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Abstract For several decades, the no-arbitrage (NA) condition and the martingale
measures have played a major role in the financial asset’s pricing theory. A new
approach is proposed in [7] to estimate the super-replication cost based on convex
duality instead of martingale measures duality: Without no-arbitrage condition,
the prices are expressed using Fenchel conjugate and bi-conjugate. In this paper,
we propose an numerical illustration of the method on real data from the french
CAC 40 index.
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1 Introduction

The problem of giving a fair price to a financial asset G is central in the economic
and financial theory. A selling price should be an amount which is enough to
initiate a hedging strategy for G, i.e. a strategy whose value at maturity is always
above G. It seems also natural to ask for the infimum of such amount. This is the
so called super-replication price and it has been introduced in the binomial setup
for transaction costs by [5]. Characterizing and computing the super-replication
price has become one of the central issue in mathematical finance theory, [37].

In the paper [7], a super-hedging or super-replicating price is the initial value
of some super-hedging strategy. The set of super-hedging prices and its infimum
value, called the infimum super-hedging cost, are computed without any no-arbitrage
condition. Moreover, the super-hedging costs are finite if and only if the weak
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no-arbitrage condition AIP (Absence of Instantaneous Profits) holds. Indeed, the
pricing formula that we obtain (see (2.6)) shows that, if the initial stock price does
not belong to the convex hull of the conditional support of the stock value at the
end of the period, then the super-hedging cost is equal to −∞.

Under AIP condition, the one-step infimum super-hedging cost is the concave
envelop of the payoff relatively to the convex envelop of the conditional support. In
the multiple-period framework, we propose a recursive scheme for the computation
of the super-hedging prices of a convex option. We obtain the same computation
scheme as in [6] and [8] but here it is obtained by only assuming AIP instead
of the stronger NA condition. To illustrate the method, we calibrate historical
data of the french index CAC 40 to our model and implement our super-hedging
strategy for a call option. Our procedure is, somehow, model free and based only
on statistical estimations. We actually observe that the same strategy, based on
the implied volatility, provides worse results but at a lower price.

The paper is organized as follows. In Section 2, we present the one-period
framework with the main results of [7] while in Section 3 the multi-period setting is
deduced. Section 4 proposes some explicit pricing for a convex payoff and numerical
experiments.

In the remaining of this introduction we present our framework and notations.
Let (Ω, (Ft)t∈{0,...,T}FT , P ) be a complete filtered probability space, where T is

the time horizon. For any σ-algebra H and any k ≥ 1, we denote by L0(Rk,H) the
set of H-measurable and Rk-valued random variables. We consider a non-negative
process S := {St, t ∈ {0, . . . , T}} such that St ∈ L0(Rd,Ft) for all t ∈ {0, . . . , T}.
The vector St represents the price at time t of the d risky assets in the financial
market of consideration. Trading strategies are given by processes θ := {θt, t ∈
{0, . . . , T − 1}} such that θt ∈ L0(Rd,Ft) for all t ∈ {0, . . . , T − 1}. The vector θt
represents the investor’s holding in the d risky assets between times t and t+1. We
assume that trading is self-financing and that the riskless asset’s price is a constant
equal to 1. The value at time t of a portfolio θ starting from initial capital x ∈ R
is then given by

V x,θt = x+
t∑

u=1

θu−1∆Su,

where ∆Su = Su − Su−1 for u ≥ 1 and xy is the scalar product of x and y.

2 The one-period framework

Let Ft and Ft+1 be two complete sub-σ-algebras of FT such that Ft ⊆ Ft+1

and which represent respectively the initial and the final information. Let St ∈
L0(Rd,Ft) and St+1 ∈ L0(Rd,Ft+1) be two non-negative random variables. They
represent the initial and the final prices of the d risky assets. We also consider a con-
tingent claim Zt+1 ∈ L0(R,Ft+1). We will be particularly interested by derivatives
on St+1 i.e. Zt+1 = g(St+1) with g : Ω × Rd → R and g(St+1) : ω 7→ g(St+1)(ω) =
g(ω, St+1(ω)).
In this section, we present a characterization of Pt(Zt+1) the one-step set of super-
hedging (or super-replicating) prices of Zt+1 and of its infimum value.
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Definition 2.1. The set Pt(Zt+1) of super-hedging prices of the contingent claim

Zt+1 ∈ L0(R,Ft+1) consists in the initial values of super-hedging strategies θ

Pt(Zt+1) = {xt ∈ L0(R,Ft), ∃ θt ∈ L0(Rd,Ft), xt + θt(St+1 − St) ≥ Zt+1 a.s.}.

The infimum super-hedging cost of Zt+1 is defined by pt(Zt+1) := ess infPt(Zt+1).

When Zt+1 = g(St+1) we write Pt(g) = Pt(Zt+1) and pt(g) = pt(Zt+1).

The notions of conditional essential infimum ess infFt
and conditional essential

supremum ess supFt
are recalled in the Appendix, see Proposition 5.4. We also

need the notion of conditional support suppFt
St+1 of St+1, which is introduced in

Definition 5.1.

As xt ∈ Pt(Zt+1) if and only if there exists θt ∈ L0(Rd,Ft) such that xt ≥
Zt+1−θt(St+1−St) a.s., we get by definition of the conditional essential supremum
(see Proposition 5.4) that

Pt(Zt+1) =
{

ess supFt
(Zt+1 − θt(St+1 − St)) , θt ∈ L0(Rd,Ft)

}
+ L0(R+,Ft),(2.1)

pt(Zt+1) = ess infFt

{
ess supFt

(Zt+1 − θt(St+1 − St))) , θ ∈ L0(Rd,Ft)
}
. (2.2)

In the case where Zt+1 = g(St+1) we are able to perform an explicit computa-
tion of pt(Zt+1). To do so we recall that the (upper) closure h of h is the smallest
u.s.c. function which dominates h i.e. h(x) = lim supy→x h(y). The lower closure is
defined symmetrically. The proof of the following theorem is given in [7].

Theorem 2.2. The set Pt(g) of Definition 2.1 can be expressed as follows

Pt(g) =
{

ess supFt
(g(St+1)− θtSt+1) + θtSt, θt ∈ L0(Rd,Ft)

}
+ L0(R+,Ft). (2.3)

Suppose that g is a Ft-normal integrand. Then, for θt ∈ L0(Rd,Ft), we get that

ess supFt
(g(St+1)− θtSt+1) = sup

z∈suppFt
St+1

(g(z)− θtz) = f∗(−θt) a.s. (2.4)

where f and f∗, its Fenchel-Legendre conjugate, are given by

f(ω, z) = −g(ω, z) + δsuppFt
St+1(ω)(ω, z)

f∗(ω, x) = sup
z∈Rd

(xz − f(ω, z)) , (2.5)

and δC(ω)(ω, z) = 0 if z ∈ C(ω) and +∞ else. Moreover suppose that g is proper and

that there exists some concave function ϕ such that g ≤ ϕ <∞ on convsuppFt
St+1

1.

We have that a.s.

pt(g) = −f∗∗(St) = conc(g, suppFt
St+1)(St)− δconvsuppFt

St+1
(St) (2.6)

= inf {αSt + β, α ∈ Rd, β ∈ R, αz + β ≥ g(z), ∀z ∈ suppFt
St+1} − δconvsuppFt

St+1
(St),

where f∗∗ is the Fenchel-Legendre biconjugate of f i.e. f∗∗(ω, x) = supz∈Rd (xz − f∗(ω, z))
and the relative concave envelop of g with respect to suppFt

St+1 is given by

conc(g, suppFt
St+1)(x) = inf{v(x), v is concave and v(z) ≥ g(z), ∀z ∈ suppFt

St+1}.

Notice that the infimum super-hedging cost is not a priori a price, i.e. an
element of Pt(g), as the later may be an open interval.

1 This is equivalent to assume that there exists α, β ∈ R, such that g(x) ≤ αx + β for all
x ∈ convsuppHY .
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2.1 The AIP condition

Theorem 2.2 shows that if St /∈ convsuppFt
St+1 the infimum super-hedging cost

of a European claim pt(g) equals −∞. Avoiding this situation leads to the notion
of absence of immediate profit that we present now. Let Rt,t+1 be the set of all
Ft+1-measurable claims that can be super-replicate from 0:

Rt,t+1 :=
{
θt(St+1 − St)− ε+t+1, θt ∈ L

0(Rd,Ft), ε+t+1 ∈ L
0(R+,Ft+1)

}
. (2.7)

Then

Pt(0) = {xt ∈ L0(R,Ft),∃ θt ∈ L0(Rd,Ft), xt + θt(St+1 − St) ≥ 0 a.s.}
= (−Rt,t+1) ∩ L0(R,Ft).

Note that 0 ∈ Pt(0), so pt(0) ≤ 0. We say that there is an immediate profit when
P (pt(0) < 0) > 0 i.e. if it is possible to super-replicate the contingent claim 0 at a
negative super-hedging price.

Definition 2.3. There is an immediate profit (IP) if P (pt(0) < 0) > 0. On the

contrary case if pt(0) = 0 a.s. we say that the Absence of Immediate Profit (AIP)

condition holds.
We have the following characterisation of the AIP condition, see the proof in

[7].

Proposition 2.4. AIP holds if and only if one of the following condition holds true.

1. St ∈ convsuppFt
St+1 a.s. or 0 ∈ convsuppFt

(St+1 − St) a.s.

2. Pt(0) ∩ L0(R−,Ft) = {0} or Rt,t+1 ∩ L0(R+,Ft) = {0}.

Remark 2.5. In the case d = 1, (5.22) implies that the previous conditions are
equivalent to St ∈ [ess infFt

St+1, ess supFt
St+1] ∩R a.s.

The AIP condition is very easy to check in practice as it suffices to observe
that the price of any non negative payoff is non negative.

Corollary 2.6. The AIP condition holds true if and only if pt(g) ≥ 0 a.s. for some

non-negative Ft-normal integrand g such that there exists some concave function ϕ

verifying that g ≤ ϕ <∞.

In particular, the AIP condition holds true if and only if the infimum super-
hedging cost of some European call option is non-negative. Note that, under AIP,
the price of some non-zero payoff call option may be zero.

Corollary 2.7. Suppose that AIP holds true. Let g be a proper Ft-normal inte-

grand such that there exists some concave function ϕ verifying that g ≤ ϕ < ∞ on

convsuppFt
St+1. Then, a.s.

pt(g) = conc(g, suppFt
St+1)(St)

= inf {αSt + β, α ∈ Rd, β ∈ R, αx+ β ≥ g(x), ∀x ∈ suppFt
St+1}.

(2.8)

If g is concave and u.s.c., pt(g) = g(St) a.s.

We finish the one-period analysis with the computation of the infimum super-
hedging cost of a convex derivative when d = 1. In this case, the cost is in fact a
super-hedging price and we get the super-hedging strategy explicitly.
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Corollary 2.8. Suppose that AIP holds true and that d = 1. Let g : R → R be a

non-negative convex function with dom g = R and limx→∞ x−1g(x) = M ∈ [0,∞),

then a.s.

pt(g) = θ∗t St + β∗ = g(ess infFt
St+1) + θ∗t (St − ess infFt

St+1) , (2.9)

θ∗t =
g(ess supFt

St+1)− g(ess infFt
St+1)

ess supFt
St+1 − ess infFt

St+1
, (2.10)

where we use the conventions θ∗ = 0
0 = 0 in the case ess supFt

St+1 = ess infFt
St+1

a.s. and θ∗t = g(∞)
∞ = M if ess infFt

St+1 < ess supFt
St+1 = +∞ a.s. Moreover,

pt(g) ∈ Pt(g).

Example 2.9. We compute the price of a call option under AIP in the case d = 1.
Let G = g(St+1) = (St+1 −K)+ for some K ≥ 0.

– If K ≥ ess supFt
St+1 then St+1 −K ≤ ess supFt

St+1 −K and G = 0. As AIP
condition holds true, pt(g) = pt(0) = 0.

– If K ≤ ess infFt
St+1 then St+1 −K ≥ ess infFt

St+1 −K and G = St+1 −K. As
g is concave and u.s.c., pt(g) = g(St) = St −K a.s.

– If ess infFt
St+1 ≤ K ≤ ess supFt

St+1. Then, (2.10) and (2.9) imply that

pt(g) =
ess supFt

St+1 −K
ess supFt

St+1 − ess infFt
St+1

(St − ess infFt
St+1)

on {ess supFt
St+1 6= ess infFt

St+1} and 0 else. So pt(g) = 0 if and only if
St = ess infFt

St+1 or ess supFt
St+1 = ess infFt

St+1. A non-negative call option
can have a zero price.

3 The multi-period framework

For every t ∈ {0, . . . , T}, the set RTt of all claims that can be super-replicated from
the zero initial endowment at time t is defined by

RTt :=

{
T∑

u=t+1

θu−1∆Su − ε+T , θu−1 ∈ L0(Rd,Fu−1), ε+T ∈ L
0(R+,FT )

}
. (3.11)

The set of (multi-period) super-hedging prices and the (multi-period) infimum
super-hedging cost of some contingent claim gT ∈ L0(R,FT ) at time t are given
for all t ∈ {0, . . . , T}, by

PT,T (gT ) = {gT } and πT,T (gT ) = gT

Pt,T (gT ) = {xt ∈ L0(R,Ft), ∃R ∈ RTt , xt +R = gT a.s.} (3.12)

πt,T (gT ) = ess infFt
Pt,T (gT ).

As in the one-period case, it is clear that the infimum super-hedging cost is not
necessarily a price in the sense that πt,T (gT ) /∈ Pt,T (gT ) when Pt,T (gT ) is not
closed.
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We now define a local version of super-hedging prices. The set of one-step
super-hedging prices of the payoff gt+1 ∈ L0(R,Ft+1) and it associated infimum
super-hedging cost are given by

Pt,t+1(gt+1) =
{
xt ∈ L0(R,Ft), ∃ θt ∈ L0(Rd,Ft), xt + θt∆St+1 ≥ gt+1 a.s.

}
πt,t+1(gt+1) = ess infFt

Pt,t+1(gt+1)

= ess infFt

{
ess supFt

(gt+1 − θt∆St+1) , θt ∈ L0(Rd,Ft)
}
, (3.13)

see (2.2). In the following, we extend the definition of Pt,u(gu), u ≥ t + 1, so
that the argument gu may be a subset Gu ⊆ L0(R,Fu). Precisely, Pt,u(Gu) =
∪gu∈Gu

Pt,u(gu). The following lemma makes the link between local and global
super-hedging prices. It also provides a dynamic programming principle, meaning
that the prices are time consistent.

Lemma 3.1. Let gT ∈ L0(R,FT ) and t ∈ {0, . . . , T − 1}. Then

Pt,T (gT ) = Pt,t+1(Pt+1,T (gT )) and πt,T (gT ) ≥ πt,t+1(πt+1,T (gT )).

Moreover, assume that πt+1,T (gT ) ∈ Pt+1,T (gT ). Then

Pt,T (gT ) = Pt,t+1(πt+1,T (gT )) and πt,T (gT ) = πt,t+1(πt+1,T (gT )).

Remark 3.2. Under AIP, if at each step, πt+1,T (gT ) ∈ Pt+1,T (gT ) and if we
have πt+1,T (gT ) = gt+1(St+1) for some “nice” Ft-normal integrand gt+1, we will
get from Corollary 2.7 that πt,T (gT ) = conc(gt+1, suppFt

St+1)(St) a.s. We will
propose in Section 4 a quite general setting where this holds true.

Note that the super-hedging problem is solved for general claims ξT through
the formula (3.13). For claims of Asian type g((Su)u≤T ) or of American type, what
we propose for European claims could be easily adapted. Consider a general claim
ξT and the natural filtration i.e. the one generated by the price process S. Then for
any self-financing portfolio θ, VT = x+

∑T
t=1 θt−1∆St ≥ ξT if and only if VT ≥ ξ̃T

where ξ̃T = esssupFT
ξT . Thus ξT and ξ̃T have the same super-replication cost and

as ξ̃T is FT -measurable, it is of the form ξ̃T = g((Su)u≤T ). Of course, in practice,
it is necessary to have an idea about g but the same difficulty arises under the NA
condition.

Definition 3.3. The AIP condition holds true if for all t ∈ {0, . . . , T}

Pt,T (0) ∩ L0(R−,Ft) = {0}.

We now study the link between global and local immediate profit. The global
(resp. local) profit means that it is possible to super-replicate from a negative cost
at time t the claim 0 payed at time T (resp. time t+1). The next proposition shows
that the local and global AIP conditions are equivalent in the following sense.

Proposition 3.4. The following assertions are equivalent.

1. Pt,T (0) ∩ L0(R−,Ft) = {0} for all t ∈ {0, . . . , T − 1} i.e. AIP.

2. Pt,t+1(0) ∩ L0(R−,Ft) = {0} for all t ∈ {0, . . . , T − 1}.
3. St ∈ convsuppFt

St+1 a.s. or 0 ∈ convsuppFt
∆St+1 a.s. for all t ∈ {0, . . . , T − 1}.

4. πt,T (0) = 0 a.s. for all t ∈ {0, . . . , T − 1}.
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4 Numerical experiments

Proposition 4.1. Suppose that the model is defined by ess infFt−1
St = kdt−1St−1 a.s.

and ess supFt−1
St = kut−1St−1 a.s. where (kdt−1)t∈{1,...,T}, (kut−1)t∈{1,...,T} and S0

are deterministic non-negative numbers.

The AIP condition holds true if and only if kdt−1 ∈ [0, 1] and kut−1 ∈ [1,+∞] for

all t ∈ {1, . . . , T}.
Suppose that the AIP condition holds. Let h : R → R be a non-negative convex

function with dom h = R such that limz→+∞
h(z)
z ∈ [0,∞). Then the infimum super-

hedging cost of the European contingent claim h(ST ) is a price and it is given by

πt,T (h) = h(t, St) ∈ Pt,T (h(ST ))a.s. where

h(T, x) = h(x)

h(t− 1, x) = λt−1h(t, kdt−1x) + (1− λt−1)h (t, kut−1x) ,
(4.14)

where λt−1 =
kut−1−1

kut−1−kdt−1

∈ [0, 1] and 1− λt−1 =
1−kdt−1

kut−1−kdt−1

∈ [0, 1], with the following

conventions. When kdt−1 = kut−1 = 1 or St−1 = 0, λt−1 = 0
0 = 0 and 1 − λt−1 = 1

and when, kdt−1 < kut−1 =∞, λt−1 = ∞
∞ = 1,

(1− λt−1)h(t, (+∞)x) =(1− kdt−1)x
h(t, (+∞x))

(+∞x)
= (1− kdt−1)x lim

z→+∞

h(z)

z
. (4.15)

Moreover, for every t ∈ {1, . . . , T}, limz→+∞
h(z)
z = limz→+∞

h(t,z)
z and h(·, x) is

non-increasing for all x ≥ 0.

The strategy associated to the infimum super-hedging price is given by:

θ∗t =
h(t+ 1, kut St)− h(t+ 1, kdt St)

(kut − kdt )St
.

Proof. The conditions kdt−1 ∈ [0, 1] and kut−1 ∈ [1,+∞] for all t ∈ {1, . . . , T} are

equivalent to the AIP condition (see Remark 2.5). Let M = h(∞)
∞ and Mt =

limz→+∞
h(t,z)
z . We prove the second statement. Assume that AIP holds true. We

establish (i) the recursive formulation πt,T (h(ST )) = h(t, St) given by (4.14), (ii)
h(t, ·) ≥ h(t+1, ·) and (iii) Mt = Mt+1. The case t = T is immediate. As h : R→ R
is a convex function with dom h = R, h is clearly a FT−1-normal integrand, we
can apply Corollary 2.8 (see (2.9) and (2.10)) and we get that a.s.

πT−1,T (h(ST )) = h(kdT−1ST−1) + θ∗T−1

(
ST−1 − kdT−1ST−1

)
,

θ∗T−1 =
h(kuT−1ST−1)− h(kdT−1ST−1)

kuT−1ST−1 − kdT−1ST−1

,
(4.16)

with the conventions θ∗T−1 = 0
0 = 0 if either ST−1 = 0 or kuT−1 = kdT−1 = 1 and

θ∗T−1 = h(∞)
∞ = M if kdT−1 < kuT−1 = +∞. Moreover, using (2.8) and (2.9), we

obtain that

πT−1,T (h(ST )) + θ∗T−1∆ST ≥ h(ST ) a.s. i.e. πT−1,T (h(ST )) ∈ PT−1,T (h(ST )).
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So, using Lemma 3.1, we get that PT−2,T (h(ST )) = PT−2,T−1(πT−1,T (h(ST ))),

πT−2,T (h(ST )) = πT−2,T−1(πT−1,T (h(ST )))

and we may continue the recursion as soon as πT−1,T (h(ST )) = h(T − 1, ST−1)
where h(T − 1, ·) satisfies (4.14), is convex with domain equal to R, is such that
h(T − 1, z) ≥ 0 for all z ≥ 0 and MT−1 = M ∈ [0,∞). To see that, we distinguish
three cases. If either ST−1 = 0 or kuT−1 = kdT−1 = 1, πT−1,T (h(ST )) = h(ST−1)

and h(T − 1, z) = h(z) = h(T, z) satisfies all the required conditions. If kdT−1 <

kuT−1 = +∞, θ∗T−1 = M and πT−1,T (h(ST )) = h(T − 1, ST−1), where

h(T − 1, z) = h(kdT−1z) +Mz
(

1− kdT−1

)
= lim

ku→+∞

(
ku − 1

ku − kdT−1

h(kdT−1z) +
1− kdT−1

ku − kdT−1

h(kuz)

)
,

using (4.15). The term in the r.h.s. above is larger than h(z) = h(T, z) by convexity.
As kdT−1 ∈ [0, 1] and M ∈ [0,∞), h(T −1, z) ≥ 0 for all z ≥ 0, we get that h(T −1, ·)
is convex function with domain equal to R since h is so. The function h(T − 1, ·)
also satisfies (4.14) (see (4.15)). Finally

MT−1 = lim
z→+∞

kdT−1

h(kdT−1z)

kdT−1z
+M

(
1− kdT−1

)
= M.

The last case is when ST−1 6= 0 and kuT−1 6= kdT−1 and kuT−1 < +∞. It is

clear that (4.16) implies (4.14). Moreover as kdT−1 ∈ [0, 1] and kuT−1 ∈ [1,+∞),
λT−1 ∈ [0, 1], 1− λT−1 ∈ [0, 1] and (4.14) implies that h(T − 1, z) ≥ 0 for all z ≥ 0,
h(T − 1, ·) is convex with domain equal to R since h is so. Moreover, by convexity

MT−1 = λT−1k
d
T−1 lim

z→+∞

h(kdT−1z)

kdT−1z
+ (1− λT−1)kuT−1 lim

z→+∞

h(kuT−1z)

kuT−1z
= M.2

Remark 4.2. The infimum super-hedging cost of the European contingent claim
h(ST ) in our model is a price, precisely the same than the price we get in a binomial
model St ∈ {kdt−1St−1, k

u
t−1St−1} a.s., t ∈ {1, . . . , T}. Moreover, as in Corollary 2.6,

one can prove that the AIP condition holds at every instant t if and only if the
super-hedging price of some European call option at t is non-negative.

4.0.1 Calibration

In this sub-section, we suppose that the discrete dates are given by tni = iT
n ,

i ∈ {0, . . . , n} where n ≥ 1. We assume that for i ∈ {1, . . . , n}

kutni−1
= 1 + σtni−1

√
∆tni and kdtni−1

= 1− σtni−1

√
∆tni ≥ 0, (4.17)

where t 7→ σt is a positive Lipschitz-continuous function on [0, T ]. In this sub-
section our aim is to calibrate σ. Note that the assumptions on the multipliers
kutni−1

and kdtni−1
imply that∣∣∣∣Stni+1

Snti
− 1

∣∣∣∣ ≤ σtni √∆tni+1, a.s. (4.18)
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By Proposition 4.1, the infimum super-hedging cost of the European Call option
(ST − K)+ is given by hn

(
tni , Stni

)
where hn is defined by (4.14) with terminal

condition hn(T, x) = g(x) = (x − K)+. We extend the function hn on [0, T ] in
such a way that hn is constant on each interval [tni , t

n
i+1[, i ∈ {0, . . . , n}. Such a

scheme is proposed by Milstein [29] where a convergence theorem is proved when
the terminal condition, i.e. the payoff function, is smooth. Precisely, the sequence
of functions (hn(t, x))n≥1 converges uniformly to h(t, x), solution of the Black and
Scholes formula with time-dependent volatility:

∂th(t, x) + σ2t
x2

2
∂xxh(t, x) = 0, h(T, x) = g(x). (4.19)

In [29], it is supposed that the successive derivatives of the solution of the P.D.E.
solution h are uniformly bounded. This is not the case for the Call payoff function
g. On the contrary the successive derivatives of the solution of the P.D.E. explode
at the horizon date, see [26]. In [2], it is proven that the uniform convergence
still holds when the payoff function is not smooth provided that the successive
derivatives of the solution of the P.D.E. do not explode too much.

Supposing that ∆tni is closed to 0, we can identify the observed prices of the
Call option with the theoretical limit prices h(t, St) at any instant t given by (4.19).
For several strikes, matching the observed prices to the theoretical ones allows to
deduce the associated implied volatility t 7→ σt, see [11] for a study of the implied
volatility.

The data set is composed of historical values of the french index CAC 40 and
European call option prices of maturity 3 months from the 23rd of October 2017
to the 19th of January 2018. The values of S are distributed as in Figure 1.

Fig. 1: Distribution of the observed prices.

We compute the proportion of observations satisfying (4.18). The results are
satisfactory for strikes lower that 5000, see Fig. 2. Note that, when the strikes are
too large with respect to the current price S, price observations are less available
for the calibration, see Figure 1. This could explain the degradation of our results.

4.0.2 Super-hedging prices

We now propose an approach where the coefficients ku and kd of Proposition 4.1
are not strike dependent as before and which is in this sense model free. The
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Strike 4800 4900 5000 5100 5200 5300

Ratio 96,7% 95,1% 95,1% 88,5% 86,9% 80,3%

Strike 5400 5500 5600 5700 5800 5900

Ratio 70,5% 78,7% 75,4% 77,0% 73,8% 75,4%

Fig. 2

data set is composed of historical daily closing values of the french index CAC
40 from the 5th of January 2015 to the 12th of March 2018. The chosen interval
[0, T ] corresponds to one week of 5 working days so that the discrete dates are
t4i , i ∈ {0, · · · , 4} and n = 4. We estimate the parameters of the model kdtni−1

and

kutni−1
. The first approach is called symmetric : σti is estimated as an upper bound

in (4.18) and then the kd and ku are given in (4.17). The asymmetric approach
is the intuitive approach where the empirical minimum and maximum are taken.
For i ∈ {0, · · · , 3}

σti = max

(∣∣∣∣Sti+1

Sti
− 1

∣∣∣∣ /√∆t4i+1,

)
(4.20)

kdtni−1
= min

Stni
Stni−1

and kutni−1
= max

Stni
Stni−1

.

Note that max (resp. min), the empirical maximum (resp. min), is taken over a one
year sliding sample window of 52 weeks. We estimate the parameters on 52 weeks
and we implement our hedging strategy on the fifty third one. We then repeat the
procedure by sliding the window of one week.

For a payoff function g(x) = (x−K)+, we implement the super-hedging strate-
gies (θ∗t4i

)i∈{0,...,3} associated to the super-hedging cost given by Proposition 4.1

and (4.16). We denote by VT the terminal value of our strategy starting from the
super-hedging cost V0 = π0,T = h(0, S0) i.e. VT = V0 +

∑3
i=0 θ

∗
t4i
∆St4i+1

.

We study below the super-hedging error εT = VT − (ST − K)+ for different
strikes. In the symmetric case, we present in Figures 3a and 3b the distribution
of the super-hedging error εT and of V0/S0 for K = 4700. The graphs in the
asymmetric case are similar.

(a) Distribution of the super-hedging error
εT = VT − (ST −K)+ for K = 4700.

(b) Distribution of the ratio V0/S0 for K =
4700.

Fig. 3: Symmetric case.
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We now compare the result of both methods in the table below. In the sym-

Mean of V0/S0 Variance of V0/S0 Mean of εT Variance of εT P (εT < 0) VaR 95 %

Symmetric 5.61% 5.14 % 12.76 21.65 14.29% -10.33

Asymmetric 5.52% 5.22% 9.47 14.20 8.04% -1.81

Fig. 4: Comparison of the two methods of estimation for K = 4700. The mean of
S0 is 4844,93 and the mean of (S0 −K)+ is 278.73.

metric (resp. asymmetric) case the empirical average of the error εT is 12.76 (resp.
9.47) and its standard deviation is 21.65 (resp. 14.20). This result is rather satis-
factory in comparison to the large value of the empirical mean of S0 which is equal
to 4044. Notice that we observe E(ST −K)+ ' 282.69. This empirically confirms
the efficiency of our suggested method. The empirical probability of {εT < 0} is
equal to 14.29% (resp. 8.04%) but the Value at Risk at 95 % is −10.33 (resp. -1.81)
which shows that our strategy is conservative.

Now we estimate the cost of our strategy in comparison with S0. The empirical
average of V0/S0 is 5.61% (resp. 5.52%) and its standard deviation is 5.14% (resp.
5.22%). This means that V0 is much smaller that S0 which is the theoretical super-
hedging price in some incomplete markets (this is for example the case when kd = 0
and ku = ∞, in particular when the dynamics of S is modeled by a (discrete)
geometric Brownian motion, see [6]). Note that the huge loss (50 in the symmetric
case) is linked to so-called black friday week that occurs the 24th of June 2016.
Large falls of risky assets were observed in European markets, mainly explained
by the Brexit vote. In particular, the CAC 40 felt from 4340 to 4106, with a loss
of −8% on Friday.

We also present the “at the money” case K = S0, see Fig. 5. We see that
the results are better than for K = 4700: V0 is small with respect to S0 and the
probability of loss is small as well.

Mean of V0/S0 Variance of V0/S0 Mean of εT Variance of εT P (εT < 0) VaR 95 %

Symmetric 1.51% 0.47 % 35.69 34.11 9.82 % -11.41%

Asymmetric 1.47% 0.49% 33.37 32.78 12.50% -9.29

Fig. 5: Comparison of the two methods of estimation for K = S0. The mean of S0
is 4844.93.

Fig. 6

Remark 4.3. We have compared our results, i.e. when σti is given by (4.20), to the
ones where σti is the implied volatility. The comparison is made for K = 5400, see
Figure 6. The implementation of the classical approach gives worse results as we
may expect. Indeed, as observed in the Section 4.0.1, the implied volatility does
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not capture the coefficients as well as the empirical observations do. Therefore,
from the implied volatility, we get larger coefficients kd and smaller coefficients
ku. Thus, the minimal super-hedging prices are smaller, as observed in Figure 6,
but the super-hedging error is negative in most of the cases, see Figure 7. Our
approach is definitively more conservative.

5 Appendix

We recall some results and notations that will be used without further references
in the rest of the paper. The proofs are given in [7]. Let h : Ω × Rd → R. The
effective domain of h(ω, ·) is defined by

domh(ω, ·) := {x ∈ Rd, h(ω, x) <∞}

and h(ω, ·) is proper if dom h(ω, ·) 6= ∅ and h(ω, x) > −∞ for all x ∈ Rd. Next,
if h is Ft-normal integrand (see Definition 14.27 in [34]) then h is Ft ⊗ B(Rd)-
measurable and is lower semi-continuous (l.s.c. in the sequel, see [34, Definition
1.5]) in x and the converse holds true if Ft is complete for some measure, see [34,
Corollary 14.34]. Note that if zt ∈ L0(Rd,Ft) and h is Ft⊗B(Rd)-measurable, then
h(zt) ∈ L0(Rd,Ft).
A random set K : Ω � Rd is Ft-measurable if for all open set O of Rd, the subset
{ω ∈ Ω, O ∩ K(ω) 6= ∅} ∈ Ft. If K is a Ft-measurable and closed-valued random
set of Rd, then K admits a Castaing representation (ηn)n∈N (see [34, Theorem
14.5 ]). This means that K(ω) = cl{ηn(ω), n ∈ N} for all ω ∈ domK := {ω ∈
Ω, K(ω) ∩Rd 6= ∅} where the closure is taken in Rd.

We introduce the conditional support of X ∈ L0(Rd,Ft+1) with respect to Ft.

Definition 5.1. Let µ be a Ft-stochastic kernel i.e. for all ω ∈ Ω, µ(·, ω) is a prob-

ability measure on B(Rd) and µ(A, ·) is Ft-measurable for all A ∈ B(Rd). We define

the random set Dµ : Ω � Rd by

Dµ(ω) :=
⋂{

A ⊂ Rd, closed, µ(A,ω) = 1
}
. (5.21)

For ω ∈ Ω, Dµ(ω) ⊂ Rd is called the support of µ(·, ω). Let Xt+1 ∈ L0(Rd,Ft+1), we

denote by suppFt
Xt+1 the set defined in (5.21) when µ(A,ω) = P (Xt+1 ∈ A|Ft)(ω)

is a regular version of the conditional law of Xt+1 knowing Ft. The random set

suppFt
Xt+1 is called the conditional support of Xt+1 with respect to Ft.

Remark 5.2. When Ft is the trivial sigma-algebra, suppFt
Xt+1 is just the usual

support of Xt+1 (see p441 of [1]). Theorems 12.7 and 12.14 of [1] show that
P (Xt+1 ∈ .|Ft) admits a unique support suppFt

Xt+1 ⊂ Rd such that P (Xt+1 ∈
suppFt

Xt+1|Ft) = 1 a.s. i.e. suppFt
Xt+1 is a.s. non-empty.

For simplicity we will assume that Xt+1(ω) ∈ suppFt
Xt+1(ω) for all ω ∈ Ω. More-

over, if 0 ≤ Xt+1 <∞, Dom supp Ft
Xt+1 = Ω.

Lemma 5.3. Let µ as in Definition 5.1. Dµ is non-empty, closed-valued and Ft-
measurable.

It is possible to incorporate measurability in the definition of the essential
supremum (see [22, Section 5.3.1] for the definition and the proof of existence of
the classical essential supremum). This has been done by [3] for a single real-valued
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random variable and by [23] for a family of vector-valued random variables and
with respect to a random partial order (see [23, Definition 3.1 and Lemma 3.9]).
Let us recall the following:

Proposition 5.4. Let Ft and Ft+1 be complete σ-algebras such that Ft ⊆ Ft+1 and let

Γ = (γi)i∈I be a family of real-valued FT -measurable random variables. There exists

a unique Ft-measurable random variable γt ∈ L0(R ∪ {∞},Ft) denoted ess supFt
Γ

which satisfies the following properties

1. For every i ∈ I, γt ≥ γi a.s.

2. If ζt ∈ L0(R ∪ {∞},Ft) satisfies ζt ≥ γi a.s. ∀i ∈ I, then ζt ≥ γt a.s.

The conditional essential infimum ess infFt
Γ is defined symmetrically.

Lemma 5.5. Assume that d = 1 and consider Xt+1 ∈ L0(R,Ft+1). Then, we have

a.s. that

ess infFt
Xt+1 = inf suppFt

Xt+1, ess supFt
Xt+1 = sup suppFt

Xt+1,

ess infFt
Xt+1 ∈ suppFt

Xt+1 on the set {ess infFt
Xt+1 > −∞},

ess supFt
Xt+1 ∈ suppFt

Xt+1 on the set {ess supFt
Xt+1 <∞},

convsuppFt
Xt+1 = [ess infFt

Xt+1, ess supFt
Xt+1] ∩R, (5.22)

where convsuppFt
Xt+1 is the convex envelop of suppFt

Xt+1 i.e. the smallest convex

set that contains suppFt
Xt+1.

The following proposition is one of the main ingredient of the paper. It allows
to compute a conditional essential supremum as a classical supremum but on a
random set. A generalization is given in [27], see e.g. [28].

Proposition 5.6. Let X ∈ L0(Rd,FT ) be such that dom suppFt
X = Ω and let h :

Ω ×Rd → R be a Ft ⊗ B(Rd)-measurable function which is l.s.c. in x. Then,

ess supFt
h(X) = sup

x∈suppFt
X
h(x) a.s. (5.23)
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