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1. Introduction

The problem of giving a fair price to a financial asset G is central in the economic
and financial theory. A selling price should be an amount which is enough to initiate a
hedging strategy for G, i.e., a strategy whose value at maturity is always above G. It
seems also natural to ask for the infimum of such amount. This is the so called super-
replication (or super-hedging) price and it has been introduced in the binomial setup
for transaction costs by [3]. Characterizing and computing the super-replication price
has become one of the central issue in the mathematical finance theory. The super-
hedging theorem also called dual formulation show that the super-replication price can
be computed using martingale measures (see, [9], [7] and the references therein). We
argue that, in a discrete time model without frictions, the super-replication price can
be computed using rather the conditional support of the distribution of the assets price
increments. This is a well-known approach for the characterization of the condition of
no arbitrage, see, [8]. Recently, [5] have shown that it is also fruitful for the computation
of the super-replication price. In this last reference, the super-replication price are ex-
pressed using Fenchel conjugate and bi-conjugate without postulating any no-arbitrage
condition. The finiteness of the super-hedging prices leads to a weak no-arbitrage con-
dition called Absence of Instantaneous Profit (AIP). This condition is equivalent to the
fact that 0 belongs to the convex hull of the conditional support of the assets price in-
crements. Under AIP condition, the one-step infimum super-hedging cost is the concave
envelop of the payoff relatively to the convex envelop of the conditional support.
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In this paper, we propose in the multiple-period framework a recursive scheme for
the computation of the super-hedging prices of an European option with convex payoff.
Note that we obtain the same computation scheme as in [4] and [6], but under the
weaker assumption of AIP and without using martingale measures.

So far, there has been little attention about the expermimental implementation of
this algorithm. We calibrate historical data of the French index CAC 40 and implement
our super-hedging strategy for a call option. Our procedure is, somehow, model free
and based only on statistical estimations. We actually observe that the same strategy,
based on the implied volatility rather than conditional support, provides worse results
but at a lower price.

The paper is organized as follows. In Section 2, we present our algorithm and in
Section 3, the numerical experiments. The proof of our algorithm is postponed to the
appendix.

2. Theoritical algorithm

We present our framework and notations. Let (Ω, (Ft)t∈{0,...,T}FT , P ) be a complete
filtered probability space, where T is the time horizon. For any σ-algebra H, we de-
note by L0(R,H) the set of H-measurable and R-valued random variables. We con-
sider a non-negative process S := {St, t ∈ {0, . . . , T}} such that St ∈ L0(R,Ft) for
all t ∈ {0, . . . , T}. The vector St represents the price at time t of the risky asset
in the financial market of consideration. Trading strategies are given by processes
θ := {θt, t ∈ {0, . . . , T − 1}} such that θt ∈ L0(R,Ft) for all t ∈ {0, . . . , T − 1}.
The vector θt represents the investor’s holding in the risky asset between times t and
t + 1. We assume that trading is self-financing and that the riskless asset’s price is a
constant equal to 1. The value at time t of a portfolio θ starting from initial capital
x ∈ R is then given by

V x,θ
t = x+

t∑
u=1

θu−1∆Su,

where ∆Su = Su − Su−1 for u ≥ 1.
We propose an algorithm for the computation of the super-replication price of a

European contingent claim h(ST ), where h is convex. This algorithm have already be
obtained in Proposition 2.2 of [6], under the NA condition, using the dual representation
of the superreplication price. This algorithm can be obtained under a weaker assump-
tion, called Absence of Instantaneous Profit. This condition asserts that it is not possible
to super-replicate the contingent claim 0 at a negative super-hedging price. This is also
the minimal requirement for the super-hedging cost not being equal to −∞ and so to
get a financial market where pricing is possible. The AIP is very weak : If the initial
information is trivial, a one period instantaneous profit is a strategy starting from 0
and leading to a terminal wealth larger than some strictly positive constant. We now
define the super-hedging prices, the super-hedging cost and the AIP condition. For ev-
ery t ∈ {0, . . . , T}, the set RT

t of all claims that can be super-replicated from the zero
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initial endowment at time t is defined by

RT
t :=

{
T∑

u=t+1

θu−1∆Su − ε+T , θu−1 ∈ L
0(R,Fu−1), ε+T ∈ L

0(R+,FT )

}
. (2.1)

The set of super-hedging prices and the infimum super-hedging cost of some contingent
claim gT ∈ L0(R,FT ) at time t are given for all t ∈ {0, . . . , T}, by

PT,T (gT ) = {gT} and πT,T (gT ) = gT ,

Pt,T (gT ) = {xt ∈ L0(R,Ft), ∃R ∈ RT
t , xt +R = gT a.s.}, (2.2)

πt,T (gT ) = ess infPt,T (gT ).

The infimum super-hedging cost is not necessarily a price in the sense that πt,T (gT ) /∈
Pt,T (gT ), when Pt,T (gT ) is not closed.

Definition 2.1. The AIP condition holds true if for all t ∈ {0, . . . , T}

Pt,T (0) ∩ L0(R−,Ft) = {0}.

The AIP condition can be characterized using the notion of conditional support and
of conditional essential supremum (and infimum). Recall that if Xt+1 ∈ L0(R,Ft+1),
supp Ft

Xt+1, the conditional support of Xt+1 with respect to Ft, is a random set Ω � R
defined by

supp Ft
Xt+1(ω) :=

⋂{
A ⊂ Rd, closed, P (Xt+1 ∈ A|Ft)(ω) = 1

}
, (2.3)

when P (Xt+1 ∈ A|Ft)(ω) is a regular version of the conditional law of Xt+1 knowing Ft.
The conditional essential supremum allows to incorporate measurability in the definition
of the essential supremum (see, [2] and [10]):

Proposition 2.2. Let Ft and Ft+1 be complete σ-algebras such that Ft ⊆ Ft+1 and let
Γ = (γi)i∈I be a family of real-valued FT -measurable random variables. There exists a
unique Ft-measurable random variable γt ∈ L0(R ∪ {∞},Ft) denoted ess supFt

Γ which
satisfies the following properties

1. For every i ∈ I, γt ≥ γi a.s.
2. If ζt ∈ L0(R ∪ {∞},Ft) satisfies ζt ≥ γi a.s. ∀i ∈ I, then ζt ≥ γt a.s.

The following proposition gives a characterization of AIP, see Proposition 3.4 in [5].

Proposition 2.3. The following assertions are equivalent.

1. AIP holds true.
2. 0 ∈ convsuppFt

∆St+1 a.s. or St ∈ [ess infFtSt+1, ess supFt
St+1] ∩ R a.s. for all

t ∈ {0, . . . , T − 1}.
3. πt,T (0) = 0 a.s. for all t ∈ {0, . . . , T − 1},

where convsuppFt
∆St+1 is the convex envelop of suppFt

∆St+1 i.e., the smallest convex
set that contains suppFt

∆St+1.
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We are now in position to present our pricing algorithm.

Proposition 2.4. Suppose that the model is defined by ess infFt−1St = kdt−1St−1 a.s. and
ess supFt−1

St = kut−1St−1 a.s. where (kdt−1)t∈{1,...,T}, (kut−1)t∈{1,...,T} and S0 are determin-
istic non-negative numbers.

The AIP condition is verified if and only if kdt−1 ∈ [0, 1] and kut−1 ∈ [1,+∞] for all
t ∈ {1, . . . , T}.

Suppose that the AIP condition holds. Let h : R → R be a non-negative convex
function with dom h = R such that limz→+∞

h(z)
z
∈ [0,∞). Then, the infimum super-

hedging cost of the European contingent claim h(ST ) is a price and it is given by
πt,T (h) = h(t, St) ∈ Pt,T (h(ST ))a.s. where

h(T, x) = h(x)

h(t− 1, x) = λt−1h(t, kdt−1x) + (1− λt−1)h
(
t, kut−1x

)
,

(2.4)

and λt−1 =
kut−1−1

kut−1−kdt−1
∈ [0, 1] and 1 − λt−1 =

1−kdt−1

kut−1−kdt−1
∈ [0, 1], with the following

conventions. When kdt−1 = kut−1 = 1 or St−1 = 0, λt−1 = 0
0

= 0 and 1 − λt−1 = 1 and

when, kdt−1 < kut−1 =∞, λt−1 = ∞
∞ = 1,

(1− λt−1)h(t, (+∞)x) =(1− kdt−1)x
h(t, (+∞x))

(+∞x)
= (1− kdt−1)x lim

z→+∞

h(z)

z
. (2.5)

Moreover, for every t ∈ {1, . . . , T}, limz→+∞
h(z)
z

= limz→+∞
h(t,z)
z

and h(·, x) is non-
increasing for all x ≥ 0.

The strategy associated to the infimum super-hedging price is given by:

θ∗t =
h(t+ 1, kut St)− h(t+ 1, kdt St)

(kut − kdt )St
. (2.6)

The infimum super-hedging cost of the European contingent claim h(ST ) in our model
is a price, precisely the same than the price we get in a binomial model where St belongs
to {kdt−1St−1, kut−1St−1} a.s., t ∈ {1, . . . , T}.

3. Numerical experiments

We suppose that the discrete dates are given by tni = iT
n

, i ∈ {0, . . . , n} where n ≥ 1
and that

ess infFtn
i
Stni+1

= kdtni St
n
i

a.s. and ess supFtn
i

Stni+1
= kutni St

n
i

a.s.

Below we present different approach for the determination of kutni and kdtni . By Proposition

2.4, the infimum super-hedging cost of the European Call option (ST −K)+ is given by
hn
(
tni , Stni

)
, where hn is defined by (2.4) with the terminal condition hn(T, x) = g(x) =

(x − K)+. The associated super-hedging strategies (θ∗tni )i∈{0,...,n−1} are given by (2.6).
We denote by VT the terminal value of our strategy starting from the super-hedging



/ 5

cost V0 = π0,T = h(0, S0), i.e., VT = V0+
∑n−1

i=0 θ
∗
tni

∆Stni+1
. Then, the super-hedging error

is the difference between the terminal value of our strategy and the call option, i.e.,
εT = VT − (ST −K)+. If it is negative, our strategy is not conservative and does not
allow to cover the position.

3.1. Implied volatility

In this subsection, we assume that for i ∈ {0, . . . , n− 1}

kutni = 1 + σtni
√

∆tni+1 and kdtni = 1− σtni
√

∆tni+1 ≥ 0, (3.7)

where t 7→ σt is a positive Lipschitz-continuous function on [0, T ]. Our aim is to calibrate
σ to the observed European call option prices. We extend the function hn on [0, T ]
in such a way that hn is constant on each interval [tni , t

n
i+1[, i ∈ {0, . . . , n}. Such a

scheme is proposed by Milstein [12], where a convergence theorem is proved when
the terminal condition, i.e., the payoff function is smooth. Precisely, the sequence of
functions (hn(t, x))n≥1 converges uniformly to h(t, x), solution of the Black and Scholes
formula with time-dependent volatility:

∂th(t, x) + σ2
t

x2

2
∂xxh(t, x) = 0, h(T, x) = g(x). (3.8)

In [12], it is supposed that the successive derivatives of the solution of the P.D.E.
solution h are uniformly bounded. This is not the case for the Call payoff function
g. On the contrary, the successive derivatives of the solution of the P.D.E. explode at
the horizon date, see [11]. In [1], it is proven that the uniform convergence still holds
when the payoff function is not smooth provided that the successive derivatives of the
solution of the P.D.E. do not explode too much.

Supposing that ∆tni is closed to 0, we can identify the observed prices of the Call
option with the theoretical limit prices h(t, St) at any instant t given by (3.8). For
several strikes, matching the observed prices to the theoretical ones allows to deduce
the associated implied volatility t 7→ σt.

The data set is composed of historical values of the french index CAC 40 and Eu-
ropean call option prices of maturity 3 months from the 23rd of October 2017 to the
19th of January 2018. The values of S are distributed as in Figure 1.

Now, we want to check the proportion of observations satisfying (3.9) which is the
direct consequence of the assumptions made on the multipliers kutni−1

and kdtni−1
in (3.7):∣∣∣∣Stni+1

Snti
− 1

∣∣∣∣ ≤ σtni
√

∆tni+1, a.s. (3.9)

The results are satisfactory for strikes lower that 5000, see Fig. 2. Note that, when
the strikes are too large with respect to the current price S, price observations are less
available for the calibration, see Figure 1. This could explain the degradation of our
results.
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Fig 1: Distribution of the observed prices.

Strike 4800 4900 5000 5100 5200 5300
Ratio 96,7% 95,1% 95,1% 88,5% 86,9% 80,3%
Strike 5400 5500 5600 5700 5800 5900
Ratio 70,5% 78,7% 75,4% 77,0% 73,8% 75,4%

Fig 2

3.2. Direct calibration

We propose another approach where the coefficients ku and kd of Proposition 2.4 are
calibrated directly on the value of the CAC 40 and the quality of the model is measured
through the super-hedging error. This allows to obtain coefficients ku and kd which are
not strike dependent as before and in this sense model free.

The data set is composed of historical daily closing values of the French index CAC
40 from the 5th of January 2015 to the 12th of March 2018. The chosen interval [0, T ]
corresponds to one week of 5 working days and n = 4. We propose two estimators for
kd
t4i−1

and ku
t4i−1

. The first approach is called symmetric : σt4i is estimated as an upper

bound in (3.9) and then the kd
t4i

and ku
t4i

are given as in (3.7).

σt4i = max

(∣∣∣∣St4i+1

S4
ti

− 1

∣∣∣∣ /√∆t4i+1,

)
(3.10)

kut4i
= 1 + σt4i

√
∆t4i+1 and kdt4i

= 1− σt4i
√

∆t4i+1.

The asymmetric approach is perhaps more intuitive as the empirical minimum and
maximum are taken.

kdt4i
= min

St4i+1

St4i
and kut4i

= max
St4i+1

St4i
.
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Note that max (resp. min), the empirical maximum (resp. min), is taken over a one year
sliding sample window of 52 weeks. We estimate the parameters on 52 weeks and we
implement our hedging strategy on the fifty third one. We then repeat the procedure
by sliding the window of one week.

We study below the super-hedging error εT = VT − (ST −K)+ for different strikes.
In the symmetric case, we present in Figures 3a and 3b the distribution of the super-
hedging error εT and of V0/S0 for K = 4700.

(a) Distribution of the super-hedging error
εT = VT − (ST −K)+ for K = 4700.

(b) Distribution of the ratio V0/S0 for K =
4700.

Fig 3: Symmetric case.

The asymmetric case is presented in Figures 6a and 6b still for K = 4700.

(a) Distribution of the super-hedging error
εT = VT − (ST −K)+ for K = 4700.

(b) Distribution of the ratio V0/S0 for K =
4700.

Fig 4: Asymmetric case.

The graphs in the Symmetric and Asymmetric cases look similar. So, we now compare
both methods in the table below.

In the symmetric (resp. asymmetric) case the empirical average of the error εT is
12.76 (resp. 9.47) and its standard deviation is 21.65 (resp. 14.20). This result is rather
satisfactory in comparison to the large value of the empirical mean of S0 which is equal
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Mean of V0/S0 Variance of V0/S0 Mean of εT Variance of εT P (εT < 0) VaR 95 %
Symmetric 5.61% 5.14 % 12.76 21.65 14.29% -10.33

Asymmetric 5.52% 5.22% 9.47 14.20 8.04% -1.81

Fig 5: Comparison of the two methods of estimation for K = 4700. The mean of S0 is
4844,93 and the mean of (S0 −K)+ is 278.73.

to 4844.93. Notice that we observe E(ST − K)+ ' 278.73. This empirically confirms
the efficiency of our suggested method. The empirical probability of {εT < 0} is equal
to 14.29% (resp. 8.04%) but the Value at Risk at 95 % is −10.33 (resp. -1.81) which
shows that our strategy is conservative.

Now, we compare the cost of our strategy to S0, which is the theoretical super-hedging
price in some incomplete markets (this is for example the case when kd = 0 and ku =∞,
in particular when the dynamics of S is modeled by a (discrete) geometric Brownian
motion, see [4]). The empirical average of V0/S0 is 5.61% (resp. 5.52%) and its standard
deviation is 5.14% (resp. 5.22%). This means that V0 is much smaller than S0.

Note that the huge loss (50 in the symmetric case) is linked to so-called black friday
week that occurs the 24th of June 2016. Large falls of risky assets were observed in
European markets, mainly explained by the Brexit vote. In particular, the CAC 40 felt
from 4340 to 4106, with a loss of −8% on Friday.

We also present the “at the money” case K = S0, see Fig. 6.

(a) Distribution of the super-hedging error
εT = VT − (ST −K)+ for K = S0.

(b) Distribution of the ratio V0/S0 for K =
S0.

Fig 6: Asymmetric case.

We also provide the comparison between the symmetric and asymmetric cases.

Mean of V0/S0 Variance of V0/S0 Mean of εT Variance of εT P (εT < 0) VaR 95 %
Symmetric 1.51% 0.47 % 35.69 34.11 9.82 % -11.41%

Asymmetric 1.47% 0.49% 33.37 32.78 12.50% -9.29

Fig 7: Comparison of the two methods of estimation for K = S0.
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We see that the results are better than for K = 4700: V0 is small with respect to S0

and the probability of loss is small as well.

3.3. Comparison between implied volatility and direct calibration

We finish with the comparison of the results of Section 3.2 in the symmetric case, i.e.,
when σti is given by (3.10), to the ones when σti is the implied volatility. The comparison
is made for K = 5400. The implementation of the classical approach through implied
volatility gives worse results as we may expect. Indeed, as observed in Section 3.1, the
implied volatility does not capture the coefficients as well as the empirical observations
do. Therefore, from the implied volatility, we get larger coefficients kd and smaller
coefficients ku. Thus, the minimal super-hedging prices are smaller, as observed in
Figure 8, but the super-hedging error is negative in most of the cases, see Figure 9. Our
approach is definitively more conservative.

Fig 8: Minimum Super-hedging prices K = 5400.

Fig 9: Super-heding errors for K = 5400.



/ 10

4. Appendix

Proof of Proposition 2.4 The conditions kdt−1 ∈ [0, 1] and kut−1 ∈ [1,+∞] for all t ∈
{1, . . . , T} are equivalent to the AIP condition (see Proposition 2.3). Let M = h(∞)

∞
and Mt = limz→+∞

h(t,z)
z

. We prove the second statement. Assume that AIP holds true.
We establish (i) the recursive formulation πt,T (h(ST )) = h(t, St) given by (2.4), (ii)
h(t, ·) ≥ h(t+ 1, ·) and (iii) Mt = Mt+1. The case t = T is immediate. As h : R→ R is
a convex function with dom h = R, h is clearly a FT−1-normal integrand, we can apply
Corollary 2.23 in [5] and we get that a.s.

πT−1,T (h(ST )) = inf {θST−1 + β, θ ∈ R, β ∈ R, θx+ β ≥ h(x), ∀x ∈ suppFT−1
ST}

= θ∗T−1ST−1 + β∗ = h(ess infFT−1
ST ) + θ∗T−1

(
ST−1 − ess infFT−1

ST
)

= h(kdT−1ST−1) + θ∗T−1
(
ST−1 − kdT−1ST−1

)
,

θ∗T−1 =
h(kuT−1ST−1)− h(kdT−1ST−1)

kuT−1ST−1 − kdT−1ST−1
,

with the conventions θ∗T−1 = 0
0

= 0 if either ST−1 = 0 or kuT−1 = kdT−1 = 1 and

θ∗T−1 = h(∞)
∞ = M if kdT−1 < kuT−1 = +∞. Moreover, we obtain that

πT−1,T (h(ST )) + θ∗T−1∆ST ≥ h(ST ) a.s., i.e., πT−1,T (h(ST )) ∈ PT−1,T (h(ST )).

For any t ∈ {0, . . . , T − 1} and any gt+1 ∈ L0(R,Ft+1), we introduce the one-step
super-hedging prices and cost :

Pt,t+1(gt+1) =
{
xt ∈ L0(R,Ft),∃ θt ∈ L0(R,Ft), xt + θt∆St+1 ≥ gt+1 a.s.

}
πt,t+1(gt+1) = ess infPt,t+1(gt+1)

Then, using Lemma 3.1 of [5], we get that PT−2,T (h(ST )) = PT−2,T−1(πT−1,T (h(ST ))),

πT−2,T (h(ST )) = πT−2,T−1(πT−1,T (h(ST )))

and we may continue the recursion as soon as πT−1,T (h(ST )) = h(T − 1, ST−1) where
h(T −1, ·) satisfies (2.4), is convex with domain equal to R, is such that h(T −1, z) ≥ 0
for all z ≥ 0 and MT−1 = M ∈ [0,∞). To see that, we distinguish three cases. If either
ST−1 = 0 or kuT−1 = kdT−1 = 1, πT−1,T (h(ST )) = h(ST−1) and h(T − 1, z) = h(z) =
h(T, z) satisfies all the required conditions. If kdT−1 < kuT−1 = +∞, θ∗T−1 = M and
πT−1,T (h(ST )) = h(T − 1, ST−1), where

h(T − 1, z) = h(kdT−1z) +Mz
(
1− kdT−1

)
= lim

ku→+∞

(
ku − 1

ku − kdT−1
h(kdT−1z) +

1− kdT−1
ku − kdT−1

h(kuz)

)
,

using (2.5). The term in the r.h.s. above is larger than h(z) = h(T, z) by convexity. As
kdT−1 ∈ [0, 1] and M ∈ [0,∞), h(T − 1, z) ≥ 0 for all z ≥ 0, we get that h(T − 1, ·)
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is convex function with domain equal to R since h is so. The function h(T − 1, ·) also
satisfies (2.4) (see (2.5)). Finally

MT−1 = lim
z→+∞

kdT−1
h(kdT−1z)

kdT−1z
+M

(
1− kdT−1

)
= M.

The last case is when ST−1 6= 0 and kuT−1 6= kdT−1 and kuT−1 < +∞. It is clear
that (2.6) implies (2.4). Moreover, as kdT−1 ∈ [0, 1] and kuT−1 ∈ [1,+∞), λT−1 ∈ [0, 1],
1−λT−1 ∈ [0, 1] and (2.4) implies that h(T −1, z) ≥ 0 for all z ≥ 0, h(T −1, ·) is convex
with domain equal to R since h is so. Finally, by convexity

MT−1 = λT−1k
d
T−1 lim

z→+∞

h(kdT−1z)

kdT−1z
+ (1− λT−1)kuT−1 lim

z→+∞

h(kuT−1z)

kuT−1z
= M.2
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