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Nonlinearly preconditioned FETI solver for
substructured formulations of nonlinear
problems

Camille Negrello!, Pierre Gosselet!, Christian Rey?

LLLMT, ENS Paris Saclay/CNRS/Univ. Paris Saclay,
61 avenue du Président Wilson, 94230 Cachan, France
2:Safran Tech, rue Geneviéve Aubé, 78117 Chateaufort, France

Abstract

We propose a new nonlinear version of preconditioning, dedicated
to nonlinear substructured and condensed formulations with dual ap-
proach — i.e. nonlinear analogues to FETI solver. By increasing the
importance of local nonlinear operations, this new technique reduces
communications between processors throughout the parallel solving
process. More, the tangent systems produced at each step still have
the exact shape of classically preconditioned linear FETI problems,
which makes the tractability of the implementation barely modified.
The efficiency of this new preconditioner is demonstrated on two nu-
merical test cases, namely a water diffusion problem and a nonlinear
thermal behavior.

Key words: Domain decomposition; Nonlinear mechanics; Newton solver;
FETI solver; Parallel processing

1 Introduction

In the context of large linear problems and their numerical solving, paral-
lelization techniques can be used through iterative solvers to reduce com-
putational costs: Domain Decomposition Methods (DDM) [1], (restricted)
additive Schwarz methods [2, 3|, Finite Element Tearing and Interconnect-
ing (FETI) [4] and Balancing Domain Decomposition (BDD) [5] algorithms,



are amongst the most popular of these iterative parallel methods. This article
focuses on DDM solvers based on Schur condensation, namely FETI/BDD
solvers, in which the global problem is substructured into small non over-
lapping subproblems — corresponding to subdomains of the whole structure
— which can be solved independently on different processors. Nodes shared
by multiple subdomains are called interface nodes, and continuity/balance
conditions across subdomains have to be imposed on the corresponding un-
knowns in order to keep coherence with the global problem. The resulting
system is called condensed interface problem, and solved in parallel by a
Krylov algorithm, with the help of local equilibriums solutions at each itera-
tion. The main difference between FETI and BDD solvers lies in the chosen
type of interface unknown (dual and primal respectively). The efficiency of
such solvers is now well established, and several variants have been developed.
Additional constraints can be added, by augmentation in FETI-2 method [6],
or by elimination of selected primal unknowns in FETI-Dual Primal (FETI-
DP) [7]; a second Lagrange multiplier can also be added to create mixed
boundary conditions in the FETI-2 Lagrange Multipliers (FETI-2LM) [§].
Concerning BDD algorithm, the BDD by Constraints (BDDC) [9] variant is
the primal counterpart to FETI-DP.

When nonlinearities are involved, a Newton solver is often applied to
the global problem, while DDM methods can be used for the resulting tan-
gent systems: this is the framework of Newton-Krylov-Schur (NKS) methods
[10, 11]. Starting from the observation that NKS methods do not take advan-
tage of the domain decomposition to deal with nonlinearities, but only use
it at the tangent (linear) level, a new class of iterative nonlinear solvers has
been developed [12, 13, 14, 15, 16, 17]. Nonlinear analogues to primal, dual
and mixed Schur complements are built with a nonlinear substructuring and
condensation: in this formulation, the global nonlinear problem is decom-
posed into small nonlinear subproblems, and continuity/balance conditions
are imposed on interface unknowns across subdomains, resulting in a nonlin-
ear condensed interface problem. The latter is solved by a Newton algorithm
and, depending on the chosen type of main interface unknowns, the resulting
tangent systems have the exact type of BDD/FETTI solvers — and can thus be
solved by the dedicated algorithms. This solving procedure has been proven
to reduce the main time-consuming operations of the parallel process (i.e.
communications, mainly involved in the Krylov solver iterations): compared
to classical NKS procedures, the building of a ‘better’ (nonlinear) interface
condensed problem makes the required number of global Newton iterations
at convergence smaller — which a fortiori implies less required tangent opera-
tions. The cost of this decrease in communications is found in the additional
embarrassingly parallel local nonlinear calculations.



Whether in the case of a linear or a nonlinear study, linear/tangent solvers
BDD and FETT need a preconditioner, in order to regularize the problem and
improve their scalability. Classical preconditioners involve a scaled assembly
of local inverses, i.e. local primal (resp. dual) Schur complements for FETI
(resp. BDD) [18]: these are quasi-optimal for a given linear problem, in
the sense that they lead to a condition number in log (H/h)> — where h is
the characteristic element size and H the subdomain size. Equipped with
this Dirichlet (resp. Neumann) preconditioner, the numerical stability of
the algorithm is thus ensured, even if in practice its parallel scalability also
depends on the ability to fastly compute coarse problem [19]. Scaled assembly
operators can be build from local matrices: this strategy helps to preserve the
condition number of the global problem in heterogeneous cases. Although
this type of preconditioner is quite easily computable during the linear solving
process — since it only requires local solvings and one assembly, — cheaper and
efficient variants can be build in order to increase numerical productivity, like
lumped preconditioners |20, 21|, or more generally interface preconditioners
[22].

It can be observed that the nonlinear substructuring and condensation
method does not take full advantage of the preconditioning step to treat
nonlinearities — as it was previously found out that NKS methods did not
optimize the domain decomposition in the nonlinear framework. Instead of
preconditioning the system only at the tangent level, this article presents a
way to build a nonlinear analogue to the scaled classical Dirichlet (or Neu-
mann) preconditioner [18] which produces self-well-conditioned tangent oper-
ators. A similar idea can be found in the framework of Schwarz DD methods,
with the development of the ASPIN preconditioner for Newton solver [23],
and more recently the RASPEN solver [24] — the reader can also refer to
[25] for a rather exhaustive review and comparison of achievable nonlinear
algebraic solvers compositions, including left nonlinear preconditioning of
Newton-Krylov methods.

Starting from an interpretation of the linear FETI preconditioned system
as a linear fixed point problem [26], whose nonlinear counterpart can be eas-
ily derived, the condensed nonlinear interface problem is modified, enhanced
by a more consistent preconditioner which takes into account the linear or
nonlinear behavior of each subdomain. The overall solving strategy however
remains the same, apart from a few local operations and assemblies: a New-
ton algorithm is still applied to the interface problem, while tangent systems
have the exact type of FETT algorithms. Only, a decrease in global Newton
iterations numbers (and thus in Krylov iterations numbers) occurs, linked to
the additional nonlinear information provided in the new interface condensed
problem, given by the local nonlinear preconditioning operations.



The basic principles of nonlinear substructuring and condensation method
are first recalled in the following. Then, a nonlinear version of the classical
linear preconditioner is build, based on a fixed point interpretation. Its per-
formance is eventually evaluated on two numerical examples: water diffusion
in soils problem, and nonlinear thermal evolution. These two test cases —
involving scalar unknowns — were chosen as first easy-to-handle demonstra-
tors of the nonlinear preconditioner efficiency, even if the ultimate goal of
the nonlinear substructuring and condensation method is the solving of large
structure mechanics problems. Although we tried to remain as general as
possible in our formulations, physical interpretations will be given in the
context of mechanics, keeping in mind that the concepts and equations can
be applied to any problem satisfying sufficient regularity properties to posses
a unique solution (maximal monotone coercive continous operators for ex-
ample, see [27]).

2 Nonlinear substructuring and condensation

2.1 Reference problem, notations
2.1.1 Global nonlinear problem

We consider a nonlinear partial differential equation on a domain 2, rep-
resentative of a quasi-static structural mechanical or thermal problem for
instance, with Dirichlet conditions on a part 9,2 # @ of its boundary, and
Neumann conditions on the complementary part 0;(2. After discretization
with the Finite Element method, the problem to solve reads:

fint(u)+fe;vt=0 (1)

The vector f.,; takes into account boundary conditions (Dirichlet or Neu-
mann) and dead loads, the operator f;,, refers to the discretization of the
homogeneous partial differential equation.

Remark 1. In linear elasticity, under the small perturbations hypothesis, one
has:

fint(u) = —Ku
with K the stiffness matrix of the structure.

We assume that f;,; is differentiable and such that the tangent matrices
are symmetric positive semi-definite (the semi-definiteness being typically
due to the existence of rigid body motions).



2.1.2 Substructuring

Classical DDM notations will be used — see figure 1: global domain €2 is
partitioned into N, subdomains (2(9)). Let n(*) be the number of degrees
of freedom of subdomain Q). For each subdomain, a trace operator t(*)
restricts local quantities z(5) defined on Q) to boundary quantities a:‘l(f)
defined on I'(*) = 9Q)\9N:

(8) _ 4(5) (s) — .(5)
X, = () (s) = o)

Quantities defined on internal nodes (belonging to Q()\I'(*)) are written with
subscript : a:z(s).

Global primal (resp. dual) interface is written I'y = U, ') (resp. T'p).
Primal assembly operators A() are defined as canonical prolongation oper-

ators from I'®) to I'y: A®) is a full-ranked boolean matrix of size n4 x nl(f)

- where ny4 is the size of global primal interface 'y and ngs) the number of
interface degrees of freedom of subdomain (5.

Remark 2 (Diamond notations). For a domain €2 substructured into N, sub-
domains (£2(?)), concatenated local variables are superscripted ¢, ¢ or ¢
depending on the alignment.

(1) MO 0 0
[E<[> = ) xe = (x(l) . ,I'(NS))’ M® — 0 0
2 (Ns) 0 0 MV

Note that in the case of a nonlinear operator, the dependence is purely local
T
in the block notation, in particular: f,(u®) = [ .. ,fi(;)T (u®®), .. ] -

Any matrix B¢ satisfying Range(B®") = Ker(A®) can be assigned to
dual assembly operator — see figure 1 for the most classical choice. Note that
in that case multiple-points lead to B¢ being rank-deficient. The number of
relations characterizing the global dual interface is written ng.

Remark 3 (Scaled assembly operators). We introduce the classical primal and
dual scaled assembly operators A® and B® [18], they satisfy the following
properties:
A®AST = A%A9T =
B®B®"B®=DB® B®B® B®=RB®

Remark 4. The following trivial properties are worth recalling:

(2)

Range(B®) nKer(B®") = {0} and Range(B®)nKer(B®") = {0}
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Figure 1: Local numberings, interface numberings, trace and assembly oper-

ators

(Classically, the scaling operators are built as follow:

Ao - (A@mA@T)_1 A® DS

B - (BeD®—1BeT)T Bepe!

with D = 1) or diag(K(s)

Loy

) ©

Note that if the same matrix D is chosen in definition of the primal and
dual scaled assembly operators then the following property holds [28]:

A" A+ Be'Be =T

(4)

(d) Interface connexions




2.2 Solving strategy

This section recalls the principle of nonlinear substructuring and condensa-
tion for dual and primal approach. More details can be found in [16].
Nonlinear problem (1) is decomposed into N nonlinear subproblems:
T
i (U®) + [+t Ay =0° (5)
where )\l()s) is the unknown local interface nodal reaction, introduced to rep-
resent interactions of subdomain Q(*) with neighboring subdomains.

Transmission conditions — continuity of displacements and balance of re-
actions — hold:
Beug> =0 (©)
A®NE =0
In the following we make an assumption equivalent to the small strain
hypothesis in mechanics: for any subdomain Q() lacking Dirichlet conditions

(aka floating subdomain), there exists a basis R() of rigid body motions
which satisfies:

e {fﬁg(u@ + ROG) = (), Yol
) T (s s
R®) fi(m)(u( ) =0

The basis of rigid body motions is directly linked to the kernel of the tangent
matrix:

(7)

: o _ Ofim
R®) = Ker (K{”), with K{” - afg)

2.2.1 Dual approach

Formulation of the condensed problem The dual formulation consists
in defining the main interface unknown as Ap, i.e. a balanced quantity (in-
terface nodal reaction) across subdomains. Unknowns u(®) are, under this
assumption, a priori not continuous between neighbors (until convergence).
Under hypothesis (7), if the global problem is well-posed, we can assume
the existence, at least locally, of a nonlinear dual analogue Fﬁ to the dual
Schur complement (i.e. a discrete Neumann-to-Dirichlet operator). The
solution u(®) of each local equilibrium is then defined uniquely, up to a rigid

body mode R()a(s) and interface local unknowns can be expressed as:
u? = B2 (0 = B Ag; £2,) + 1O R%a® 8)

ext
An admissibility condition is also imposed on B¢ \p:

ROTfS =0 = RO (f8,+19 B A5) =0

wnt



Property 1. The tangent operator F® to Frff can be explicitly computed in
function of the tangent stiffness K;> [16]:

8F§F 1
FP =2 =19 (K)o (9)
N

Moreover, in the linear case, the Neumann-to-Dirichlet operator — written
FfD — is affine, with the constant term associated with external forces:

FE (A fE) = FSAY + b8

ext

10
with b = ¢ (K®)' f2 o)

ext

Finally, writing d(*) the number of rigid body modes of each subdomain,
interface condensed problem reads:

Find \g ¢ R"2,a® e RZ:%” guch that :

ext

RO (8, +1°" B A5) =0 (12)

g(\p,a®) = B® (Frff (BQT/\B; ¢ )+t®R®oﬂ>> =0 (11)

Admissibility condition In practice, the solution Ag to the dual interface
condensed problem (11) is sought iteratively in the admissible affine space
defined by (12). As in classical linear FETI method, we compute an adapted

initialization Ap, and look for the remaining part in Ker (R?TB9T> using a
projector Pg. The unknown thus takes the following form:

RO (18, +1%" B A, ) =0,

)\B:ABD"'PB;\B with: T -
RS"B® Py =0

In practice, if we note Rp = B@Rb@, we use the following expressions:

{PB =1 - QR (R5QR5) " RS 13)

-1
Ap, = ~QRp (REQRz) R'[2,
where Q = B®Q®B®" is a SPD matrix homogeneous to the (linearized)
preconditioner or any of its approximations () is homogeneous to a boundary
stiffness matrix). It is crucial to note that the matrix ¢ does not need to be
updated during the nonlinear resolution (usually it is either never updated



or updated at the beginning of the increments of the Newton solver, () =
is even a classical choice).

For any Ag (even inexact), the magnitude a® of the rigid body motions
can be computed by minimizing the )-norm of the residual gg, which leads
to:

a® = (REQRp) "REQBOFS (B (Ap, + Podp)i £2,)  (14)

Using this expression for a® in equation (11), one recognizes the transposed
projector. Finally the system to be solved can be written as:

Find Az € R"® such that: g5 (\g) = PLB®FS <BQT()\BO + Pp)p); ff;t) =0
(15)

A Newton-Krylov algorithm The nonlinear substructuring and conden-
sation method consists in solving interface problem (15) instead of global
problem (1). The Newton method applied to this equation leads to, for
k>0:
- dgh < - po<
Solve for dA\p : | == (Ag,) | d\g = —g5(\5,)
OAp
Update Ap,,, = Ap, +d\p

(16)

Two steps are involved in the solving process:

(i) Independent solutions to subdomains nonlinear equilibriums (8) with
Neumann boundary conditions are computed by applying local Newton
algorithms, and assembled to build the nonlinear projected interface
residual & (g, ).

(ii) Solution to global interface tangent problem with the FETI method:
6gP N T
ﬁ(ABk) = PYB°FB® Py

where th: is the notation for the tangent operator at Ap, which is
connected to the tangent stiffness matrix (9).

In the following, this solving process will be referred to as FETI-NL.

Remark 5. It is well known that the dual tangent system is only semi-definite
because of the rank-deficiency of B¢ in the presence of multiple points, which
means that dAz (and more generally \g) is defined up to corner modes [29],
anyhow the mechanical quantity of interest )\ff = B®" \p is uniquely defined.



FETI preconditioner The preconditioning step of FETI-NL algorithm is
involved at the tangent level, when classical FETT algorithm comes into play.
The preconditioned projected FETI problem can be written as:

(BeSSBe") PEBOFS B Ppdrs, =-(BoSSB°" ) g, (17)

where S?; is the primal Schur complement (see next subsection) of which the

dual Schur complement is a pseudo-inverse: th = Sf; "

The choice of such a preconditioner is motivated by the quality of the
approximation of the FETI inverse operator achieved by the scaled assembly
(3) of local pseudo-inverses.

2.2.2 Primal approach

We here quickly recall the principle of primal formulation for nonlinear sub-
structuration and condensation method.

Formulation of the nonlinearly condensed problem The primal for-
mulation consists in defining the main interface unknown as w4, i.e. a dis-
placement which is continuous across subdomains. Nodal interface reactions
/\f)D are, under this assumption, a priori not balanced between subdomains
(until convergence).

We assume the well-posedness of local Dirichlet problems, so that we can
define a nonlinear primal analogue Sffl to the Schur primal complement (i.e.

a discrete Dirichlet-to-Neumann operator). The solution )\gs) of each local
equilibrium is then defined uniquely, and local interface nodal reactions can
be expressed as:

AD = 58 (= A% i 2,) (18)

Property 2. The tangent operator S{ to Sffl can be explicitly computed in
function of the tangent stiffness K,
(s)
aS,,

s s s s)7t s
Vse {07 e 7N8}7 St( ) = W - Kt(bb) - Kt(bz)Kt(u) Kt(ib) (19)
Uy,

Moreover, in the linear case, the discrete Dirichlet-to-Neumann operator,
written S, is affine, with the constant term associated with external forces:

S (' 12) = 5208 13

ext

with b9 = f2, ~ KS K3 2

eztb tbi ext;

(20)

Note the link between primal and dual right-hand sides: b> = F2bY.

10



Finally, interface condensed problem reads:

Find uy € R™ such that :

21
a(ua) = A°85 (4270 12,) =0 -
Newton-Krylov algorithm The strategy defined at section 2.2.1 still
holds with primal approach. The tangent problem of global Newton algo-
rithm becomes, at each iteration k:

(4952 49" ) dusy = -A°S5 (A" un,; £3:) (22)

with S the tangent primal Schur complement defined in (19). The right-
hand side evaluation involves the assembly of the nodal reactions associated
with the solution of local equilibriums with imposed interface displacements
A%y 4,- Internal local displacements ui and interface nodal reactions /\Ii are
computed in parallel, and the lack of balance of )\22 is the interface nonlinear
condensed residual g4(ua,) = Ae/\zi = A0S% (A ua,; £2,).

The left-hand side corresponds to the assembly of local primal Schur com-
plements, i.e. the operator of a classical primal Schur domain decomposition
method. Tangent problems are thus solved with a classical BDD algorithm.

In the following, this solving process will be referred to as BDD-NL.

BDD preconditioner The classical preconditioner makes use of a scaled
assembly of local inverses, which involves solving local Neumann problems,
here again an initialization/projection procedure is used:

duy = du’y + Padii g

(A°FSAC") PT (A9SS A" ) Padiig = - (A°FS A" ) PTga(ua,) 29)

where:

duly = —Rs (RESARA)_l Riga(ua,) with Ry=A°RY
Py ZI—RA (1’?55,4RA)71 RZSA Sa =AeSiAeT

is introduced to satisfy the optimality condition required when rigid body
modes exist within substructures. It is important to note that contrary to
the dual case, the projector needs to be updated at each iteration because
the image space of the projector, Ker (EZ;S A), depends on the current state
of the system.

11



2.3 Typical algorithm

Algorithm 1 sums up the main steps of the method with the dual nonlinear
local problems, and FETI tangent solver. For simplicity reasons, only one
load increment was considered. A similar algorithm can be written for the
primal approach.

Algorithm 1 FETI-NL
define:

4O, 38) = 12, (%) + 12, + 1532

znt

1n1t1alizati0n' ud, )\4> given
K = [os (usy), P = [ QR (RLQRp) ' RY,
admissibility condition:
-1 &>
B, = QR (REQRp) ™ RTrd " (ufy, Ay )
local linear initialization step:
ud = tho_lrgl® (uy, BE"AG)
assemble b%, = -BotSud
set k=0
: d
while [b% | > eng do
tangent problem:
set m =0 and dAp, ,, =0
while |Pfb}, - PL(BSFS B®") Ppdg, | >cx do
FETT iterations with index m
compute u,ﬁl = uk K® _1t®TBeTPBd)\Bk7m
update Ag,,, = Ap, + PBd)\Bk,m
increment k=% +1
local nonlinear step:
set 7 =0 and ul?j =u2>
. >
while |r¢, (ul?j, A )1|| >e¥. do
o S ~1ao >
Up je1 uk:,] Ky (ukzﬁ Ap )
increment j =7+ 1

d _ Roto,,®
assemble ka = B¢t uy ;

12



3 Nonlinear preconditioner for the FETI-NL
solver

The aim of this section is to define and develop a new preconditioning strat-
egy for the nonlinear interface condensed problem. The purpose is to have
a formulation where the tangent operator is directly well conditioned (for
regular problems) without resorting to a linear preconditioner.

The method we derive is inspired from the analysis of the role of scaling
operators in [26] which lead to techniques for the parallel recovery of admis-
sible fields in [30]. The idea is to reinterpret FETI as a (nonlinear) fixed
point method on the interface, which acts as a nonlinear preconditioner for
the FETI-NL method.

For sake of clarity, the dependency of nonlinear operators F! s; and Sffl on
external load f>, will be made implicit in the following. Reference to the
current iteration number £ will not be reminded either.

3.1 A nonlinear fixed point

Let Ap = Ap, + PBS\B be an interface reaction field balanced with respect to
rigid body motions. We define the displacement resulting from the solving of
local Neumann problems: We introduce the following notation for nonlinear
local solutions with dual formulation, i.e. discontinuous displacements:

u? = FS (B \p) + RS a®

uy is not continuous (Bouy # 0), except if Ap is the solution to the FETI-NL
system. A continuous displacement can be build from uff by substracting the
scaled interface jump:

a=|1-B%"Bou? = BeuP-0 (24)
Note that using the expression of a® given in (14) we have:

o (530} BB EBOR()
= ﬂzb = []_ BQTPEBQ] Frfi (BQT/\B) n R?Oﬁb ( 5>

The continuous displacement ﬂl? can be used as an input to local Dirichlet
problems, themselves leading to non-balanced reactions which can be bal-
anced by substracting the scaled interface lack of balance:

A =|r-A0Ta0]ss(af) = AP =0 (26)

13



If A\p is converged, uf is continuous; we then have ﬁff = uff and:

85 (a9) = 55, (B3 (B As) + BYa®) = S5 (FS (B As)) = B As

We here use the hypothesis formulated in (7) (equivalent to the small strain
hypothesis in mechanics) to remove rigid body motions, and the fact that
primal and dual condensed operator are pseudo-inverse of each other.

Thus, at convergence, and using (4) in order to get rid of the primal
assembly operators, one has:

A =B B°SS (u?) = B BB \g= B \p
We consequently define the following nonlinear operator:
HY (B As) = B BOSS ([1- B PLBO| Fu (B A5)) - B As (27)

and a new interface condensed problem can be defined in the shape of a fixed
point system:

Find g such that HY (BQT()\BO + PBS\B)) =0 (28)

Remark 6. In the linear case, a fixed point system can also be derived for the
primal approach in term of a continuous displacement u 4. In the nonlinear
case, the difficulty is due to the handling of rigid body motions: in order to
lead to well-posed Neumann problems, the displacement should be such that
]T?,EAQS;’Q (AeTu A) = 0 (nonlinear equivalent of the BDD-optimality condi-
tion). This equation characterizes a manifold, which is much more complex
to handle than the constant affine space of the dual approach.

Linear case We simplify the fixed point in the case of a linear system,
using the explicit expressions of the Dirichlet-to-Neumann and Neumann-to-
Dirichlet operators given in equations (20,10), as well as the link between the
primal and dual right-hand sides.

HE, (B \s) = B BOS? ([1- B PEBO| F® (B As)) - B Mg
=B B (SP[1- B PLBO|(FO B A +62) - b2) - B Ap
=-B°"BeSP B PLBO (FP B Ap+02)

+ BT (B (SPES (B Ap+b8) =40 ) - Ap)
= -B°"BeSP B PLBO (PP B \p +07)

14



where we used the duality between the Schur complements and the definition
of the scaled assembly matrices.

One recognizes the projected preconditioned FETT system, multiplied on
the left by B®" — we recall that this operation converts the partially undefined
traction between subdomains (because of redundancy at multiple points in
['p) into the well defined mechanical effort applied to subdomains (in (I'®))).

Remark 7. Even if the preconditioned FETI system takes the form of a fixed
point method, it is impossible to apply a stationary iteration. It is indeed well
known that the operator is not a contraction; more precisely the spectrum is
bounded from below by 1 [31].

3.2 Newton method applied to the fixed point system

Since a stationary iteration is not expected to converge, we propose to use a
Newton solver. The method is motivated by the following relation obtained
using the chain rule:

OHS ,(Be" (Ap, + Ppig))
O\p

=B (BeSP [1- B PEBO|FE B 1) Py

(29)
Note that F® is computed from the subdomains’ tangent matrix evaluated at
/\;D = B®" A\ whereas S® is computed from the subdomains’ tangent matrix
evaluated at [I — B®" PLB®]E, (B \p).

It can be convenient to adopt a modified Newton strategy where F®
and S are computed from the same configuration. In that case we have

ES=S8® "and the following simplification holds:

OHY ,(Be" (Ap, + Ppig))
O\p

=-B®" (B°SS B PYBOFS B Pg)  (30)

where we recognize a preconditioned FETI system which is well conditioned
— at least for sufficiently regular problems and decompositions; coupling with
robustification techniques [32, 33| will be considered in future studies.

If we consider the k'* iteration, Ap, = Ag, + PBS\Bk, of a Newton method
applied to (28), we have:

8H7$,d (BQT)‘Bk) Y @
o dAp = _an,d
B

(B Ap,) and Ap,., = Ap, + Ppdds

From the expression (30) of the tangent operator and the definition (27) of
nonlinear operator HY, one can notice that B®" can be put in factor on the

15



left of the equation above:

B (BeSE B PEBOFS BY Py )dip = ...

-Hyp

B[ Bosg ([1- BT PEB] Fu (B As,)) - As, ]

Hyu B

Thanks to Remark 4, the remaining terms H; p and H,,; g do not belong to
Ker(B®"), we can thus directly consider the system:

Hipd\p=-Hyp(\g,)

The left-hand side is a typical preconditioned FETT operator, it possesses
solutions and the mechanical quantity B®" X By, 1s uniquely defined.
The Newton system has the following properties:

e The right-hand side is not classical in the sense that it does not take the
form of a (linearly) preconditioned residual. It is thus not easy to fully
benefit from the symmetry of the operators, in particular the system
can not be solved by a projected preconditioned conjugate gradient.
Even if smarter strategies might have been applied, we chose to use a
GMRes solver applied to the whole preconditioned system.

e The right-hand side is the composition of two nonlinear local oper-
ators: all subdomain first solve independent nonlinear Neumann sys-
tems, then there is one all-neighbor communication (application of B¢)
and a coarse projection, then all subdomains solve independent nonlin-
ear Dirichlet problems and there is another all-neighbor communication
(application of B@).

Compared to the FETI-NL strategy, the tangent operator is naturally well
conditioned, and the right-hand side is computed by two nonlinear solves
instead of one (and two assemblies instead of one). This solving process will
be refered to as FETI-precNL in the following.

3.3 Equivalence between classical and nonlinearly pre-
conditioned problems

By construction, the fixed point is attained when the dual system is solved:

gh(A\) =0 = HS (B (g, + PpAp)) =0
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Conversely, we can prove that if Ag is such that Hﬁyd(BeT (Ap,+PpAp)) =

0 then, at least locally, A5 is the unique solution to gk (Ag) =0 (up to a term
in Ker(RYL)). Indeed, let us define:

u? = FS (B )

The fixed point can be written as — note that potential rigid body motions
cancel out in the following computations:

B BeSS (uf - BT PEBouf) = S, (u?)
Premultiplying by B and using (2), we have:

B (88 (uf - B PEBOu?) - S5 (uf)) =0 (31)
Using a first order Taylor series, we have:

BeSPBe PLBOu? + o (B PLBOu?) =0
Being given the symmetry, positiveness and semi-definiteness properties sat-

isfied by matrix (Be S BQT), the following implication holds:

HY (B A5) = 0= PEBOFS (B 25) =0

4 Assessments

4.1 Water diffusion in soils

This test-case is inspired from the standard Polmann case [34, 35|: the prob-
lem to solve is the diffusion in two directions of water in a column of soil (see
figure 2a). Geometrical parameters are given in table 1. Initial pressure field
is taken homogeneous:
h(l‘,t < 0) = hDo

At time ¢ = 0, a pressure h = hp, is imposed on the edge defined by y = L,
and h = hp, on the edge defined by (z =0, y € [3L/8; L/2]). Remaining outer
walls are chosen to be impermeable (null flow). Load parameters are given
on table 1.

The Richards equation for water diffusion is considered here in its classical
formulation:

Find scalar pressure field h(x,t) such that:
06 (h)
ot

-V.(K(h)V(h-2))

where:
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Geometrical parameters
L 1
W 0.2
Van Genuchten parameters
0, 0.368
05 0.102
K 9.22x10
n 2
m 0.5
Load parameters
hp, -10
hp, -1.5
hp, -1.5

Table 1: Geometrical, Van Genuchten and load parameters for the soil col-
umn

o 6 (h) is the volumic water content:
0 (h) = 97‘ + (95 - 97") S(h)

with 6,60, the residual and maximal water contents, and S the satura-
tion degree.

o K (h) is the soil hydraulic conductivity:
K (h) = K,K, (h)
with K, K, the intrinsic and relative conductivities.

Van Genuchten model is used for the saturation degree and the relative con-
ductivity:
{5 (h) = (L+elh")™
n— ny-my2
K, (h) = (1= A" (L+ (ela)™) ™) (S ()"

Material parameters are also given in table 1.

Remark 8. Richards equation does not involve rigid body modes within sub-
domains. This issue is adressed in next assessment.

For the time integration, a simple discrete implicit Euler scheme is used.
Time step is taken equal to: At =20s. Spatial discretization involves 5244 de-
grees of freedom. Substructuration involves 16 subdomains and 333 interface
degrees of freedom (see figure 2a.
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Figure 2: Richards equation: soil column with water diffusion in two direc-
tions

Relative precision of each solver is set to €, = 1076, and absolute precision
t0 E4ps = 10720,
The three following methods are compared:

- BDD-NL
- FETI-NL
- FETLprecNL

Comparison is performed on the three different imbricated solvers iterations
numbers: global Newton iterations (cumulated over time steps), Krylov it-
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erations (cumulated over global Newton iterations and time steps) and local
Newton iterations (being given the parallelism of these solves, at each global
Newton loop, the maximum over subdomains of local Newton iterations is
stored; this value is then cumulated over global Newton iterations and time
steps).

Results are given in tables 2, 3 and 4, in terms of global Newton, Krylov
and local Newton iterations numbers respectively. Figure 2b shows the state
of the column after 1000 seconds.

On this problem, BDD-NL and FETI-NL method were quite equivalent
(see tables 2 and 3: at last time step, a total of 1535 cumulated Krylov
iterations was recorded for both methods, while global Newton cumulated
iterations numbers reached 311 and 325 for primal and dual approach re-
spectively), with a smaller local cost for primal approach (at last time step,
only 2559 cumulated local iterations were needed, versus 3173 for dual ap-
proach). FETI-precNL method was however way more efficient than these
two approaches, with a total of only 179 cumulated global Newton iterations
at last time step (see table 2). The corresponding gains, in terms of global
Newton iterations, compared to BDD-NL (resp. FETI-NL) method, are com-
prised between 42 and 57% (resp. 45 and 62%) on the whole resolution. For
Krylov cumulated iterations (see table 3), gains of FETI-precNL solver are
comprised between 46 and 59% versus primal approach, and vary from 46
to 62% versus dual approach. The gain of FETI-precNL solver, compared
to BDD-NL and FETI-NL methods, depends on the intensity of the nonlin-
earity during each time step: as time increases, the speed of the diffusion
decreases, resulting in a slow decrease of the FETI-precNL gain.

The cost of nonlinear preconditioning, i.e. additional local nonlinear it-
erations (in parallel), is evaluated in table 4 by the ratios of local Newton
iterations numbers for FETI-precNL solver over other methods: a maximum
of 1.41 ratio is reached at the end of the resolution for BDD-NL method (1.14
for FETI-NL method). This additional cost is expected to be much less ex-
pensive than the decrease of about 50% in cumulated Krylov iterations (i.e.,
communications between processors).

Remark 9. Despite the relative smallness of the test cases presented here,
we expect them to be representative of computations on larger structures.
Unfortunately our code did not allow large scale computations, and thus
meaningful time measurements. Limiting communications as we try to do
should be even more appreciable on computations involving many processors:
the number of Krylov iterations seems here to be the fairest and most reliable
performance measurement.

A comparison is also made with classical NKS solving process with BDD
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# Global Newton cumulated iterations ‘

Time | BDD-NL i FETI-NL i FETI-precNL Vféﬁ%%fﬁ?l;ifeﬁ%ﬁ@
20 8§ | 9 | 1 50 { 56
40 6 17 7 56 | 59
60 25 21 11 56 i 59
80 3% . 39 | 15 57 | 62
100 45 . 51 20 56 l 61
200 83 | 94 | 42 49 1 55
300 15 ' 129 | 58 50 | 55
400 147 159 73 50 | 54
500 174+ 184 88 49 | 52
600 201 211 103 49 l 51
700 231, 241 | 121 48 } 50
800 261 ' 271 141 46 | 48
900 286 1 300 161 44 i 46
1000 311 1 325 179 42 | 45

Table 2: Richards equation - Global iterations

algorithm. Results are given in table 5 for the three involved algorithms
(global Newton, Krylov and local Newton). For each time step, local Newton
iterations numbers are equal, for classical NKS method, to global Newton
iterations numbers plus one (the last one is required to initialize the global
solver). Gains are comprised, for global Newton and Krylov solver, between
51 and 82%, over the whole resolution. The ratio between local iterations is
close to 10 at the beginning of the resolution and then slowly decreases, a
cost which should be largely balanced by the 80% gain in Krylov iterations
numbers (i.e. communications between processors).

4.2 Nonlinear thermal problem

A second numerical test involves a symmetrized stationary nonlinear thermal
behavior, described by the following partial differential equation in a domain
Q:

Two = V- (-K (T)VT) =0

with 7" the temperature, r,, a volumic source of heat, and K (7) the thermal
conductivity. Nonlinearity comes from the dependance of K to temperature
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# Krylov cumulated iterations ‘

Time | BDD-NL i FETI-NL i FETI-precNL Vfégsbg_i?l;zfe%%%{
20 32 3T 16 50 { 57
40 64 ' 69 29 55 | 58
60 107 114 47 56 | 59
80 157 1+ 169 65 59 | 62
100 207 . 225 89 57 l 60
200 397 417 | 189 52 1 55
300 557 ' 569 263 53 | 54
400 50 T4 338 53 i 53
500 850 1 839 413 51 | 51
600 985 | 974 488 50 l 50
700 1135 | 1123 | 573 50 | 49
800 1285 | 1269 663 48 | 48
900 1410 1 1410 753 47 i 47
1000 | 1535 1 1535 835 46 | 46

Table 3: Richards equation - Krylov iterations
T, which is usually set to a linear or a power law:
K(T)=1+aT or K(T)=(1+T)" (32)

where « is a real number, parameter of the conductivity law. In the context of
the nonlinear preconditioner for FETI-NL solver, in order to satisfy property
(7), we chose a slightly different expression, where K depends on the gradient
of T, in the spirit of linear elasticity:

K(T)=(1+vT -vT)"

Domain €2 is rectangular with Dirichlet boundary conditions (see figure 3).
Geometry and load parameters are given in Table 6. Different levels of non-
linearity are considered, via an incremental variation of the parameter «,
which is sampled between « = 0 (linear case) and 4, = 0.8.

The spatial discretization involves 5244 degrees of freedom. Substruc-
turation involves 16 subdomains and 333 interface degrees of freedom (see
figure 3).

The numbers of iterations of the three imbricated solvers are compared for
BDD-NL, FETI-NL and FETI-precNL methods: global Newton iterations
(for each value of parameter a), Krylov iterations (cumulated over global

22



# Local Newton cumulated iterations ‘

Time | BDD-NL i FETI-NL i FETI-precNL OVGFS%(S_(&FEOTV{;SYFQE%_NL
20 224 | 249 241 1,08 { 0,97
40 366 ' 393 364 0,99 | 0,93
60 ATT 0 529 485 1,02 i 0,92
80 505 1 714 618 1,04 | 0,87
100 700 . 899 | 769 1,10 l 0,86
200 1085 | 1429 | 1354 1,25 1 0,95
300 1359 | 1783 | 1706 1,26 | 0,96
400 1576 1 2020 1981 1,26 i 0,98
500 1763+ 2211 | 2256 1,28 | 1,02
600 1939 | 2402 | 2505 1,29 l 1,04
700 | 2113 | 2604 2779 1,32 | 1,07
800 | 2283 ' 2815 | 3079 1,35 | 1,09
900 | 2423 ' 3011 3366 1,39 i 1,12
1000 | 2559 1 3173 3608 1,41 | 1,14

Table 4: Richards equation - Local iterations

Newton loops) and local Newton iterations (cumulated over global Newton
loops). Results are given in tables 7 and 8. Figure 4 shows the state of the
structure for a = 0.8.

u=ups(r) BVx-----r----- i ffffff i ffffff i ffffffffffff i ffffffffffff u=up1 (z)

Figure 3: Nonlinear thermal problem

A first observation can be made by comparing BDD-NL and FETI-NL
methods. On this test case, the primal approach is (moderately) more per-
formant than the dual one: indeed, except for the case where the highest
value of parameter « is considered (g, = 0.8), the total number of Krylov
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# Global Newton cumulated iterations
Time | NKS | FETI-precNL || Gains of FETI-precNL (%)

20 21 | 4 81
100 | 72 20 72
200 | 117 42 64
400 | 189 , 73 61
700 | 279 121 57
1000 | 368 179 51

# Krylov cumulated iterations
Time | NKS | FETI-precNL || Gains of FETI-precNL (%)

20 84 | 16 81
100 | 321 89 72
200 | 546 189 65
400 | 906 338 63
700 | 1356 ' 573 58
1000 | 1801 835 54

# Local Newton cumulated iterations

Time | NKS | FETI-precNL Ratio of FETI-precNL
|

over NKS
20 22 | 241 10.95
100 | 77 769 9.99
200 | 127 1354 10.66
400 | 209 1981 9.48
700 | 314 | 2779 8.85
1000 | 418 3608 8.63

Table 5: Richards equation - Comparison with NKS method

iterations required at convergence is on average 20% inferior for primal ap-
proach.

Despite the (moderate) advantage of primal formulation which seems to
prevail for this nonlinear thermal behavior, FETI-precNL solver is, as for
previous test case, more performant than BDD-NL and FETI-NL methods:
gains, in terms of global Newton iterations, are comprised between 25 and
40%, depending on the rate of nonlinearity (parameter «) inside subdomains.
In terms of Krylov iterations numbers, gains vary from 13 to 35%, while the
cost of nonlinear preconditioning (except from the linear case) gives a ratio
lower than 1.73 (resp. 2.71) between local Newton iterations of FETI-precNL
and FETI-NL (resp. BDD-NL) methods.
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Figure 4: Nonlinear thermal problem: « = 0.8

Geometrical parameters
H 1
W 0.2

Material parameters
Q | €{0,0.2,0.4,0.6,0.8}

Load parameters

up1(z) 10z + 2
upa(x) -10x +4
T'vol 0

Table 6: Geometrical, material and load parameters: nonlinear thermal be-
havior

5 Conclusion

This article investigates a new technique of preconditioning for FETI solver,
in the context of the nonlinear substructuration and condensation method. A
nonlinear version of the classical scaled Dirichlet preconditioner is build under
the form of a nonlinear fixed point condensed system, in place of the classical
FETI-NL nonlinear interface condensed problem. A global Newton algorithm
is used to solve this new nonlinearly preconditioned interface problem, and
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’ # Global Newton iterations ‘

I | Gains of FETI-precNL (%)
a | BDD-NL | FETI-NL | FETI-precNL | s T ve FETLNL

oy v oo v oy v 00
0.2 3 | 4 | 3 0 ! 25
0.4 4 5 | 3 25 l 40
0.6 4 5 3 25 | 40
0.8 5 0 6 3 40 | 40

’ | # Krylov iterations ‘

I I Gains of FETI-precNL (%)
o | BDD-NL | FETI-NL | FETI-preeNL | eI N

ol 8 .8 o8 40 0 0
0.2 o4 T 73277 25 24 | 29
0.4 32 | 39 | 28 13 l 28
0.6 34 ' 40 28 18 | 30
0.8 43 1 40 28 35 | 30

Table 7: Nonlinear thermal behavior: global Newton and Krylov iterations

tangent operators have the exact form of classical preconditioned projected
FETI operators, thus ensuring a quality condition number. The so-called
solving process is called FETI-precNL.

Results show that great perfomance can be achieved with FETI-precNL
method, when compared to BDD-NL and FETI-NL solvers on two test cases.
The first test case is a water diffusion problem in a soil column (which does
not produce rigid body modes), and the second one a symmetrized nonlinear
thermal case. For both of them, FETI-precNL method clearly performs bet-
ter than BDD-NL and FETI-NL methods (gains are about 50% for the first
test case, and 30% for the second one). These first results are promising, and
large scale implementation for mechanical problems is in progress.
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