computational point of view.
That said, one can imagine other criteria [6] for choosing p.

Having defined the estimator in (12), it is natural to require at least point-
wise consistency. The issue resides in the constraint p ≥ 0. Without such a
constraint, Lemma 1 states that the solution of the optimization problem is
explicit and yields a consistent estimate. In the presence of the constraint, The-
orem 1 states that consistency can be achieved under a condition on the tail of
the underlying density.

Theorem 1. Suppose Assumption 1 holds. If hn → 0, nhn → ∞ and there
exist constants an > 0, bn ∈ R such that n−1/4an → 0, hnan → 0, n−1/4bn → 0,
hnbn → 0 and

a−1n (max{X1, . . . , Xn} − bn)(15)

converges in distribution, then the estimator (12) is pointwise consistent.

The conditions hn → 0 and nhn → ∞ are necessary to ensure pointwise
convergence of the standard kernel density estimator [24]. The condition (15)
is standard in extreme value theory [21]. The conditions n−1/4an → 0 and
n−1/4bn → 0 state that the rate at which the sample maxima grows to infinity
must not be too fast. The conditions hnan → 0 and hnbn → 0 state that
the rate at which the sample maxima grows to infinity must be smaller than
the rate at which the bandwidth hn vanishes. If hn is the optimal bandwidth,
that is if hn ∝ n−1/5, then the conditions n−1/4an → 0 and n−1/4bn → 0
are automatically satisfied. Example 1 and Example 3 give distributions which
satisfy these conditions. Example 2 is a counter-example. Example 1 and
Example 2 are drawn from [3], p. 153–157. The computation of the normalizing
constants in Example 3 is given in the Appendix.

Example 1. Let hn ∝ n−1/5. The Gaussian distribution (2π)−1/2 exp(−x2/2),
x ∈ R, satisfies the conditions in Theorem 1 with

an = (2 log n)−1/2, bn =
√

2 log n− log(4π) + log log n

2(2 log n)1/2

Example 2 (Counter-example). The Cauchy distribution g(x) = [π(1+x2)]−1,
x ∈ R, does not satisfy the conditions in Theorem 1. Indeed, in addition to
have infinite variance, the normalization constants are given by an = n/π and
bn = 0. The sequence (an) does not verifies n−1/4an → 0.

Example 3. Let hn ∝ n−1/5. The Laplace distribution g(x) = exp(−|x|/b)/(2b),
b > 0, x ∈ R, satisfies the conditions in Theorem 1 with an = b and bn =
b log(n/2).
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5 Computer experiments

In this section, we wish to compare Algorithm 1 (hereafter called cKDE for con-
venience) and Algorithm 2 (fKDE) in terms of the quality of the obtained es-
timates. The standard Gaussian Mixture Model (GMM) was also implemented
as a benchmark.

We generated 500 datasets of size 300 according to the following data gen-
erating process. The number of clusters was set to K = 3 and their proportion
parameters were all set of equal value. The Frank family of bivariate copulas,
given by

Cθz (u, v) = − 1

θz
log

(
1 +

(e−θzu − 1)(e−θzv − 1)

(e−θz − 1)

)
, θz ∈ (−∞,∞) \ {0},

was chosen for all of the three copulas. The parameters were θ1 = −3.45, θ2 =
3.45 and θ3 = 0, corresponding to negative, positive and null dependence levels,
respectively. The generators for the marginals along the first, resp. second, axis
(g1, resp. g2), were a normal, resp. a Laplace, distribution with zero mean
and unit variance. The three clusters had means (µ1,1 = −3, µ2,1 = 0), (µ1,2 =
0, µ2,2 = 3) and (µ1,3 = 3, µ2,3 = 0) respectively. The scale parameters along
the first, resp. second, axis were set to σ1,1 = 2, σ1,2 = 0.7 and σ1,3 = 1.4, resp.
σ2,1 = 0.7, σ2,2 = 1.4 and σ2,3 = 2.8. The kernel and the bandwidth selection
method used for building the kernel density estimators were the Gaussian kernel
and the method given by (3.30) in p. 47 of [24].

In order to compare the algorithms, we computed the mean absolute errors,
that is, the differences in absolute value between the true parameters and the
estimates. These were averaged over the clusters and the coordinates (if any).
For the generators, the L1 norm was used instead. Only the errors for the
location, scale and proportion parameters were computed for GMM. The mis-
classification rate was computed, too. All these error measures can be computed
at each iteration of the algorithms and averaged over the replications. All the
three algorithms were run for a fixed number of iterations set arbitrarily to 27
and were initialized according to the nearest neighbour algorithm.

The results are shown in Fig. 1. If one is interested in clustering then the
three learning algorithms can be compared on the basis of the misclassification
error rate in Fig. 1 (f). The algorithm fKDE did not perform better than GMM
even though the last one is misspecified. However, cKDE performed better than
both of its competitors. For instance, cKDE yielded a decrease in the median
of the misclassification error rates of about 14% (resp. 10%) over GMM (resp.
fKDE).

If one is interested in the estimation of the parameters for their own sake,
then the error measures considered in Fig. 1 (except the misclassification error
rate) are unable to discriminate between GMM and fKDE. Since GMM is mis-
specified, improvement achieved by fKDE must have occurred elsewhere. For
instance, as seen in Fig. 2, the marginal density f2,1 has been better estimated
with fKDE than with GMM. That said, our interest really resides in the perfor-
mance of cKDE. And cKDE outperforms both of its competitors and uniformly
on all kinds of considered error measures. For instance, cKDE yielded a de-
crease in the median of the errors for the locations of about 22%, resp. 16%,
over GMM, resp. fKDE. The cKDE yielded a decrease in the median of the
errors for the scales of about 38%, resp. 18%, over GMM, resp. fKDE. The
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Figure 1: Boxplots of the error values for the various measures and algorithms.
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Figure 2: Pointwise averaged marginal density estimates along the second axis
in the first cluster for GMM and fKDE. The true underlying density is added
for comparison.

algorithm cKDE yielded a decrease in the median of the errors for the copula
parameters of about 10% over fKDE. This suggests that building an estimator
for the generator that verifies the same constraint as its target, as in Algorithm 2,
was a good idea in this context.

Since there is no formal log-likelihood to be relied on, the stability of the
algorithms was checked by plotting the pointwise averaged error trajectories.
These are displayed in Fig. 3. Note that the lowest trajectory cannot formally
be claimed the best because the hypothetical point at which converge the al-
gorithms is unknown. Of course if the sample size is large enough and if the
algorithms indeed converge to a consistent estimate then the true parameter
would be close to the point at which converge the algorithms. Back to our mat-
ter of checking the stability of the algorithms, inspection of Fig. 3 suggests that
increasing the number of iterations would not have changed much the insights
gained by the computer experiment. The algorithms fKDE and cKDE are very
stable for the copula, proportion and location parameters (resp. Fig. 3 (a),
Fig. 3 (b) and Fig. 3 (c)). For the scale parameters, the trajectories are sta-
ble Fig. 3 (d). For the density generators in Fig. 3 (e), the trajectories are
stabilizing.

6 Illustration on RNA-seq data

The use of high-throughput sequencing technologies to sequence ribonucleic acid
content results in the production of RNA-seq data. From a statistical point of
view, the observations are (realizations of) random variables Yi,j , i = 1, . . . , n,
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j = 1, . . . , d, each of which is a measure of the digital gene expression (DGE)
of the biological entity i (e.g., a gene) for the experimental condition j. For
instance, Yi,j may be the number of reads of the ith gene for the jth condition
aligned to a reference genome sequence. One question of interest deals with the
clustering of DGE profiles [19]. For instance, one may want to discover groups
of co-expressed genes.

In recent years several clustering methods have been proposed. Poisson
mixture models can be applied [19] but they need to assume that, within a
cluster, the DGE measures are independent, a very strong assumption. Another
approach consists of applying a transformation Yi,j 7→ Ỹi,j , i = 1, . . . , n, j =
1, . . . , d, so that the transformed data, or pseudo data, are more appropriate for
Gaussian mixture models [18]. One such transformation [5] is given by

Ỹi,j = log

(
Yi,j/Nj + 1

mi + 1

)
,

where Nj =
∑n
i=1 Yi,j/106 and mi = d−1

∑d
j=1N

−1
j Yi,j . This approach es-

sentially amounts to assuming that the data are Gaussian on a log-scale. The
semiparametric copula-based mixture models permit to relax this assumption.

In this section, we compare the Poisson mixture model of [19], the Gaussian
mixture model and the semiparametric copula-based mixture models with Gaus-
sian and Frank copulas. The data are high-throughput transcriptome RNA-seq
data [26] downloaded from the companion R package HTSCluster of [19]. We
removed the biological replicates so that d = 2. Estimation in the semipara-
metric copula-based models was performed with Algorithm 2. Estimation in
the Poisson mixture model was performed with the function PoisMixClus of
the package HTSCluster. All the algorithms were run with a fixed number of
clusters, set to K = 10, corresponding to the number of clusters selected by the
integrated completed likelihood criterion in the analysis performed in [20].

In order the compare the models, we reproduced Fig. 2 of [19]. The bar
heights in Fig. 4 stand for the quantities∑n

i=1 ŵi,zYi,j∑n
i=1 ŵi,z

∑d
j=1 Yi,j

,

each of which, according to [19], can be interpreted as the proportion of reads
that are attributed to condition j in cluster z. The quantities ŵi,z are estimates
of the probability that the i-th observation belongs to the z-th cluster, estimate
of which depends on the fitted model (Poisson, GMM, or semiparametric copula-
based). Bar widths are proportional to π̂z, the estimated cluster proportions.
Each bar represents a cluster and each color represents a mean normalized
expression profile, the value of which is given by the bar length of a given color.
In Figure 4, the results for the Poisson model, the only one which does not take
into account the dependence structure within the clusters, differ from all the
other models. We note that the copula-based semiparametric models are both
similar (compared to the Poisson model) and different from GMM. We take this
as an encouragement for copula-based semiparametric models: there are not
absurd since similar to GMM; there are potentially of practical interest since
they differ from GMM.
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Figure 4: Cluster profiles for the Poisson mixture model, the Gaussian mixture
model and the semiparametric copula-based mixture models with Frank and
Gauss copulas. Each bar represents a cluster and each color represents a mean
normalized expression profile, the value of which is given by the bar length
of a given color. The bar widths are proportional to the estimated cluster
proportions.
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7 Summary

We proposed a novel algorithm which permitted to improve the inference in
semiparametric copula-based mixture models in which the marginals have a
location-scale structure. We did this by replacing the standard kernel density
estimator by a weighted one in order to satisfy the inherent constraints of the
model. Pointwise consistency of the estimator was proved under mild assump-
tions. An application on RNA-seq data confirmed the ability of the models to
fit real data.

Research on copula-based (and hence genuinely multivariate) semiparamet-
ric models has started only recently, and, therefore, many challenges still remain.
In particular, the convergence properties of the algorithms in Section 5 or even
those in [14, 1, 2] have still to be unraveled, even though a first step has been
achieved in [11]. This would open the gate for designing sound convergence
check methods and performing model selection (including selection of the cor-
rect number of clusters) through pseudo-AIC criteria.
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A Appendix

A.1 Computation of the normalizing constants in Exam-
ple 3

From [3], p. 155, we know that

[E(cnx+ dn; 1/b)]n → Λ(x), n→∞, x > 0,

where E(x; 1/b) = 1 − exp(−x/b), b > 0 is the distribution function of the
exponential distribution, Λ(x) = exp(−e−x) is the distribution function of the
Gumbel distribution and cn = b, dn = b log n. Let L(x; b) = exp(x/b)/2, x > 0,
be the distribution function of the Laplace distribution on the positive real line.
Let an = cn, bn = dn − b log 2 and x > 0. By identification of the binomial
coefficients in the binomial theorem, we have

[L(anx+ bn)]n = [E(cnx+ dn)]n → Λ(x),

meaning that an = b and bn = b log(n/2) are the appropriate constants. If
x < 0, the same formula applies because anx+ bn →∞.

A.2 Proof of Theorem 1

Theorem 1 shall be proved by first considering the optimization problem (13)–
(14) without the constraint p ≥ 0. (This shall be called the simplified optimiza-
tion problem.) Throughout the proofs, the bandwidth sequence hn is simply
denoted by h.

Lemma 1. Let n ≥ 3. If h → 0 and nh → 0 then the solution p̂n of the
simplified problem

min
p
‖p‖22(16)

such that
{
M̂np = bn(17)

obeys

p̂n =p̃n −
(I − H̃n)X2

X2′(I − H̃n)X2
(X2′p̃n − 1 + h2)(18)

p̃n =
X2e−XX

n(X2 −X2
)

(19)

where H̃n = M̃ ′n(M̃nM̃
′
n)−1M̃n is the projection matrix on the space spanned by

e, X = (X1, . . . , Xn), X = n−1
∑n
i Xi, and X2 = n−1

∑n
i X

2
i . Moreover, the

estimator (12) with p̂n as in (16)– (17) is pointwise consistent.

Proof of Lemma 1. Since the distribution of Xi has no atom at zero, one
has

P (∀y ∈ R3, M̂ ′ny 6= 0 or y = 0) = 1,
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meaning that M̂ ′n has full rank with probability one. Since n ≥ 3 this rank must

be three. Hence M̂nM̂
′
n has full rank equal to three and therfore is invertible.

The optimization problem is convex hence there is a unique solution p̂n whose
expression is easily found: the Lagrangian writes p′p − λ(M̂n − bn) for some
λ > 0 and by equating its gradient to zero we get

p̂n = M̂ ′n(M̂nM̂
′
n)−1bn(20)

(and λ = 2(M̂nM̂
′
n)−1bn).

In order to obtain the desired formulas (18) and (19) it is convenient to
introduce

M̃n =

(
1 · · · 1
X1 · · · Xn

)
and X2 =

X
2
1

...
X2
n

 .

so that we have the decompositions by blocks:

M̂n =

(
M̃n

X2′

)
and M̂nM̂

′
n =

(
M̃nM̃

′
n M̃nX

2

X2′M̃ ′n X2′X2

)
.

Let H̃n = M̃ ′n(M̃nM̃
′
n)−1M̃n be the projection matrix onto the linear space

spanned by the rows of M̃n. With this notation, we have

[M̂nM̂
′
n]−1 =

(M̃nM̃
′
n)−1 +

(M̃nM̃
′
n)
−1M̃nX

2X2′M̃ ′n(M̃nM̃
′
n)
−1

X2′(I−H̃n)X2

−(M̃nM̃
′
n)
−1M̃nX

2

X2′(I−H̃n)X2

−X2′M̃ ′n(M̃nM̃
′
n)
−1

X2′(I−H̃n)X2

1

X2′(I−H̃n)X2


Decomposing bn = (b̃′n, 1−h2)′ and applying formula (20) then yields (18) with

p̃n = M̃ ′n(M̃nM̃
′
n)−1b̃n, this last equality being equivalent to (19).

We now introduce an intermediate lemma in order to facilitate the study of
remainder terms which shall appear in the proof of consistency.

Lemma 2. Let (Zn,1, . . . , Zn,n) be i.i.d. random variables defined on the same
probability space as X1, . . . , Xn. They are assumed to obey n−1

∑n
i=1 Zn,iX

k
i →

ck, k = 0, 1, 2, in probability as n→∞ where ck is some real constant. Then

1

n
X2′(I − H̃n)Zn

P→ c2 − c0, n→∞,

where Zn = (Zn,1, . . . , Zn,n)′.

Proof of Lemma 2. Write

1

n
X2′(I − H̃n)Zn =

1

n

n∑
i=1

X2
i Zn,i −

1

n
X2′M̃ ′nn(M̃nM̃

′
n)−1

1

n
M̃nZn

P→ c2 − c0.

To see why the limit holds, note that n(M̃nM̃
′
n)−1 converges elementwise to the

identity matrix.
We now prove the consistency statement of Lemma 1. We have ĝ(x) = g̃(x)+

ĝ(x) − g̃(x) with g̃(x) =
∑n
i=1 p̃n,iKh(x −Xi) and ĝ(x) − g̃(x) =

∑n
i=1(p̂n,i −

18



p̃n,i)Kh(x−Xi). Using (19) and
∑n
i=1XiKh(x−Xi)/

∑n
i=1Kh(x−Xi)→ x, we

easily get that g̃(x) → g(x) in probability. Now using (19)–(20) and Lemma 2
we also get

ĝ(x)− g̃(x) =
X2′p̃n + 1− h2

X2′(I − H̃n)X2
X2′(I − H̃n)K

P→ 0,

where K = (Kh(x−X1), . . . ,Kh(x−Xn))′. The proof of Lemma 1 is complete.

Proof of Theorem 1. In this proof, the symbol p̂n stands for the solution of
the optimization problem (16)–(17), that is, without the positivity constraint,
and the symbol p̂+

n stands for the solution of the optimization problem (13)–
(14), that is, with the positivity constraint. In view of Lemma 1, it is sufficient
to show that

P (p̂n,i ≥ 0, i = 1, . . . , n)→ 1, n→∞,

because, by definition of the optimization problems, this implies that

P (p̂n,i = p̂+n,i, i = 1, . . . , n)→ 1

and therefore that the estimators are equal with probability tending to one.
We write

p̂n,i = p̃n,i

(
1 +

p̂n,i − p̃n,i
p̃n,i

)
and the proof will be complete if (i) P (p̃n,i ≥ 0, i = 1, . . . , n) → 1 and (ii)
|(p̂n,i− p̃n,i)/p̃n,i| can be bounded above by a quantity which would not depend
on i and would vanish asymptotically.

We first show (i). We have

|np̃n,i − 1| =

∣∣∣∣∣X
2 −XXi

X2 −X2

∣∣∣∣∣ ≤
∣∣∣∣∣ X

2

X2 −X2

∣∣∣∣∣+

∣∣∣∣ X

X2 −X2 ana
−1
n Xi

∣∣∣∣ .
The first term in the right hand side is a OP (n−1) and does not depend on i.
Now

|a−1n Xi| ≤ ∨i |a−1n Xi|
=max{∨ia−1n Xi,∨i − a−1n Xi}
=max{∨ia−1n (Xi − bn),∨i − a−1n (Xi + bn)}+ a−1n bn,

where ∨iXi is a compact notation for max{X1, . . . , Xn}. By assumption, ∨ia−1n (Xi−
bn) converges in distribution. By symmetry, so does ∨i − a−1n (Xi + bn). Hence,
by the continuous mapping theorem, the maximum of ∨ia−1n (Xi − bn) and
∨i − a−1n (Xi + bn) converges in distribution. Thus

|np̃n,i − 1| ≤
∣∣ X

2

X2 −X2

∣∣+
∣∣ X

X2 −X2 an
∣∣|max{∨ia−1n (Xi − bn),∨i − a−1n (Xi + bn)}+ a−1n bn|

=OP (n−1) +OP (n−1/2an)(OP (1) + a−1n bn).
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The bound does not depend on i and vanishes asymptotically in probability by
assumption on the sequences an and bn. This is enough to conclude that (i)
holds with probability tending to one.

We finally show (ii). It is convenient to introduce Lemma 3 the proof of
which is deferred to the end of this Section.

Lemma 3. Let vn be a positive sequence satisfying v−1n → 0, v−1n an → 0,
v−1n bn → 0. There exist random quantities An, Bn, Cn, Dn, En such that, as n→
∞, An is OP (v−2n ), Bn, Cn, Dn are OP (v−1n ), En tends to a nonzero constant
in probability, P (DnXi + En > 0, i = 1, . . . , n)→ 1 and

p̂n,i − p̃n,i
p̃n,i

=
AnX

2
i +BnXi + Cn
DnXi + En

(21)

In view of 21, one has∣∣∣ p̂n,i − p̃n,i
p̃n,i

∣∣∣ ≤ |An| ∨ni=1 X
2
i + |Bn| ∨ni=1 Xi + |Cn|

En − ∨ni=1 −DnXi
(22)

(we used the fact that min{y1, . . . , yn} = −max{−y1, . . . ,−yn} for the denom-
inator). By assumption and by symmetry, both ∨ni=1Xi and ∨ni=1 − Xi are
OP (an) + bn and by assumption on vn,

v−2n ∨ni=1 X
2
i =

[
max(v−1n ∨ni=1 Xi, v

−1
n ∨ni=1 −Xi)

]2 P→ 0.

Hence the numerator in (22) is oP (1). The denominator equals En+Dn∨ni=1Xi

if Dn < 0 and equals En−Dn∨ni=1−Xi if Dn > 0. Either way, the denominator
tends to a constant in probability and ∣∣∣ p̂n,i − p̃n,i

p̃n,i

∣∣∣ ≤
max

{
|An| ∨ni=1 X

2
i + |Bn| ∨ni=1 Xi + |Cn|

En +Dn ∨ni=1 Xi
,
|An| ∨ni=1 X

2
i + |Bn| ∨ni=1 Xi + |Cn|

En −Dn ∨ni=1 −Xi

}
.

This upper bound does not depend on i and vanishes asymptotically in proba-
bility. This proves (ii). It only remains to prove Lemma 3.

Proof of Lemma 3. Let δi,j = 1 whenever i = j and δi,j = 0 whenever i 6= j.

Let H̃i,j denote the element at the i-th row and j-th column of H̃n. We have

p̂n,i − p̃n,i
p̃n,i

=
−
∑n
j=1(δi,j − H̃i,j)X

2
j

X2′p̃n−1+h2

X2′(I−H̃n)X2

X2−XXi

n(X2−X2
)

.

Standard calculations yield

n∑
j=1

(δi,j − H̃i,j)X
2
j =

(X2 −X2
)X2

i + (XX2 −X3)Xi +XX3 −X2
2

X2 −X2

and hence we can rewrite

p̂n,i − p̃n,i
p̃n,i

=
[−(X2 −X2

)X2
i − (XX2 −X3)Xi −XX3 +X2

2
][X2′p̃n − 1 + h2]

[X2 −XXi][n−1X2′(I − H̃n)X2]
.
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This is a ratio of polynomials in Xi that can be identified with (21). One easily
sees that X2′p̃n − 1 + h2 is OP (n−1/2) + OP (h2) and hence all the coefficients
of the polynomial in the numerator are (at least) OP (n−1/2) + OP (h2). By

Lemma 2, n−1X2′(I − H̃n)X2 tends to EX4
1 − 1 which nonzero by assumption.

Therefore the desired equation (21) is satisfied with

v−2n = n−1/2 + h2,

An = −(X2 −X2
)[X2′p̃n − 1 + h2]

Bn = −(XX2 −X3)[X2′p̃n − 1 + h2]

Cn = (−XX3 +X2
2
)[X2′p̃n − 1 + h2]

En = X2n−1X2′(I − H̃n)X2.

Indeed, v−2n a2n = n−1/2a2n + h2a2n → 0 by the assumptions in Theorem 1. Let
us show that An is OP (v−2n ). We have

v2nAn =Op(v
2
nn
−1/2) +Op(v

2
nh

2)

=Op

(
1

1 + n1/2h2

)
+Op

(
1

1 + n−1/2h−2

)
=Op(1),

the last equality holding because the sequence (1 + n1/2h2)−1 is bounded. The
remaining conditions in Lemma 3 are checked in the same way. The proof of
Lemma 3 is complete. Hence the proof of Theorem 1 is complete, too.
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