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reduction
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Abstract

The paper focuses on a coupled Bayesian-Proper Generalized Decomposition (PGD) approach for the real-
time identification and updating of numerical models. The purpose is to use the most general case of Bayesian
inference theory in order to address inverse problems and to deal with different sources of uncertainties (mea-
surement and model errors, stochastic parameters). In order to do so with a reasonable CPU cost, the idea is to
replace the direct model called for Monte-Carlo sampling by a PGD reduced model, and in some cases directly
compute the probability density functions from the obtained analytical formulation. This procedure is first
applied to a welding control example with the updating of a deterministic parameter. In the second application,
the identification of a stochastic parameter is studied through a glued assembly example.

keywords:Model updating, Reduced order model, Bayesian inference, PGD.

1 Introduction

Due to recent advances in model order reduction methods, the topic of model updating by Bayesian inference
appears to have a growing interest in several industrial domains using systems driven by simulation tools (manufac-
turing, medical etc.). This concept called DDDAS (Dynamic Data Driven Application System) has for main goal
to introduce a continuous exchange between simulation tools and experimental measurements in order to have a
retroactive control loop. The aim is to predict the behavior of complex systems [26]. Since the system environment
is not entirely known, an effective and fast model updating method is required to post-process experimental mea-
surements and find the unknown parameters in real time (data assimilation). Once the model is fully determined,
it can be used to predict the action to perform in order to control the system efficiently. However, data assimilation
in real time presents two scientific challenges.

The first one consists in solving an inverse problem to identify the parameters of the model from measurements.

Figure 1: Model environment

Figure 1 represents the model environment defined for studied systems. Each system is governed by a mathe-
matical modelM. This model is the result of some physical assumptions and, in the most common case, leads to a
partial differential equations system.The variables s ∈ S are the entries of the system. The values assigned to those
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entries are supposed to be known (in a deterministic way) and provides for outputs d ∈ D that can be compared
with the observed data. For example, s may correspond to loadings or boundary conditions, whereas outputs d
may be local displacements, temperatures or stresses. In our model we additionally consider two kinds of model
parameters. Firstly, the parameters p ∈ P which are the parameters of interest. From the observations, the purpose
of the study is to update the knowledge on those parameters; second, the stochastic parameters i ∈ I which are
parameters considered as random variables with known probability density function. These latter parameters can
be identified from another stochastic inference process or given as data with a tolerance range.

With those definitions, the forward direct problem where the output is searched from the input and depending
on all other parameters reads:

Find d ∈ D/d =M(s,p, i) , (s ∈ S,p ∈ P, i ∈ I) (1)

Conversely, the inverse problem where the parameters of interest are searched from the input, the other param-
eters and the observed data dobs, reads:

Find p ∈ P/dobs =M(s,p, i) , (s ∈ S,dobs ∈ D, i ∈ I) (2)

In the most general case, the inverse problem is ill-posed according to the Hadamard definition and the problem
can be difficult to solve [1]. The resolution may be formulated in the determinist case in terms of a functional
minimization including regularization terms (least squares, weighted least squares, Constitutive Relation Error [27],
modified Constitutive Relation Error [28]). Another approach to deal with this difficulty is to use a stochastic
approach in the Bayesian framework [1] [2]. This probabilistic approach leads directly to a regularized inverse
problem and allows a natural treatment of uncertainties due to stochastic parameters, model and measurement
errors. This method is quite popular and used in many fields such as identification of material properties [34],
DDDAS [35], or monitoring and control of structures [30] [31] [32] [33]. We use this latter approach in this paper.

The second challenge is tied up with the constraint of a real-time simulation. This constraint implies to use
lighter models, especially if the Bayesian inference framework is used in the general case where probability density
functions are found with Monte-Carlo sampling [7]. In this case, the model is called a large amount of times which
is very costly. Consequently, coupling model order reduction methods with the Bayesian inference is a relevant
concept. In this case, posterior methods are often used like: Proper Orthogonal Decomposition (POD), Reduced
Basis (RB) [15] [16] [4], Response Surface Approximation (RSA) [7] or Polynomial Chaos Expansion (PCE) [12].

Here, we propose a coupled Bayesian-PGD strategy to solve the identification problem on the most general
case without assumption on probability density forms. We consider also models including stochastic parameters.
The very interesting model reduction framework given by the Proper Generalized Decomposition (PGD) consists
in finding a lighter surrogate model by separation of variables on a reasonable amount of modes [8] [19]. It is an a
priori reduction method which provides an explicit solution with respect to parameters.

The aim of the paper is to use the multiparametric PGD model in order to speed up the system response com-
putations needed in Bayesian inference. PGD modes are computed in an offline phase. Then, in the online phase,
the computation cost is reduced to a simple summation of those modes. This study focuses on the improvement of
the Bayesian inference in low dimension (parameters to identify, stochastic parameters) by the PGD model order
reduction method.

The paper is organized as follows. In Section 2, we expose the general methodology of the Bayesian inference for
model updating. In Section 3, we develop the PGD model order reduction applied to the identification problem with
Bayesian inference. In Section 4, we illustrate the approach with two examples: a welding control quality problem
with a deterministic parameter estimation and a glued assembly problem where the estimation of a stochastic
parameter through hyper-parameters is made. Eventually, conclusions and prospects to this work are drawn in
Section 5.
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2 Bayesian updating

2.1 Bayes theorem

The Bayesian identification is based on the Bayes theorem (1763) known in probability theory. The theorem gives
the probability of an event A knowing the event B:

P (A|B) =
P (B|A).P (A)

P (B)
(3)

The term P (A) is the probability of the event A, it is the prior probability without any information on the event
B. The term P (A|B) is named the posterior probability of A knowing B. This probability directly depends on B
which makes it posterior to the information of B. The probability P (B|A) is named the likelihood function: it is
the probability (likelihood) of having B knowing A.

If continuous probabilities are considered the Bayes theorem reads in term of probability density functions (pdf):

π(a|b) =
1

C
π(b|a).π(a) (4)

where C is a normalization constant verifying: ∫ +∞

−∞
π(a|b)da = 1 (5)

2.2 Bayesian formulation for identification problems

Using the formulation postulated in the introduction, the general identification problem is defined as follows:

Find p ∈ P such that, dobs =M(s, i,p) , (s ∈ S, i ∈ I) (6)

With:

• Parameters of interest (to identify): p

• Model: M

• Observations: dobs

• Model entries: s

• Stochastic parameters: i

For identification problems in solid mechanics the Bayes theorem is formulated in order to find the probability of
having the parameters knowing the measurements. The parameters to identify take unique but unknown values
represented in a random variable p. The probability density function of the random variable p without any
experimental knowledge is denoted π(p). This density is postulated a priori with the information available (range
of variation, most likely values) and can be obtained thanks to the maximum entropy principle, otherwise a non-
informative density is taken (uniform density).

The aim of the Bayesian approach is to improve the knowledge on the parameter p with the update of the
probability density function π(p) from the comparison of the experimental data dobs to the model output d.

Then, the posterior probability density function represents the probability of having p such as the measurements
coincide with the model output. Those definitions and the Bayes theorem ensure that the posterior density is given
by the product of the likelihood function by the prior probability density function of the parameters:

π(p|dobs) =
1

C
.π(dobs|p).π(p) (7)

As a result, Bayesian identification is a stochastic approach of inverse problems; the result of this approach provides
a probability density function. In comparison with deterministic methods used in identification theory, the Bayesian
inference is a natural regularizing approach which provides a probability weight to each possible solution. In the
specific case where all uncertainties, prior and errors densities are Gaussian it can be proved [1] that the Bayesian
inference is equivalent to a weighted least square minimization with a Tikhonov regularization.
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2.3 Building the likelihood function

In this study, where all forms of uncertainties are considered, the purpose is to propagate uncertainties through
the model to obtain the probability density functions needed to build the likelihood function π(dobs|p). This
function represents the probability to have the model output equal to the measurements knowing the parameters
p. Measurements being known, the likelihood function is seen as a function of p. This probability is directly linked
with uncertainties i considered in the model environment (see figure 1), model and measurements errors. Here,
few parameters are considered so that the likelihood function will be built by sampling the discretized parametric
space. Other alternative will be discussed in Section 5.

2.3.1 Measurement error

Considering an additive (and independent of p and i) measurement noise e, the output of the model is given by:

dobs = d + e , with d =M(p, i) (8)

Considering πerr(e) the probability density function of the measurement error, by a convolution product the likeli-
hood function reads:

π(dobs|p) =

∫
π(d|p).πerr(d

obs − d)dd (9)

The probability density function π(d|p) represents the probability of having an output d for a given value of p.
This probability is directly linked to the model. If there is no ucertainty in the model (no stochastic parameter i
and no model error) the probability density function reads:

π(d|p) = δ(d−M(p)) (10)

with δ the Dirac delta function. Then the computation of the integral (9) is explicit and the likelihood function is
given by:

π(dobs|p) = πerr(d
obs −M(p)) (11)

2.3.2 Uncertain parameters/model error

When uncertainties are considered in the model, the output becomes a random variable and the probability density
function π(d|p) needs to be computed. Then, the probability density function of this random variable is obtained
propagating those uncertainties in the model.

To determine this probability density function, a Monte-Carlo sampling can be performed using samples made
with deterministic computations. The Monte-Carlo samples dmc are evaluated in the model with values of the
uncertainties imc drawn according to the probability density function assumed in the modeling:

dmc =M(p, imc) (12)

With the samples dmc, the probability density function π(d|p) is built thanks to a kernel density estimation
defined as follows:

π(d|p) ≈ 1

Nmch

Nmc∑
mc=1

K

(
d− dmc

h

)
(13)

K is a kernel function and h is a smoothing parameter called the bandwidth. A common choice is to take K as a
Gaussian function of a normal centered probability density function.

The output can also become a random variable if model error is considered. In this case π(d|p) = πmod(d),
with πmod(d) the model error probability density function. Those computations are made for each value of the
discretized space of p in order to sample the likelihood function.

2.4 Post processing

Once the likelihood function is computed, the product of the likelihood function by the prior probability density
function gives the posterior probability density function. The Bayesian framework gives a substantial information
on the parameter identified as a probability density function. The post-processing of this density can be done by
different estimators:
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• Maximum a posteriori : pMAP = arg max
p

π(p|dobs)

• Mean a posteriori : pM =
∫
p.π(p|dobs)dp

• Standard deviation: σ =
√∫

p2.π(p|dobs)dp− pM

• ...

When the parameter space dimension is m > 1 (p = (p1, ..., pm)) the Bayesian identification result is a joint
probability density function πjoint(p1, ..., pm). To obtain the marginal probability density function of a parameter
pk, k ∈ {1, ...,m} the following quantity has to be evaluated:

πk(pk|dobs) =

∫
m
⊗
l=1
l 6=k

Il

πjoint

(
(pl)l∈{1,..,m}

l 6=k

|dobs

)
d

(
(pl)l∈{1,..,m}

l 6=k

)
(14)

When a model updating process is considered from successive measurements (e.g. at some time steps), the Baye-
sian inference naturally allows to take successive informations into account and keeps an history of the previous
identifications steps by taking the prior probability density function at the current step as the posterior probability
density function of the previous step.

Eventually, the global algorithm of the general Bayesian framework for a given model M is summed up in the
algorithm 1.

Algorithm 1 Bayesian identification - Monte-Carlo

Require: Measurements: dobs = {dobs
j }j∈{1,..,N}, modelM, stochastic parameter pdf π(i), prior density πprior

1 (p).
1: for j=1 to N do
2: for p ∈ Ih do . Discretized parameter space
3: Monte-Carlo sampling :
4: for mc = 1 to Nmc do
5: imc ∼ π(i)
6: dmc =M(imc,p)

7: end
8:

9: Uncertainty propagation with kernel density estimation :
10:

π(d|p) ≈ 1

Nmch

Nmc∑
mc=1

K

(
d− dmc

h

)
11:

12: Computation of the current likelihood function point p:

π(dobs
j |p) =

∫
π(d|p).πerr(d

obs − d)dd

13: end
14: π(p|dobs) = π(dobs

j |p).πprior
j (p)

15: πprior
j+1 (p) = π(p|dobs)

16: end
17: Post-processing for the multi-parametric case:
18: for k=1 to m do

πk(pk|dobs) =

∫
m
⊗
l=1
l 6=k

Il

πjoint

(
(pl)l∈{1,..,m}

l 6=k

|dobs

)
d

(
(pl)l∈{1,..,m}

l 6=k

)

19: end

5



The Bayesian procedure applied to model updating coupled with Monte-Carlo sampling can handle with all
forms of uncertainties. However, it leads to a huge amount of calls to the model. Indeed, in the algorithm 1 the
model M needs to be evaluated N × dim(Ih) × Nmc times. Furthermore, once the posterior probability density
function is built, a post-processing needs to be done and add another computation cost. In basic cases the model
of the system can be analytical but in the DDDAS framework complex systems are considered. If the system is
represented by a finite element model, in a purpose of identification in real time, a direct solving cannot be done
for all values of the parameters. That is why a surrogate lighter model is needed to perform the Bayesian inference.

3 The coupled Bayesian-PGD inference

An attractive model order reduction technique is given by the Proper Generalized Decomposition (PGD). The PGD
method was introduced in [29] as ”radial approximation” to solve nonlinear problems in structural mechanics. Since
[19], this method was used in many fields: model verification and validation [18], virtual charts for the engineering
[20] [21] etc. PGD is also used for identification problems in a deterministic framework [25] [10] [3] and the great
possible number of parameters types to use in those models [8] seems to be well suited for Bayesian inference. A
first PGD-Bayesian inference approach is given in [6] where a PGD model is used in a Monte Carlo Markov Chain
framework. In our paper, we consider stochastic parameters which lead to additionnal sources of uncertainties.
Those uncertainties are considered with the PGD model.

3.1 Progressive Galerkin PGD

The general case is considered where the problem is modelled by a system of partial differential equations. This
problem is supposed to be formulated with its equivalent global weak formulation:

Find u ∈ U/∀v ∈ V : a(u, v) = l(v) (15)

Where a is a bilinear form, l a linear form, u is the unknown field and v the test field. d variables p1, ..., pl are
considered. Those variables can be space variables, time, load parameters, material properties etc. The following
separated solution of the problem (15) is searched (tensorized representation with canonical format):

u(p1, ...pl) ≈ uPGD(p1, ...pl) =

m∑
n=1

l∏
k=1

λkn(pk) (16)

m is the number of modes and u ∈ U = ⊗k=l
k=1Uk. The computation of modes is performed incrementally:

uPGD(p1, ...pl) =

m−1∑
n=1

l∏
k=1

λkn(pk) +

l∏
k=1

λkm(pk) (17)

The unknowns are then: λkm ∈ Uk, k ∈ {1, ..., l}. The test field is taken in the separated form:

v =

l∑
k=1

λ∗km

l∏
j=1

j 6=k

λjm , λ∗km ∈ Uk , k ∈ {1, ..., l} (18)

Verifying (15) thus leads to n decoupled equations:

λkm = Sk((λjm)j∈{1,...,l}
j 6=k

) , k ∈ {1, ..., l} (19)

This system of equations is solved by a fixed-point algorithm. This way, PGD is an a priori method where modes
are generated while the problem is solved in the offline phase. Once the separated solution is computed in the offline
phase, it can be reused in the online phase with a low computation cost since the solution is explicit regarding all
coordinates pk k ∈ {1, ..., l}.
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3.2 PGD model reduction for Monte-Carlo sampling

The PGD model order reduction method allows to have the response of a system modelled with partial differential
equations for all values of parameters. The aim is to build a PGD model to speed up the Bayesian process
described in the algorithm 1. According to the model environment set in previous sections (figure 1) the following
PGD representation is searched:

M(p,x, i) = d ≈
m∑
n=1

Λn(x)α1n(p)α2n(i) (20)

The model is built by separation of each parameter/variable in the loop of algorithm 1. Thereby the online
computation cost is reduced to the summation of modes (array) for each loop instead of a full resolution at each
iteration. The smooth PGD framework for the separation of distinct type of parameters is well suited to generate
the Monte-Carlo sampling then to build the likelihood function point by point as presented before.

Finally, the computation cost of the Bayesian identification process is focused on the evaluation of the PGD
model (which is explicit) for each Monte-Carlo draw, each iteration on the parameter to identify and for each
integral computation (for model/measurement errors, post-processing).

3.3 PGD for analytical uncertainties propagation

The PGD model reduction is also a very interesting approach as it provides an analytical form of the solution for
all the parameters. In this part, the purpose is to use this analytical form to propagate the uncertainties directly
without Monte-Carlo sampling. Here the study is restricted when the dimension of stochastic parameters i is
one-dimensional.

In this case, the uncertainty propagation in the model can be found by a change of variable. A probability
density function as any integrand verifies the variable change theorem.

Let πX(x) be the probability density function of the real random variable X and Y = f(X) the variable change.
If the function f is strictly monotonic and differentiable with a never null derivative, then the probability density
function πY (y) of the variable change is given by:

πY (y) =

∣∣∣∣ 1

f ′(f−1(y))

∣∣∣∣ .πX(f−1(y)) (21)

The previous case is generalized for the non-monotonic case as:

πY (y) =

Ny∑
k=1

∣∣∣∣ 1

f ′(f−1
k (y))

∣∣∣∣ .πX(f−1
k (y)) (22)

where Ny is the number of the xk = f−1
k (y) solutions of the equation f(x) = y. f has to verify the inverse function

theorem: the set where the derivative is zero has to have a measure of zero.
This theorem can be applied with the PGD function:

f : i→
m∑
n=1

Λn(x)α1n(p)α2n(i) (23)

The probability density functions estimated by Monte-Carlo sampling and kernel density estimation can be
replaced with the change of variable:

π(d|p) = πf(p,x,i)(d) (24)

However this change of variable is presented for the one dimension case on the parameter i. It seems to be more
difficult to study the multidimensional function in order to build the Jacobian matrix and the inverse. Eventually,
the Bayesian inference method with analytical-PGD uncertainty propagation is summed up in algorithm 2.

Avoiding the Monte-Carlo sampling seems to be very promising because it is the main source of computation
cost once the full order model is replaced by a reduced order model. In the next sections the goal is to apply this
methodology of coupled Bayesian-PGD inference in model updating examples.
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Algorithm 2 Bayesian identification - Analytical PGD

Require: Measurements: dobs = {dobs
j }j∈{1,..,N}, PGD modes {Λn, α1n, α2n}, stochastic parameter pdf π(i), prior

density πprior
1 (p).

1: for j=1 to N do
2: for p ∈ Ih do . Discretized parameter space
3: Change of variable function:

f(i) =

m∑
n=1

Λn(x)α1n(p)α2n(i)

4: Computation of the derivative f ′ to define the intervals Ny where the function is monotonic and com-
putation of corresponding function inverses f−1

k .
5: Uncertainty propagation by analytical change of variable:

π(d|p) =

Ny∑
k=1

∣∣∣∣ 1

f ′(f−1
k (d))

∣∣∣∣ .π(f−1
k (d))

6: Computation of the current likelihood function point p:

π(dobs
j |p) =

∫
π(d|p).πerr(d

obs − d)dd

7: end
8: π(p|dobs) = π(dobs

j |p).πprior
j (p)

9: πprior
j+1 (p) = π(p|dobs)

10: end
11: Post-processing for the multi-parametric case:
12: for k=1 to m do

πk(pk|dobs) =

∫
m
⊗
l=1
l 6=k

Il

πjoint

(
(pl)l∈{1,..,m}

l 6=k

|dobs

)
d

(
(pl)l∈{1,..,m}

l 6=k

)

13: end
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4 Numerical examples

4.1 A welding control quality example

In the industrial domain, the welding process control can be problematic and a process controlled by a numerical
model through DDDAS framework can be an interesting approach. The aim of this example is to test the coupled
Bayesian-PGD framework in the situation of a welding process controlled in real time. The studied problem is an
academic example from [9]. Even if the industrial problem has been simplified, it is still sufficiently complex to
evaluate the performance of the presented methodology.

4.1.1 Definition of the problem

The welding control quality problem is described in figure 2. Two metal plates are welded by a heat source which
the center is moving along the geometry. The welding quality is directly linked to the welding depth dw and the
welding process is assumed to have a sufficient quality when the welded depth is above 0.5.

Figure 2: Joint-section view of the welding process

We assume the welding depth cannot be measured directly. Thus, we propose to estimate it using a numerical
model. Since some parameters of the model are not well known, an updating process based on in situ measurements
needs to be performed. Once the numerical model is fully determined the welding depth can be computed.

A minimum welding depth specifies the good quality of the process. If the computed welding depth does not
verify this minimum, command parameters (intensity, heat source speed etc.) can be determined numerically to
improve the quality of the process.

This study focuses only on the model updating part where unknown parameters of the model are identified from
the measurements.

• A 2D unsteady convection-diffusion problem is considered with the geometry described in figure 2. A homo-
geneous isotropic material is assumed.

The following non-dimensionalization of the temperature field is made:

T (x, y; t) ≡ T (x, y; t)− T∞
T f − T∞

(25)

with: T∞ the ambient temperature and T f the melting temperature of the material. The welding depth is
then defined by the isotherm T = 1.

• The torch velocity is v. The coordinate system is moving at the same speed as the torch. Thereby, a convective
term is added to compensate the referential change. Then the non-dimensional unsteady convection-diffusion
equation is obtained:

∂T

∂t
+ v.gradT − κ∆T = s (26)

with s the volume heat input, v = [Pe; 0] and Pe = v.Lc

κ being the Peclet number. Lc is the characteristic
length of the problem and κ is the thermal diffusivity of the material.

• The other radiation and diffusive phenomena are neglected.
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• The spatial distribution of the heat input is assumed to be Gaussian centered at the point C = (xc; yc) =
(3.5; 1):

s(x, y;σ) =
u

2πσ2
exp

(
− (x− xc)2

+ (y − yc)2

2σ2

)
(27)

u is the non-dimensional heat input that is supposed to be known and σ is the distribution parameter that
is supposed to be unknown and needs to be identified. To that end we compare the model output to the
temperature measurements taken at the measurement point Pm = (x1, y1) (figure 2). Then, the model output
is defined as T1 = T (x1, y1).

• Boundaries conditions: on ΓD the temperature is assumed to be equal to the ambient temperature and the
remaining boundaries are assumed insulated. Finally the initial condition is: T (x, y; t = 0) = 0.

4.1.2 Finite element solution

In this part the purpose is to set up the finite element solution. The results will be compared to the PGD results
and the solution given by other models will be compared to this reference.

The weak form is formulated from (26). The kinematic admissible temperature field space is defined as follows:

T = {T ∈ H1(Ω =]0; 5[×]0; 1[), T = 0 on ΓD} (28)

The equation (26) is equivalent to finding T ∈ T such that ∀T ∗ ∈ T :

a(T, T ∗) = l(T ∗) (29)

with:

a(T, T ∗) =

∫
Ω

(
∂T

∂t
+ v.gradT

)
.T ∗ + κ.gradT.gradT ∗dΩ (30)

l(T ∗) =

∫
Ω

s.T ∗dΩ (31)

This formulation is discretized by the triangulation of the domain Ω, the semi-discretized finite element problem
reads:

Find {T} ∈ Th such that:
[M ]{Ṫ}+ [CH ]{T} = {S} (32)

The temperature field is then interpolated at the nodes by the matrix [N ] which contains the finite element
shapes functions: T = [N ]{T}.

The finite elements matrices read:

[M ] =

∫
Ωh

[N ]T [N ]dΩ (33)

[H] =

∫
Ωh

{V }T [dN ]T [N ]dΩ (34)

[C] = κ.

∫
Ωh

[dN ]T [dN ]dΩ (35)

[CH ] = [C] + [H] (36)

The equation (32) is solved owing to a time discretization coupled with an implicit scheme.
The previous solution scheme is implemented in a MATLAB code. The temperature field obtained at different

time steps is shown in figure 3.
With the current set of parameters, the stationarity is reached at t = 0.3 s. The isotherms of the solution are

shifted to the left from the torch position because of the convective term.
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(a) Mesh

0 0.1 0.2 0.3 0.4 0.5

(b) Temperature t=0.02 s
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(c) Temperature t=0.15 s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(d) Temperature t=0.3 s

Figure 3: Finite element solution

4.1.3 PGD solution

In the purpose of realizing the Bayesian identification described in the previous sections, the following part presents
how the PGD reduced order model is built in order to reduce the computation cost of the likelihood function. As
the parameter to identify is the width of the Gaussian heat source, the decomposition will be a variable separation
of space/time/parameter σ:

T (x, y, t;σ) ≈ Tm(x, y, t;σ) =

m∑
n=1

Λn(x, y)λn(t)αn(σ) (37)

In the Bayesian-DDDAS framework the model needs to be evaluated at each time step, for all values of the parameter
σ as explained in the algorithm 1. Instead of solving a finite element problem for each of those different values, a
more general problem is solved by the PGD problem for all values of the different variables and parameters.

The PGD method presented in Section 3.1 is applied to the weak form (29). The PGD modes are given by the
fixed-point algorithm 3. In Appendix the details of the PGD solution are explained.

Algorithm 3 Fixed point algorithm for PGD solution

Require: I = [0, Tf ], Σ = [σmin, σmax].
1: for p = 1 to m do . Number of modes
2: λ = 1√

Tf

.{1}I
3: α = 1√

σmax−σmin
.{1}Σ

4: for k = 1 to kmax do
5: Λ = Sm(λ, α)
6: λ = Tm(Λ, α)
7: α = Pm(Λ, λ)

8: end
9: Λp = Λ

10: αp = α√∫
Σ
α2dσ

. Normalization of parametric modes

11: λp = λ√∫
I
λ2dλ

. Normalization of time modes

12: end

In the algorithm 3 the stopping criterion is kmax. In practice, a coarse criterion (kmax = 4) is sufficient to
obtain a good convergence. In the Progressive Galerkin approach next PGD modes correct previous PGD modes
regularizing the convergence. Parametric and time modes are normalized to improve the numerical stability of the
solution scheme.

After a finite element discretization, a linear system is solved to obtain spatial and parametric modes at each
step of the fixed-point algorithm. Time modes, which are solution of an ordinary differential equation, are computed
using a Runge Kutta 4-5 time integration scheme.

11



The first four spatial modes are represented in figure 4. In comparison with the finite simulation in figure 3, the
first mode is representative of the steady-state and the other modes are contributing to the transient state. The
second mode is very similar to the finite element solution in the beginning of the transient state. The other modes
improve the solution at the geometry edges and around the heat input.
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Figure 4: The four first spatial modes

As the time modes and parametric modes are normalized, the energetic norm of spatial modes gives the con-
tribution of each mode to the global solution. This quantity is represented in figure 5. The six first modes are
contributing for the most to the solution.
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Figure 5: Energetic norm of the spatial modes

The normalized time modes are plotted in figure 6. The modes have a strong gradient at the beginning which
requires a fine time discretization.
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Figure 6: Time modes λi(t), i ∈ {1, ..., 5}

Eventually, in figure 7 normalized parametric modes are represented. Figure 7 shows that the 4-th mode has a
higher dependence on σ than the others. This result seems conform to the corresponding spatial mode 4(d) which
exhibits a strong gradient near the torch center.
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Figure 7: Parametric modes αi(σ), i ∈ {1, ..., 5}

4.1.4 Error quantification

The quality of the PGD model is studied and error quantification is done in the following section in order to use it
for the Bayesian identification.

The functions TFE and TPGD are the temperature fields computed with the direct finite element model and the
PGD model respectively. The direct problem is solved for each value of the parameter σ in order to obtain the
function TFE(x, y, t, σ). The T1 functions are the temperatures at the measurement point.

The following errors are defined :

• Local error integrated in space:

ε(t, σ) =
‖TPGD(x, y, t, σ)− TFE(x, y, t, σ)‖L2(Ω)

‖TFE(x, y, t, σ)‖L2(Ω)
(38)

• Local error on the output T1:

ε1(t, σ) =
|T1PGD(t, σ)− T1FE(t, σ)|

|T1FE(t, σ)|
(39)

• Global error on the output T1:

ε =
‖T1PGD(t, σ)− T1FE(t, σ)‖L2(Σ,I)

‖T1FE(t, σ)‖L2(Σ,I)
(40)

Figure 8 shows the error ε depending on the number of modes of the PGD solution.
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Figure 8: Error ε depending on the number of modes

The finite element and PGD problems are discretized the same way so that a convergence of the PGD solution
to the finite element solution is expected with a few number of modes. For this problem the minimum of the error
is reached with a few number of modes (around 11 modes). Figure 9 shows the local errors ε(t, σ) and ε1(t, σ) on a
discretized map of parametric space and time. The error is high for the first time steps. Then, it strongly decreases
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(a) Relative error integrated on the geometry (b) Relative error on the output T1

Figure 9: Relative local errors ε and ε1 on Σ× I

during the transient phase up to a very low value during the steady-state phase.
Those error quantifications can be partially justified with [13] [14] and [8] in which it is explained that the

progressive Galerkin PGD method can encounters some difficulties to solve transient problems with convection.
Indeed, to address problems where the bilinear form of the weak formulation is not symmetric it would be better
to use a Petrov-Galerkin formulation. Furthermore, in this type of problem instabilities can be also encountered
for some values of the Peclet number. The studied case is far from those instabilities but some other formulations
(SUPGD [8] [11]) can be used to improve the stability of the solution on the opposite case.

In the following example the model error is included in the Bayesian identification. Here the discretization error
made by the finite element method itself is not considered.

4.1.5 Bayesian inference with measurement error

In this section the model is supposed to be fully deterministic (no stochastic parameters i are considered). The only
uncertainty source which is considered is a measurement error on the output. This output becomes randomized by
adding a white noise.

The probability density function of the measurement noise πerr(e) is then modelled by a normal distribution
with a zero mean and a 2% standard deviation (equal to the standard deviation used to simulate noise in the
measurements).

According to the Bayesian identification process presented in Section 2 for a given value of the parameter σ the
corresponding likelihood function value is given by (41):

π(T obs
1 |σ) =

∫
π(T1|σ).πerr(T

obs
1 − T1)dT1 (41)

As the model is deterministic, we get:

π(T1|σ) = δ(T1 −M(x1, y1, t;σ)) (42)

with δ the Dirac delta function and M the considered model (Finite Element or PGD).
In this case, the computation of the integral (41) is:

Lmeas(σ) ≡
∫
π(T1|σ).πmeas(T

obs
1 − T1)dT1 (43)

= πerr(T
obs
1 −M(x1, y1, t;σ)) (44)
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Figure 10 shows the likelihood functions obtained with the finite element model (Lmeas
FE ) and the PGD model

(Lmeas
PGD). The PGD model used is built with 20 modes. The computation is made at two different time steps for

comparison.
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(a) Measurement at t = 0.032 s
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(b) Measurement at t = 0.142 s

Figure 10: Likelihood functions Lmeas for a single measurement at two different time steps. Comparison of the
functions built with PGD and Finite Element models

The likelihood maximum should be obtained for σ = 0.4 (value used to simulate the measurements from the
finite element model). For both models this maximum is shifted due to the measurement error. At t = 0.142 s the
likelihood functions are very similar but quite different at t = 0.032 s. These results are directly linked to the error
quantification analyzed before: the error is higher in the first time steps and nearly zero in the steady-state.

In the case of a model updating process in real time, a new measurement is available at each time step. According
to Section 2, the posterior probability function at a given time step is improved considering the previous posterior as
the current prior. In figure 11 a 25 measurements set process is considered. At each iteration the likelihood function
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(a) Inference made with PGD model
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(b) Inference made with finite element model

Figure 11: Posterior probability density functions after each measurement. The first posterior is represented with
a thick discontinuous line and the final posterior with a thick continuous line. The intermediate posterior densities
appear lighter during the iterations.

Lmeas is multiplied by the prior probability density function taken as the posterior of the previous iteration. A
uniform density is considered as first prior. The posterior probability density function given by the first measurement
is plotted with a thick discontinuous line and the final posterior with a thick continuous line. The intermediate
posteriors appear lighter during the iterations. The final posterior density functions given by the finite element
and PGD models are nearly equal with a maximum a posteriori for σ = 0.4. Furthermore, those densities have a
lower variance giving more trust to the maximum value. Thus, in comparison to a single measurement, successive
measurements can reduce the influence of both measurement and model errors.

4.1.6 Bayesian inference with model error

As explained in Section 2 the Bayesian approach is well-suited to take model error into account. The aim of this
part is to study the influence of considering the model error to improve the Bayesian inference with the current
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PGD model but also to study how the process can be implemented with a few number of PGD modes to reduce
the computation cost.

The model error is considered owing to the quantification done in Section 4.1.4. For each value in the discretized
parametric space, the maximum of the error ε1 (equation (39)) over the time is considered. This gives the error
function ErrMax(σ) given in figure 12. Then, the model error is modeled by a uniform probability density function
defined on the domain Dmod = [T1PGD−ErrMax(σ).T1PGD, T1PGD+ErrMax((σ)).T1PGD] and zero elsewhere. T1PGD

is the output value given by the PGD model.
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Figure 12: Maximum of the error ε1 over the time interval as a function of the parameter σ

As in the previous part the likelihood function is given by:

Lmeas-mod(σ) ≡
∫
π(T1|σ).πerr(T

obs
1 − T1)dT1 (45)

with:

π(T1|σ) =
1

2.ErrMax(σ).T1PGD
.1Dmod

(46)

and 1Dmod
the indicator function on Dmod.

The integral needs to be numerically computed. However, the PGD model gives an analytical probability density
function so that the integration is performed numerically with a trapezoidal quadrature.

In figure 13 the influence of the model error is shown. Lmeas-mod denotes the likelihood function built when
the PGD model error is considered. Lmeas

FE and Lmeas
PGD denote likelihood functions built with Finite Element and

PGD model respectively (without model error). In figure 13(a) the likelihood functions are computed for a time
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(b) t = 0.142 s

Figure 13: Likelihood functions with model and measurement errors for a single measurement

step of the transient state where the PGD model error is quite high. The likelihood function Lmeas-mod is wider
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than the likelihood function Lmeas
PGD which gives less trust on a false estimation of the parameter. The likelihood

maximum is also closer to the maximum given by the finite element model. The introduction of the model error
in the identification process clearly improves the accuracy of the likelihood function. In figure 13(b) the time step
considered provides a lower model error. Consequently, the likelihood functions Lmeas given by finite element and
PGD model are closer. However, the likelihood function Lmeas-mod is much wider because of the error model.
Indeed, as the maximum of the model error is considered for each value of the parameter σ, when the true model
error is lower the resulting probability density function is less accurate.

In figure 14 the results of the likelihood functions Lmeas-mod and Lmeas
PGD built with only two PGD modes and the

corresponding model errors are compared to Lmeas
FE . With this problem, when only two modes are considered the
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Figure 14: Likehood functions with two modes considering measurement and model error

error between PGD and FE models is high and the likelihood functions built are very wide giving lower information
on parameter estimation. However, the results of the posterior probability density functions given for a set of
measurements improve the estimation. In fact, in a real model updating process a compromise needs to be found
between having many measurements or many modes to optimize the computation cost.

The computation of the model error has a crucial importance. Here, the error is quantified by comparing the
finite element and PGD models for all values of parameter and time. In more complex cases, the error will be
impossible to quantify and use online. Here, the Finite Model solution was the reference but it would be more
accurate to have the error regarding the true solution. To that end, classic error estimation and reduction error
estimation [17] [23] would be interesting to implement.

4.1.7 Uncertain parameter

In the previous test cases the interest of using a PGD model was to avoid solving a finite element problem for each
value of the parameter σ during the iterations of the Bayesian identification process (and having an analytical form
of this solution). However, considering no uncertain parameter a pre-computed finite element meta-model was used
(to compare with the PGD results). Now, a source of uncertainty is considered in order to apply the methods of
uncertainty propagation (algorithm 1 and 2). In this case, the response needs to be evaluated for all values of the
parameter σ and the uncertain parameter.

First, the amplitude of the heat input u (equation (27)) is considered as an uncertain parameter (parameter i
in figure 1). The amplitude u is then a random variable which is supposed to have a normal probability density
function centered on the value used to simulate the measurements with a 3 % standard deviation.

Knowing the probability density function of the uncertain parameter i (here i = u) the change of variable can
be done as shown in Section 3.3. As the parameter u has a proportional influence on the output, the change of
variable function f is linear:

f(i) = i.T1u (47)

with T1u the temperature value at the measurement point given by the PGD model for a unit amplitude. As the
uncertain parameter is obviously decoupled from the other parameters and variables, the same PGD decomposition
is kept:

Tm(x, y, t, σ, u) = u ∗
m∑
n=1

Λn(x, y)λn(t)αn(σ) (48)
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As the change of variable is strictly monotonic the change of variable theorem (21) is applied.
Figure 15 shows the probability density π(T1|σ = 0.345) built with the Monte-Carlo sampling (40000 samples)

and the analytical change of variable. The two methods lead to the same density, providing at the end the same
likelihood functions and posterior distributions.
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Figure 15: Probability density function π(T1|σ = 0.345)

The probability density functions are known analytically so that the integration (45) to compute one point of
the likelihood function with measurement error is still done numerically.

In a second time, we consider the Peclet number (Pe) as an uncertain parameter. The influence of the Peclet
number on the output being no longer proportional a new PGD model (49) is done:

Tm(x, t, σ, Pe) =

m∑
n=1

Λn(x)λn(t)α1n(σ)α2n(Pe) (49)

The approach to build this new PGD model is the same as in the algorithm 3. The modes of this new PGD
model are nearly the same as the previous model in terms of time, space and parameter σ. In figure 16 the modes
associated with the parameter Pe are plotted.
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Figure 16: Parametric modes related to the Peclet number

To perform the Bayesian identification the uncertainty parameter Pe is assumed to have a normal distribution
centered on the value used to simulate measurements with a 3 % standard deviation.

Considering this new model, the change of variable f is:

f : i→
m∑
n=1

Λn(x1, y1)λn(t)α1n(σ)α2n(i) (50)

However, this function is not necessarily monotonic. In figure 17 the f functions are plotted at the same time
step t = 0.034 , with the parameter values σ = 0.3 (figure 17(a)) and σ = 0.35 (figure 17(b)).

Therefore, to compute the likelihood function for a given time step, the function f has to be studied in order
to determine in which part it is monotonic and to verify that it is not piecewise constant. To do so, the sign of df

di
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(a) Monotonic change of variable f for σ = 0.3
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(b) Nonmonotonic change of variable f for σ = 0.35

Figure 17: Change of variable function f given by two values of parameter σ at t = 0.034 s

is studied for each value of σ. In each interval where df
di keeps a constant sign, the inverses f−1

k (y) are computed.
Then, the generalized form (22) is used to compute the probability density function given by the propagation of
the uncertainty i through the model.

Figure 18 shows the probability density function π(T1|σ) computed with the same set of parameters as in figure
17(b). As seen before, the densities given by both analytical and Monte-Carlo uncertainty propagation are very
similar leading to the same likelihood functions.
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Figure 18: Probability density function π(T1|σ = 0.35) at t = 0.034 s

Finally, in figure 19 the posterior density functions obtained with both methods are plotted for a given time
step t = 0.034 s. The prior is still taken uniform and the both methods give similar results.
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Figure 19: Final posterior built with analytical and Monte-Carlo methods with a single measurement at t = 0.034 s

With the change of variable method, studying the function f is costly especially if the function is not monotonic.
Table 1 shows the results of the computation time required to compute one point of the likelihood function with:
Finite Element model/Monte-Carlo method (40000 samples), PGD model/Monte-Carlo method (40000 samples)
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and PGD model/analytical method. All computations are made on a MATLAB code on an Intel Xeon E5-1660 3.3
GHz × 6 PC.

Table 1: Comparison of the computational cost to build one point of the likelihood function

Mean computation time
Analytical PGD Monte-Carlo PGD Monte-Carlo FE

0.2678 s 2.5579 s ∼ 4 h

For the sampling of one point of the likelihood function, the analytical approach leads to a 10 factor speed-up.
Furthermore, this gain is multiplied by the number of the likelihood function points to compute, and the number
of measurements. As a comparison, the Monte-Carlo method coupled with the direct Finite Element model gives a
computation time of upper than 4 hours. In the context of DDDAS, using the direct model is impossible and those
results show the potential of the PGD model order reduction in the Bayesian framework.

4.2 Glued assembly example: application to the estimation of hyper-parameters

4.2.1 Definition of the problem

The considered problem is a glued assembly adapted from [3]. The three structures Ω1, Ω2 and Ω3 are glued by
means of two elastic joints J12 and J23. A force density p = −50 MPa is applied on the top of Ω3 (figure 20).

Figure 20: The geometry of the glued assembly

The purpose of this study is to identify the variability of the assembly process leading to the structure presented
in figure 20. We assume that the glue joints can have random imperfections which lead to a variability of their
stiffnesses.

Then, the Young modulus of the joints is defined as E = e.E0 where e is a dimensionless random variable with
a probability density function π(e) and E0 is supposed to be known. For each structure made by the assembly
process, a simple test is done: a load p is applied at the top of the structure and the vertical displacement of the
point A is measured. Based tests on different assemblies, the purpose is to identify the probability density function
of the random variable e.

Unlike the previous example, the parameter to identify is no longer deterministic. However, the probability
density function of the random variable e is assumed to be a normal distribution with the mean µe and the
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standard deviation σe as unknown parameters:

π(e) =
1

σe
√

2π
exp

(
−1

2

(
e− µe
σe

)2
)

(51)

Hence, the identification of the stochastic parameter leads to the identification of two deterministic parameters
(µe, σe) called ”hyper-parameters”.

4.2.2 PGD solution

First, the PGD model of the problem is built in order to perform the Bayesian inference detailed in algorithm 1.
The identification can be formulated as follows:

• Parameters to identify: σe and µe (defining the stochastic parameter e)

• System output: U , the vertical displacement of point A.

• Uncertain parameter: e.

The main difference of this example with the previous one is that the parameter is that the parameter e to
identify leads directly to uncertainties in the model.

In order to proceed the Bayesian inference, the PGD model is searched as:

Um(xA, yA, e) =

m∑
n=1

Λn(xA, yA).αn(e) (52)

where (xA, yA) are coordinates of the point A. The reduced model is found thanks to the fixed-point algorithm 3.
In figure 21, the first four parametric modes are plotted.
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Figure 21: Parametric modes

The PGD model is compared to a direct finite element solution for a given value of the Young modulus amplitude
e = 0.8 (figure 22). With one mode the relative error is 10−3.75 and the minimum error is 10−5.5. The PGD model
for this static problem is very efficient.

4.2.3 Bayesian inference

In order to estimate the probability density function of the random variable e, the Bayesian inference method
described in algorithm 3 is applied to the deterministic parameters to identify µe and σe. The Bayes formulation
reads:

π(µe, σe|uobs) =
1

C
.π(uobs|µe, σe).π(µe, σe) (53)

In a first time, to compute the likelihood function, at each point (µe, σe) ∈ [0.9, 1.1] × [0.01, 0.1] of the parameter
domains, the uncertainties are propagated to the model assuming that the parameter e has a normal probability
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Figure 22: Relative error with respect to the number of modes

density function with a µe mean and a σe standard deviation. As in the previous example, to propagate the
uncertainties through the PGD model the Monte-Carlo and analytical methods are leading to the same densities
π(u|µe, σe). The corresponding point of the likelihood function is given by this probability density function evaluated
at the measurement point uobs. The measurements are simulated taking a sample of e in the probability density
function with a mean µe = 1 and a standard deviation σe = 0.05. An example of a 2D likelihood function given for
a single measurement is plotted in figure 23.
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Figure 23: Likelihood function π(uobs|µe, σe) for a single measurement

By multiplying this likelihood function by a prior probability density function (a uniform density function
is chosen) the posterior probability density function is obtained. To obtain a separated posterior estimation of
parameters, the marginal densities have to be computed:

π(µe|uobs) =

∫ 0.1

0.01

π(µe, σe|uobs)dσe (54)

π(σe|uobs) =

∫ 1.1

0.9

π(µe, σe|uobs)dµe (55)

The marginal densities given by the Bayesian inference from one measurement are shown in figure 24. The
marginal density for the mean parameter is maximum for µe = 1 which is the value used to simulate the measure-
ments. The marginal density for the standard deviation is much wider and the maximum is obtained in the interval
[0.01, 0.025].

As in the welding example, the process can be improved doing the inference consecutively with several measure-
ments and taking at each iteration the posterior of the previous step as the prior of the current step. In figure 25
the resulting posterior densities with consecutive simulated measurements are plotted. The first marginal density
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Figure 24: Marginal densities given by a single measurement

is plotted with a thick discontinuous line, the final posterior (after 20 measurements) with a thick continuous line
and the intermediate densities appear lighter during the iterations.
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(a) Marginal densities of the mean parameter.
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(b) Marginal densities of the standard deviation parameter

Figure 25: Successive posterior marginal densities of a 20 successive measurements set

The marginal posterior probability density functions are more accurate during the iterations and the posterior
marginal for the mean parameter seems to be converging much faster than the standard deviation parameter.
The final result after 20 iterations gives an a posteriori maximum of 0.98 for the mean parameter and 0.045 for
the standard deviation parameter (the values used to simulate measurements were (µe, σe) = (1, 0.05)). In this
case, the parameters estimation is very close to the true value. However, contrary to the estimation of a true
deterministic parameter this estimation highly depends on the measurement sampled in the probability density
function. Indeed, here only 20 measurements are considered (i.e. 20 draws on the normal distribution of e) which
cannot be representative of the random variable e. Hence, the posterior marginals can be very different according
to the sets of 20 successive measurements.

Figure 26 shows the variability of the identification regarding the measurements (with 20 successive measure-
ments). Figures 26(a) and 26(b) represent respectively 25 marginal posterior densities of the mean and the standard
deviation parameters with 20 successive measurements. Those figures show the distributions of the final posterior
marginal densities after 20 successive measurements (only 25 posteriors are represented). To have a more quan-
titative information in those distributions, in figures 26(c) and 26(d) are plotted the densities of the Maximum A
Posteriori (MAP) of 200 posterior marginal densities (always with sets of 20 measurements). Those densities are
representing the variance of the identification process with the MAP estimator.

µMAP
e = max

µe

π(µe|uobs) (56)

σMAP
e = max

σe

π(σe|uobs) (57)

23



0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
0

10

20

30

40

50

(a) 25 posterior marginal densities of the mean parameter

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

(b) 25 posterior marginal densities of the standard deviation pa-
rameter

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
0

5

10

15

20

25

30

35

40

(c) Density of the estimator Maximum A Posteriori on 200 pos-
terior marginal densities of the mean parameter
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(d) Density of the estimator Maximum A Posteriori on 200 pos-
terior marginal densities of the standard deviation parameter.

Figure 26: Results of the identification process with 20 successive measurements

The coefficient of variation for a probability density function π(x) is also defined as:

cV =
stdd(π(x))

mean(π(x))
(58)

where stdd represents the standard deviation of the density.
the most likely estimation values with MAP estimator are µMAP

e = 1 with cV = 1.0 × 10−2 and σMAP
e = 0.046

with cV = 1.7 × 10−1. The estimations of the parameter with the MAP estimator are close to the values used to
simulate the measurements. However, according to the coefficients of variation the estimation of the parameter σe
is much less accurate than the estimation of the parameter µe.

In order to show the influence of the size of the measurements sets, the same densities are plotted in figure 27
with sets of 60 successive measurements.

The results are significantly improved with coefficient of variation of 6.7 × 10−3 for the estimation of µe and
8.8 × 10−2 for the estimation of σe. Once again the estimation of the mean parameter offers less variability than
the estimation of the standard deviation parameter.

Consequently, the estimation of hyper-parameters from a stochastic parameter is very difficult and the result
highly depends on the quantity of information (measurements) available. However, this is the huge advantage of
Bayesian identification: with a low amount of information (60 measurements) a large amount of information (a
stochastic parameter) can be estimated correctly. A compromise has to be found between the knowledge needed on
the parameter and the cost of additional measurements.

Similar to the welding example the model reduction error is studied. In figure 28 the relative error between the
PGD models defined (52) with 10 modes and 1 mode is plotted:

err =
|U10 − U1|
|U1|

(59)
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(d) Density of the estimator Maximum A Posteriori on 200 pos-
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Figure 27: Results of the identification process with 60 successive measurements

The relative error between the two reduced order models is very low and this error seems to be even more
regularized after the Bayesian inference process done. Indeed in figure 29 the relative error between the posterior
marginals found with 10 modes and 1 mode model is presented. In this example the PGD reduction is so efficient
that the Bayesian process can be done with only one mode.

From now on the measurements are simulated from the direct model with a Young modulus amplitude sampled
under a normal distribution with a mean µe = 1 and a standard deviation of σe = 0.05. Here, a Gaussian centered
noise is added on the output with a σerr = 0.003 standard deviation.

The same computation as before is done except that the probability to have the measurements is no more direct
but evaluated with the integration:

π(uobs|µe, σe) =

∫
π(u|µe, σe).πerr(u

obs − u)du (60)

with πerr(e) the Gaussian probability density function with a standard deviation of σerr and a zero mean. In
figure 30, three likelihood functions are plotted. First, in figure 30(a) the likelihood function is built from a noisy
measurement without considering the measurement error. In figure 30(b) the likelihood function built from the
simulated measurement without the noise is represented. Finally, in figure 30(c) the likelihood function is built
from the same noised measurement but taking into account the measurement error.

Figure 31 shows the results of the same computations in terms of marginal densities.
The ideal likelihood function which could be obtained from the given measurement is represented in figure 30(b)

(respectively the ”meas” graph in figure 31). The comparison between this likelihood and the likelihood function in
figure 30(a) (respectively the ”meas+noise” graph in figure 31) represents the error made if the measurement noise
is not modeled. In this case, the likelihood maximum is shifted and as the density is very ”sharp” the probability
of having the true values of parameters is very low.

Figure 30(c) (respectively the ”meas+noise+meas err” graph in figure 31) represents the likelihood function
built from the noisy measurement but considering the measurement error. The modeling of measurement error
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Figure 29: Relative errors for posterior marginal densities

allows to have a much wider density. So, less trust is given to the likelihood maximum. Futhermore, this maximum
is closer to the likelihood maximum obtained with the true measurement.

5 Conclusion

Through the examples studied, this paper shows the benefits of using a PGD model reduction formulation of
the system studied for Bayesian inference in the context of fast model updating. The Bayesian inference has
the advantage to always lead to well posed problems. However, the most difficult point is to build the likelihood
function in order to have the posterior probability density function of the parameters to identify. In the general case
without any assumption on the form of uncertainties, the likelihood function needs to be sampled with Monte-Carlo
method. In considered problems, with a few number of parameters (1-2) the idea was to propagate the uncertainties
through the model for all discretized values of parameters. In that way the likelihood function is built ”point by
point”. In order to reduce the uncertainty propagation cost a PGD reduced model is used to obtain explicitly
the problem solution for all values of Monte-Carlo draws. However, a more efficient method consists in using the
PGD analytical expression to directly compute the probability density functions after uncertainty propagation.
This method shows a greater speed-up and seems to be well-suited for low dimensional model updating problems
(with only one stochastic parameter). The explicit formulation given by the PGD shows great benefits for Bayesian
updating leading to analytical computation of integrals, uncertainty propagation at a very low cost (summation of
modes).

Futhermore, when the dimension of the parameters p is high, the integrations over the parametric space, which
are needed to compute estimator and marginalization, will lead to a high computation cost. To that end samples
from the posterior are needed to perform Monte-Carlo integration. A good framework to sample the posterior
density in the Bayesian framework is to use Markov Chain Monte Carlo (MCMC) methods [2][4][5]. For comparison
the MCMC method (with Metropolis-Hastings algorithm) is applied to the previous numerical examples. The
length of the Markov Chain was set to 50000 which is a lower bound of the values found in the literature [4][6]. The
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Figure 30: Likelihood functions regarding measurement error

computation times to build posterior marginal densities are compared between the ”grid” and the MCMC methods
in Table 2. For each method the PGD model is used with the ”PGD-analytic” method presented in Section 3 to
propagate uncertainties. For the grid method the number of elements in the grid is specified. All computations are
made on a MATLAB code on an Intel Xeon E5-1660 3.3 GHz × 6 PC. In the studied cases (low dimension) the
MCMC method is obviously costlier than the grid method. Despite the fact that additional numerical integration
is required in the grid method, the number of points in the grid (i.e. number of model evaluations) is lower than
50000 (length of the chain). The welding example is more costly than the glued assembly example because of the
number of modes, the form of uncertainties and the change of variable function study.

Table 2: Comparison of the computational cost to build marginal posterior densities

Mean computation time
Welding Glued assembly

Grid (41) MCMC Grid (37× 29) MCMC
10.56 s ∼ 12000 s 6.63 s ∼ 1300 s

The Bayesian framework allows an easy treatment of model and measurement errors. However, in this paper
the model error is used thanks to error quantization between Finite Element and PGD models. In future work the
aim will be to use error estimation methods [22] [23] to model the error committed regarding the true solution.
Eventually, another idea will be to use the coupled Bayesian-PGD formulation in the context of data assimilation
as an less restrictive alternative of Kalman filter [24][25].
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Figure 31: Likelihood marginal densities regarding measurement error. ”meas” represents the marginal densities
corresponding to the likelihood function in figure 30(b), ”meas + noise” to the figure 30(a) and ”meas+noise+meas
err” to the figure 30(c).

6 Appendix

In this section the details of a PGD solving is illustrated on the welding example from Section 4.

6.1 Problem

The same problem as in Section 4 is considered with the convection-diffusion equation:

∂T

∂t
+ v.gradT −∆T = s (61)

With:

s(x, y;σ) =
u

2πσ2
exp

(
− (x− xc)2

+ (y − yc)2

2σ2

)
(62)

The purpose is to build a multiparametric reduced order model with separation of space, time and parameter σ.

6.2 Progressive Galerkin PGD

As presented in Section 3 the PGD modes are built recursively thanks to the Galerkin orthogonality. The spaces
of variation of each parameter is defined as follows: I = [0, Tf ] the time interval and Σ = [σmin, σmax], the space of
variation of σ. The admissible field spaces are defined:

T = {T ∈ H1(Ω =]0; 5[×]0; 1[), T = 0 on ΓD} (63)

I = {T,
∫
I

‖T (x, y, .;σ)‖2H1(Ω) <∞,∀(x, y, σ) ∈ Ω× Σ} (64)

E = {T,
∫

Σ

‖T (x, y, t; .)‖2H1(Ω) <∞,∀(x, y, t) ∈ Ω× I} (65)

The weak formulation of equation (61) on each space reads:
Find T ∈ T ⊗ I ⊗ E , such as ∀T ∗ ∈ T ⊗ I ⊗ E :

a(T, T ∗) = l(T ∗) (66)

with:

a(T, T ∗) =

∫
I×Σ×Ω

∂T

∂t
.T ∗ + v.gradT.T ∗ + gradT.gradT ∗dtdσdΩ (67)

l(T ∗) =

∫
I×Σ×Ω

s.T ∗dtdσdΩ (68)
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The solution is searched in the separated form:

Tm(x, y, t;σ) =

m∑
n=1

Λn(x, y)λn(t)αn(σ) (69)

The m− 1 first modes are supposed to be known and the m-th mode is searched. Then the solution reads:

{Tm(x, y, t;σ)} =

m−1∑
n=1

λn(t)αn(σ)Λn(x, y) + λ(t)α(σ)Λ(x, y) (70)

The unknowns are the functions: Λ, λ et α.
The test field T ∗ ∈ T ⊗ I ⊗ E is taken in the separated form:

T ∗ = λ∗αΛ + λα∗Λ + λαΛ∗ (71)

Using this form, the variational formulation (66) leads to decoupled problems with the applications Sm, Tm, Pm
such as:

Λ = Sm(λ, α) (72)

λ = Tm(α,Λ) (73)

α = Pm(λ,Λ) (74)

6.2.1 Spatial application Sm

The decoupled weak formulation for space problem reads:

a (Tm−1 + λαΛ, λαΛ∗) = l(λαΛ∗) (75)

with:

a (λαΛ, λαΛ∗) =

∫
I×Σ×Ω

λλ̇α2ΛΛ∗ + α2λ2v.gradΛΛ∗ + α2λ2gradΛgradΛ∗dΩdσdt (76)

The use of a P1 discretization on all fields reads:

Λ = [Nx]{Λ} (77)

λ = [Nt]{λ} (78)

α = [Nσ]{σ} (79)

where [N•] represents the shape functions matrix and {•} the nodal values of the fields.
Then:

a (λαΛ, λαΛ∗) = {Λ∗}T [AΛ]{Λ} (80)

with:
[AΛ] =

(
{α}T [Mσ]{α}

)
.
[(
{λ}T [Ht]{λ}

)
[M ] +

(
{λ}T [Mt]{λ}

)
[CH ]

]
(81)

Where the following matrices are defined:

[M•] =

∫
•
[N•]

T [N•]d• (82)

[H•] =

∫
•
[dN•]

T [N•]d• (83)

[C•] =

∫
•
[dN•]

T [dN•]d• (84)

[CH ] = κ.[Cx] + [Hx] (85)
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Likewise:

a (Tm−1, λαΛ∗) = {Λ∗}T
m−1∑
n=1

[AΛn
]{Λn} (86)

with:
[AΛn

] =
(
{α}T [Mσ]{αn}

)
.
[(
{λ}T [Ht]{λn}

)
[M ] +

(
{λ}T [Mt]{λn}

)
[CH ]

]
(87)

l({λαΛ∗}) =

∫
I×Σ×Ω

λ(t)α(σ)s(x, y;σ).Λ∗(x, y)dtdσdΩ (88)

The right-hand side of the variational formulation can be written as:

l(λαΛ∗) = {Λ∗}T {QΛ} (89)

However the integrand is not represented in a separated form. In order to do so, an asymptotic expansion at
the center σ0 of the P1 element at the d order is used.

The volumic load s is approximated as:

s(x, y;σ0 + δσ) ≈
d∑
i=0

∂is

∂σi
(x, y;σ0)

δσi

i!
(90)

which leads to: ∫ σmax

σmin

s(x, y;σ)α(σ)dσ =

N∑
k=1

∫ σk+1

σk

s(x, y;σ)α(σ)dσ (91)

=

N∑
k=1

∫ σk+1−σ0k

σk−σ0k

s(x, y;σ0k + σ̃)α(σ0k + σ̃)dσ̃ (92)

=

N∑
k=1

d∑
i=0

∫ σk+1−σ0k

σk−σ0k

σ̃i

i!
α(σ0k + σ̃)dσ̃

∂is

∂σi
(x, y;σ0k) (93)

=

N∑
k=1

d∑
i=0

∫ σk+1

σk

(σ − σ0k)i

i!
α(σ)dσ

∂is

∂σi
(x, y;σ0k) (94)

In practice d = 1 is sufficient to have a good approximation with the P1 discretization of the interval Σ.
The right-hand side reads now:

l(λαΛ∗) = {1t}T [Mt]{λ}.
N∑
k=1

d∑
i=0

∫ σk+1

σk

(σ − σ0k)i

i!
α(σ)dσ{Λ∗}T {Sik} (95)

Finally the application Sm leads to a linear system at each iteration of the fixed-point algorithm with the
unknown {Λ}.

6.2.2 Application temporelle Tm

For the time application a Runge-Kutta algorithm with automatic adjustment of the time step is used to solve the
encountered ordinary differential equation:

a.λ̇(t) + b.λ(t) = c−
m−1∑
n

an.λ̇n(t) + bn.λn(t) (96)

with:

a =

∫
Σ×Ω

α2Λ2dσdΩ =
(
{α}T [Mσ]{α}

) (
{Λ}T [M ]{Λ}

)
(97)

b =

∫
Σ×Ω

α2
(
v.gradΛΛ + gradΛgradΛ

)
dσdΩ =

(
{α}T [Mσ]{α}

) (
{Λ}T [CH ]{Λ}

)
(98)
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c =

∫
Σ×Ω

α(σ)s(x, y;σ).Λ(x, y)dtdσdΩ =

N∑
k=1

d∑
i=0

∫ σk+1

σk

(σ − σ0k)i

i!
α(σ)dσ{Λ}T {Sik} (99)

an =

∫
Σ×Ω

ααnΛΛndσdΩ =
(
{α}T [Mσ]{αn}

) (
{Λ}T [M ]{Λn}

)
(100)

bn =

∫
Σ×Ω

ααn
(
v.gradΛΛn + gradΛgradΛn

)
dσdΩ =

(
{α}T [Mσ]{αn}

) (
{Λ}T [CH ]{Λn}

)
(101)

At each iteration of the fixed-point algorithm an ordinary differential equation on the unknown λ is solved.

6.2.3 Parametric application Pm

Here, the same approach used in the spatial application is used. The decoupled weak form for the parametric
problem reads:

a (Tm−1 + λαΛ, λα∗Λ) = l(λα∗Λ) (102)

a (λαΛ, λα∗Λ) =

∫
I×Σ×Ω

λλ̇αα∗Λ2 + αα∗λ2v.gradΛΛ + αα∗λ2gradΛgradΛdtdσdΩ (103)

A P1 discretization leads to:
a (λαΛ, λα∗Λ) = {α∗}T [Aα]{α} (104)

with:
[Aα] = [

(
{Λ}T [M ]{Λ}

) (
{λ}T [Ht]{λ}

)
+
(
{Λ}T [CH ]{Λ}

) (
{λ}T [Mt]{λ}

)
][Mσ] (105)

The contribution of the previous modes reads:

a (Tm−1, λα
∗Λ) = {α∗}T

m−1∑
n=1

[Aαn
]{αn} (106)

with:
[Aαn

] = [
(
{Λ}T [M ]{Λn}

) (
{λ}T [Ht]{λn}

)
+
(
{Λ}T [CH ]{Λn}

) (
{λ}T [Mt]{λn}

)
][Mσ] (107)

Finally the right-hand side reads:

l(λα∗Λ) = {1t}T [Mt]{λ}.
N∑
k=1

d∑
i=0

∫ σk+1

σk

(σ − σ0k)i

i!
α∗(σ)dσ{Λ}T {Sik} (108)

At each iteration of the fixed-point algorithm a linear system is solved with the unknown {α}.
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