
HAL Id: hal-01774540
https://hal.science/hal-01774540

Submitted on 23 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmes d’approximation pour le placement de
chaînes de fonctions de services avec des contraintes

d’ordre
Andrea Tomassilli, Frédéric Giroire, Nicolas Huin, Stéphane Pérennes

To cite this version:
Andrea Tomassilli, Frédéric Giroire, Nicolas Huin, Stéphane Pérennes. Algorithmes d’approximation
pour le placement de chaînes de fonctions de services avec des contraintes d’ordre. ALGOTEL 2018 -
20èmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications, May 2018,
Roscoff, France. �hal-01774540�

https://hal.science/hal-01774540
https://hal.archives-ouvertes.fr

Algorithmes d’approximation pour le
placement de chaı̂nes de fonctions de
services avec des contraintes d’ordre†

Andrea Tomassilli1 et Frédéric Giroire1 et Nicolas Huin2 et Stéphane Pérennes1

1Université Côte d’Azur, I3S, CNRS, INRIA, COATI, Sophia Antipolis, France
2Université Concordia, Montréal, Canada

Le modèle des réseaux programmables virtualisés permet aux opérateurs de télécommunications d’offrir des services
réseaux complexes et flexibles. Un service se modélise alors comme une chaı̂ne de fonctions réseaux (firewall, com-
pression, contrôle parental,...) qui doivent être appliquées séquentiellement à un flot de données. Dans cet article,
nous étudions le problème du placement de fonctions de services qui consiste à déterminer sur quels nœuds localiser les
fonctions afin de satisfaire toutes les demandes de service, de façon à minimiser le coût de déploiement. Nous montrons
que le problème peut être ramené à un problème de Set Cover, même dans le cas de séquences ordonnées de fonctions
réseau. Cela nous permet de proposer deux algorithmes d’approximation à facteur logarithmique, ce qui est le meilleur
facteur possible. Finalement, nous évaluons les performances de nos algorithmes par simulations. Nous montrons ainsi
qu’en pratique, des solutions presque optimales peuvent être trouvées avec notre approche.

Mots-clefs : Virtualisation des fonctions réseaux, Chaı̂nes de fonctions de service, Réseaux logiciels, Optimisation

1 Introduction
With the Network Function Virtualization (NFV) framework, network functions can be executed by generic
hardware instead of dedicated equipment. Examples of network functions are firewall, load balancers, and
Video Optimizer Controller. Network flows are often required to be processed by an ordered sequence of
network functions. For instance, an Intrusion Detection System may need to inspect the packet before com-
pression or encryption are performed. This notion is known as Service Function Chaining (SFC) [2].
The Problem. In this work, we consider the problem of placing service functions into generic hardware
along the paths followed by flows. We assume a cost for installing a function on a node. The cost aims
at reflecting the cost of having a virtual machine that runs a virtual function, such as license fees, network
efficiency or energy consumption. The goal is to find the placement of minimum cost.
Contributions. We show that the problem can be reduced to a SET COVER Instance. This first shows that
the problem is NP-Hard and hard to approximate within log(n), where n is the number of flows. Second, it
allows us to provide two greedy algorithms with proven logarithmic approximation factor [3].
State of the art. The Placement problem has been widely studied. Existing placement algorithms can be
roughly classified into two categories: ILP-based, lacking in scalability and greedy-based, with no provable
performance guarantees. Closest works to ours are [4] and [5]. [4] addresses the problem of the placement
of virtual functions within the physical network. The goal of the authors is to minimize the network cost.
They provide near-optimal approximation algorithms with theoretically proven performance. However, the
execution order of the network functions is not considered in their model. In [5], the authors focus their
attention on the problem of optimal placement and allocation of VNFs to provide a service to all the flows
of the network. The goal is to minimize the total number of network functions. In their model, flow routes

†A long version of this work has been accepted to INFOCOM 2018 [1].

Andrea Tomassilli et Frédéric Giroire et Nicolas Huin et Stéphane Pérennes

are fixed, and one flow may be fractionally processed by the same network function at multiple nodes.
However, they study the scenario of one single network function.
Content. We reduce the SFC Placement Problem to a standard Set Cover problem. This implies two
algorithms. The fist one is based on the greedy technique and the second one on LP Rounding. Both algo-
rithms achieve a logarithmic approximation ratio. Finally, we evaluate the performances of our proposed
algorithms.

2 Problem Formulation
Given a digraph G = (V,E), with a set of functions F and an installation cost c, the problem takes as an
input a set of demands D . The output consists of a minimum cost function placement that satisfies all the
demands in D . We refer to this problem as the SFC Placement Problem.
Input: A digraph G = (V,E) and a collection D of demands. Each demand d ∈D is associated with a path
path(d) ∈V ∗ and to a sequence of functions sfc(d) ∈ F ∗. Lastly, a cost c : V ×F → c(v, f), defining
the cost of setting up the function f in node v.
Output: A function placement that is a subset Π⊂V ×F of function locations such that all demands of D
are satisfied, i.e., for each demand the network functions appear in the correct order along the path.
Objective: minimize ∑(v, f)∈Π c(v, f)

3 Approximation Algorithms for SFC-PLACEMENT

We show that the SFC Placement Problem is equivalent to an instance of the Minimum Weight Set Cover
Problem. For each demand d ∈ D , we denote with l(d) and s(d) the length of the associated path and
chain respectively. Let path(d) = u1,u2, ...,ul(d) and assume that d requires the sequence of functions
s f c(P) = r1,r2, ...,rs(d).
Given a demand d, we build a capacitated associated network H(d,Π), as shown in Figure 1.

Definition 1. The network H(d,Π) associated with a demand d is built as follows:

- H(d,Π) has s(d) layers L1,L2, ...,Ls(d). Each layer contains l(d) nodes corresponding to the nodes
of path(d). We note (ui, j) the i-th node of layer j.

- There is an arc between the node (u, j) and the node (v, j+1) if u = v or if u precedes v in path(d).
- H(d,Π) has two other nodes, sd and td . There is an arc between a node sd and all the nodes of the

first layer and an arc between all the nodes of the last layer and td .
- All arcs have infinite capacity, but each node has a capacity. The capacity of the node u of layer i is

1 if (u,ri) ∈Π and 0 otherwise.

Lemma 1. A demand d ∈D is satisfied by Π if and only if there exists a feasible st− path in the capacitated
associated network H(d,Π).

With this notion of associated network, we define the following problem.

Problem 1. HITTING-CUT-PROBLEM (D,c) is an instance of the Weighted Hitting Set problem where the
elements are the function locations (u, f), for all u ∈ V and f ∈ F . Its cost is c(u, f). The subsets of the
universe correspond to all the st-vertex-cuts of the associated networks H(d,Π) for all d ∈D .

The problem is thus to find the sub-collection S of elements (functions placement) hitting all the subsets
(cuts) of the universe of minimum cost.

Proposition 1. HITTING-CUT-PROBLEM (D,c) is equivalent to SFC-PLACEMENT (D,c).

Our problem is thus equivalent to a Hitting Set Problem, for which we know approximation algorithms.
However, the number of st-vertex cuts is exponential in the number of vertices of the digraph. To derive a
polynomial algorithm, we need to reduce the size of an instance of HITTING-CUT-PROBLEM. To this end,
we use the fact that checking only the extremal cuts is enough (an extremal cut is a cut that is not strictly
included in another cut) and that, in our problem, the extremal cuts of the associated graphs have a specific
shape that we call proper st-cuts. See Figure 2 for an example.

sd

u1

u2

...
ul(d)

u1

u2

...
ul(d)

· · ·

· · ·

· · ·

· · ·

u1

u2

...
ul(d)

td

r1 r2 · · · rs(d)

Fig. 1: The associated network of a de-
mand d ∈ D routed on a path path(d) =
u1,u2, ...,ul(d) that requires a chain sfc(d)=
r1,r2, ...,rs(d)

.

sd

u1

u2

u3

u4

u1

u2

u3

u4

u1

u2

u3

u4

td

r1 r2 r3

Fig. 2: Example of a proper cut (dashed nodes
in red) for the layered graph relative to a de-
mand d associated with a path of length 4 and
a chain of length 3.

Definition 2. A proper st-cut of the associated graph H(d,Π) is a cut of the following form:

{(u1,1), ...,(u j1 ,1)︸ ︷︷ ︸
layer 1

,(u j1+1,2), ...,(u j1+ j2 ,2)︸ ︷︷ ︸
layer 2

, ...,(u j1+ j2+···+ js(d)−1+1,s(d)), ...,(ul(d)= j1+ j2+···+ js(d) ,s(d))︸ ︷︷ ︸
layer s(d)

}

for j1, j2, ..., js(d) ≥ 0, such that ∑
s(d)
i=1 ji = l(d).

Proposition 2. The problem SFC-PLACEMENT (D,c) is equivalent to a Hitting Set Problem with
∑d∈D

(l(d)+s(d)−1
s(d)−1

)
sets as an input. If each demand requires at most smax network functions and is associ-

ated with a path of length smaller than lmax, then the size of the instance is at most O(|D| · (lmax)
smax−1).

3.1 A Greedy Algorithm
The main idea of the greedy algorithm is to avoid generating all proper cuts by showing it is enough to keep
track of the number of not hit proper cuts. We show here that, by using dynamic programming, this number
can be counted in time O(|D|l2

maxsmax).
For a demand d = (path(d),sfc(d)), a function placement Π can be seen as a matrix Ad with l(d)
rows and s(d) columns and for which Ad [i, j] = 1 iff (ui,r j) ∈Π. We note Ad [i : j,k : l] the submatrix of Ad
considering only the rows from i to j and the columns from k to l. For a demand d = (path(d),sfc(d))
and a function placement Π (or equivalently Ad), we note N(d) the number of proper cuts not hit by Ad . It
can be computed using the recursive function N(r,c) defined below. We have N(d) = N(l(d),s(d)) with

N(r,c) = 1i∗(r,c)=0 +∑
r−i∗(r,c)
jc=0 N(n− jc,c−1), if c≥ 2

N(r,1) = 1i∗(r,c)=0

where i∗(r,c) is defined as follows. We consider the matrix Ad [1 : r,1 : c]). We consider the ones placed in
the last column of the matrix, column c. If there are none, i∗(r,c) = 0. Otherwise, i∗(r,c) is the maximum
index of such ones, that is, i∗(r,c) = max0≤i≤l(d){i, such that Ad [i,c] = 1}. N(r,c) can be computed using
dynamic programming. At each iteration, the algorithm selects the pair (u, f) with the smallest average
cost per newly hit proper cut. The pair of minimum cost is added to the solution Π. Then, the number
of remaining proper cuts to be hit is updated. This process is repeated until all the proper cuts are hit.
The complexity of the whole procedure is O(l2

maxsmax|V |2|F |2|D|). The greedy algorithm achieves an
approximation ratio equal to H (#Proper Cuts) = H (|D|lsmax−1

max)∼ ln(|D|)+(smax−1) ln(lmax) [3], where
H (n) is the n-th harmonic number.

3.2 LP Rounding Approach
The idea is to use the formulation of the problem looking for a path in the associated networks H(d,Π).
There are two kinds of binary decision variables.
(i) Location or capacity variables: x(u, f) indicates whether the function f is installed on node u. It corre-
sponds to the shared capacity of the node (u, f) of the associated networks.

Andrea Tomassilli et Frédéric Giroire et Nicolas Huin et Stéphane Pérennes

0 50 100 150 200 250 300 350 400

Number of Demands

0

200

400

600

800

1000

1200

C
o
st

Greedy

LP rounding

Optimal

Fig. 3: Average setup cost as a function
of the number of demands

1 2 3 4 5 6 7

Lenght of the Paths

200

300

400

500

600

700

C
o
st

Greedy

LP rounding

Optimal

Fig. 4: Average setup cost as a func-
tion of the length of the paths

(ii) Flow variables. For each demand d ∈ D , we have a flow variable f d
uv for each edge of the associated

network H(d,Π). The constraints are (i) node capacity constraints and (ii) flow conservation constraints.
Along with the greedy algorithm, we obtain a second approximation algorithm, with the same approxima-
tion factor. We refer to [1] for a detailed presentation of the model.

4 Numerical Results
In this section, we evaluate the performances of our proposed algorithms. We study how the total setup cost
and the accuracy of our algorithms vary according to (i) different path lengths and (ii) increasing number
of demands. We conduct experiments on a real-world topology: germany50 (50 nodes and 88 links).
We build our instances in the following way. The source and destination nodes of a demand are uniformly
chosen at random from the set of vertices. The path of the demand is given by a shortest path between
these two nodes and its chain is composed of 2 to 6 functions uniformly chosen at random from a set of 30
functions. Finally, the setup cost of a function on a node is uniformly chosen at random between 1 and 5.
In Figure 3, we compare the performances of the algorithms in the case of an increasing number of demands.
The setup cost increases with the number of demands, as the number of functions to be placed increases.
However, the increase is sublinear. The reason is that, the more demands in a network, the higher the
opportunity of sharing functions. The optimality ratio is at most 21% for both algorithms.
In Figure 4, we only consider demands with pairs of nodes at equal distances, from 1 to 7. The total setup
cost strictly decreases when the length of the path increases. In fact, when paths are longer, the demands
tend (on average) to share more nodes, reducing the number of required functions to satisfy all the demands
and so the cost. The ratio to the optimal solution never exceeds 25% for both algorithms.

5 Conclusion
In this paper, we investigated the problem of placing VNFs to satisfy the ordering constraints of the flows
with the goal of minimizing the total setup cost. We proposed two algorithms that achieve a logarithmic
approximation factor. Numerical results are given and validate the cost effectiveness of our algorithms.

References
[1] A. Tomassilli, F. Giroire, N. Huin, and S. Pérennes, “Provably efficient algorithms for placement of

service function chains with ordering constraints,” in IEEE INFOCOM 2018.

[2] P. Quinn and T. Nadeau, “Problem statement for service function chaining,” 2015.

[3] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathematics of operations research,
vol. 4, no. 3, pp. 233–235, 1979.

[4] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal placement of virtual network func-
tions,” in IEEE INFOCOM 2015.

[5] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably efficient algorithms for joint placement and
allocation of virtual network functions,” in IEEE INFOCOM 2017.

