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Abstract For several decades, the no-arbitrage (NA) condition and the martin-
gale measures have played a major role in the financial asset’s pricing theory.
We propose a new approach for estimating the super-replication cost based on
convex duality instead of martingale measures duality : The prices are expressed
using Fenchel conjugate and bi-conjugate. The super-hedging problem leads en-
dogenously to a weak condition of NA called Absence of Immediate Profit (AIP).
We propose several characterizations of AIP and study the relation with classical
notions of no-arbitrage. We also give some promising numerical illustrations.
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1 Introduction

The problem of giving a fair price to a financial asset G is central in the economic
and financial theory. A selling price should be an amount which is enough to ini-
tiate a hedging strategy for G, i.e. a strategy whose value at maturity is always
above G. It seems also natural to ask for the infimum of such amount. This is the
so called super-replication price and it has been introduced in the binomial setup
for transaction costs by [5]. Characterizing and computing the super-replication
price has become one of the central issue in mathematical finance theory, [35].
Until now it was intimately related to the no-arbitrage (NA) condition. This con-
dition asserts that starting from a zero wealth it is not possible to reach a positive
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one (non negative almost surely and strictly positive with strictly positive prob-
ability). Characterizing the NA condition or, more generally, the No Free Lunch
condition leads to the Fundamental Theorem of Asset Pricing (FTAP in short).
This theorem proves the equivalence between those absence of arbitrage conditions
and the existence of equivalent risk-neutral probability measures (also called mar-
tingale measures or pricing measures) which are equivalent probability measures
under which the (discounted) asset price process is a martingale. This was initially
formalised in [15], [16] and [23] while in [9] the FTAP is formulated in a general
discrete-time setting under the NA condition. The literature on the subject is huge
and we refer to [10] and [20] for a general overview. Under the NA condition, the
super-replication price of G is equal to the supremum of the (discounted) expec-
tation of G computed under the risk-neutral probability measures. This is the so
called dual formulation of the super-replication price or superhedging theorem.
We refer to [33] and [12] and the references therein.

In this paper, a super-hedging or super-replicating price is the initial value of
some super-hedging strategy. We do not postulate any normative assumption on
the financial market and we analyze from scratch the set of super-hedging prices
and its infimum value which will be called the infimum super-hedging cost. We
ask ourselves what the finiteness of the super-hedging cost can tell us about free
lunch like opportunities in the market. To do so, we compute the super-hedging
cost using convex duality instead of the usual financial duality based on martin-
gale measures under the NA condition. We show under mild assumptions that the
one-step set of super-hedging prices can be expressed using Fenchel-Legendre con-
jugate and the infimum super-replication cost is obtained by the Fenchel-Legendre
biconjugate. In particular, we use the notion of conditional essential supremum and
show, using measurable selection techniques, that the conditional essential supre-
mum of a function of a random variable Y is equal to the usual supremum of
the function evaluated on the conditional support of Y (see Proposition 2.7). The
pricing formula that we obtain (see (2.10)) shows that, if the initial stock price
does not belong to the convex hull of the conditional support of the stock value at
the end of the period, then the super-hedging cost is equal to −∞. To exclude this
possibility we postulate the condition of Absence of Immediate Profit (AIP). The
AIP is very weak : If the initial information is trivial, a one period immediate profit
is a strategy which starts from 0 and leads to a deterministic strictly positive gain
at time 1. The AIP is also easy to check in practice, it is sufficient to verify that
the convex hull of the conditional support of the price increment contains 0. This
differs from the NA condition for which it does not seem to exist any computa-
tionally feasible way of deriving whether arbitrage exist or not. It is also not easy
to check the existence of equivalent martingale measure by looking directly at the
dynamics of the stock price process. We propose several characterization of the
AIP condition. In particular we show that AIP is equivalent to the non-negativity
of the super-hedging cost of some call option. We also discuss in details the link
between AIP and the others no-arbitrage conditions as the no-arbitrage of first
and second type and the no-riskless arbitrage of [17] and the No Unbounded In-
creasing Profit and No Unbounded Profit with Bounded Risk of [22] or the No Free
Lunch with Vanishing Risk of [10]. All those conditions imply AIP but the reverse
does not hold true. We provide condition for the equivalence between NA and AIP
and examples of pricing under AIP when NA is not satisfied. We also show that
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contrarily to the no-arbitrage condition, AIP allows to obtain super-hedging cost
which are AIP free.

Under AIP condition, we show that the one-step infimum super-hedging cost
is the concave envelop of the payoff relatively to the convex envelop of the condi-
tional support. Fenchel-Legendre duality have already been used to obtain a dual
representation of the super-replication price thanks to deflators (see [28, Exemple
4.2] and [29, Theorem 10 and Corollary 15]). In [29, Theorem 10] the result is
shown under the assumption that the set of claims that can be super-replicated
from 0 is closed, which holds true under NA. Our approach is different as we do
not postulate any assumption on the market and as we are not looking for a dual
representation of the super-hedging price.

We then consider the multiple-period framework. We show that the global AIP
condition and the local ones are equivalent. We study the link between AIP, NA
and the absence of weak immediate profit (AWIP) conditions. We show that the
AIP condition is the weakest-one and we also provide conditions for the equivalence
between the AIP and the AWIP conditions, as well as characterization through
absolutely continuous martingale measure.

We then focus on a particular, but still general setup, where we propose a
recursive scheme for the computation of the super-hedging prices of a convex
option. We obtain the same computation scheme as in [7] and [8] but here it is
obtained by only assuming AIP instead of the stronger NA condition. We also give
some numerical illustrations. We calibrate historical data of the french index CAC
40 to our model and implement our super-hedging strategy for a call option. Our
procedure is, somehow, model free and based only on statistical estimations. We
actually observe that the same strategy, based on the implied volatility, provides
worse results but at a lower price.

The paper is organized as follows. In Section 2, we study the one-period frame-
work while in Section 3 we study the multi-period one. Section 4 proposes some
explicit pricing for a convex payoff and numerical experiments. The proofs of tech-
nical results are postponed to the appendix.

In the remaining of this introduction we present our framework and notations.
Let (Ω, (Ft)t∈{0,...,T}FT , P ) be a complete filtered probability space, where T is

the time horizon. For any σ-algebra H and any k ≥ 1, we denote by L0(Rk,H) the
set of H-measurable and Rk-valued random variables. We consider a non-negative
process S := {St, t ∈ {0, . . . , T}} such that St ∈ L0(Rd,Ft) for all t ∈ {0, . . . , T}.
The vector St represents the price at time t of the d risky assets in the financial
market of consideration. Trading strategies are given by processes θ := {θt, t ∈
{0, . . . , T − 1}} such that θt ∈ L0(Rd,Ft) for all t ∈ {0, . . . , T − 1}. The vector θt
represents the investor’s holding in the d risky assets between times t and t+1. We
assume that trading is self-financing and that the riskless asset’s price is a constant
equal to 1. The value at time t of a portfolio θ starting from initial capital x ∈ R
is then given by

V x,θt = x+
t∑

u=1

θu−1∆Su,

where ∆Su = Su − Su−1 for u ≥ 1 and xy is the scalar product of x and y.
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2 The one-period framework

Let H and F be two complete sub-σ-algebras of FT such that H ⊆ F and which
represent respectively the initial and the final information. Let y ∈ L0(Rd,H) and
Y ∈ L0(Rd,F) be two non-negative random variables. They represent the initial
and the final prices of the d risky assets. We also consider a contingent claim
Z ∈ L0(R,F). We will be particularly interested by derivatives on Y i.e. Z = g(Y )
with g : Ω ×Rd → R and g(Y ) : ω 7→ g(Y )(ω) = g(ω, Y (ω)).
The objective of the section is to obtain a characterization of P(Z) the one-step set
of super-hedging (or super-replicating) prices of Z and of its infimum value. The
setting will be applied in Section 3 with the choices H = Ft, F = Ft+1, Y = St+1

and y = St.

Definition 2.1. The set P(Z) of super-hedging prices of the contingent claim Z ∈
L0(R,F) consists in the initial values of super-hedging strategies θ

P(Z) = {x ∈ L0(R,H), ∃ θ ∈ L0(Rd,H), x+ θ(Y − y) ≥ Z a.s.}.

The infimum super-hedging cost of Z is defined by p(Z) := ess infHP(Z).

When Z = g(Y ) we write P(g) = P(Z) and p(g) = p(Z).

The notions of conditional essential infimum ess infH and conditional essential
supremum ess supH are at the heart of this study and are defined in Proposition
2.5 below. We also use the conditional support suppHY of Y which is introduced
in Definition 2.2 below. In Section 2.2 we derive the characterization of the super-
hedging prices and cost from the following steps :

1. Observe that the set of super-hedging prices can be rewritten using a condi-
tional essential supremum (see (2.5) and (2.7)).

2. Under mild conditions, show that the conditional essential supremum of a
function of Y is equal to the usual supremum of the function evaluated on the
random set suppHY (see Proposition 2.7).

3. When Z = g(Y ), recognize that a super-hedging price can be written using a
Fenchel-Legendre conjugate (see (2.8)).

4. Take the essential infimum of the set of super-hedging prices and go through
the steps 2. and 3. to recognize the Fenchel-Legendre biconjugate (see (2.10)).

5. Use the classical convex biconjugate theorem to evaluate the infimum super-
hedging cost.

With this pricing formula in hand (see (2.10)) the Absence of Immediate Profit
(AIP) appears as the condition to postulate in order to get a finite super-hedging
cost. In Section 2.3, we develop the concept of AIP and propose several charac-
terizations of the AIP condition. In Section 2.4 we compare it with the classical
no-arbitrage conditions.

2.1 Conditional support and conditional essential infimum

This section is the toolbox of the paper. The proofs are postponed to the appendix.
We recall some results and notations that will be used without further references
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in the rest of the paper. Let h : Ω × Rd → R. The effective domain of h(ω, ·) is
defined by

domh(ω, ·) := {x ∈ Rd, h(ω, x) <∞}

and h(ω, ·) is proper if dom h(ω, ·) 6= ∅ and h(ω, x) > −∞ for all x ∈ Rd. Next, if h
is H-normal integrand (see Definition 14.27 in [32]) then h is H⊗B(Rd)-measurable
and is lower semi-continuous (l.s.c. in the sequel, see [32, Definition 1.5]) in x and
the converse holds true if H is complete for some measure, see [32, Corollary 14.34].
Note that if z ∈ L0(Rd,H) and h is H⊗B(Rd)-measurable, then h(z) ∈ L0(Rd,H).
A random set K : Ω � Rd is H-measurable if for all open set O of Rd, the subset
{ω ∈ Ω, O ∩ K(ω) 6= ∅} ∈ H. If K is a H-measurable and closed-valued random
set of Rd, then K admits a Castaing representation (ηn)n∈N (see [32, Theorem
14.5 ]). This means that K(ω) = cl{ηn(ω), n ∈ N} for all ω ∈ domK := {ω ∈
Ω, K(ω) ∩Rd 6= ∅} where the closure is taken in Rd.

We introduce the conditional support of X ∈ L0(Rd,F) with respect to H.

Definition 2.2. Let µ be a H-stochastic kernel i.e. for all ω ∈ Ω, µ(·, ω) is a probability

measure on B(Rd) and µ(A, ·) is H-measurable for all A ∈ B(Rd). We define the

random set Dµ : Ω � Rd by

Dµ(ω) :=
⋂{

A ⊂ Rd, closed, µ(A,ω) = 1
}
. (2.1)

For ω ∈ Ω, Dµ(ω) ⊂ Rd is called the support of µ(·, ω). Let X ∈ L0(Rd,F), we denote

by suppHX the set defined in (2.1) when µ(A,ω) = P (X ∈ A|H)(ω) is a regular

version of the conditional law of X knowing H. The random set suppHX is called the

conditional support of X with respect to H.

Remark 2.3. When H is the trivial sigma-algebra, suppHX is just the usual
support of X (see p441 of [1]). Theorems 12.7 and 12.14 of [1] show that P (X ∈ .|H)
admits a unique support suppHX ⊂ Rd such that P (X ∈ suppHX|H) = 1 a.s. i.e.
suppHX is a.s. non-empty.
For simplicity we will assume that Y (ω) ∈ suppHY (ω) for all ω ∈ Ω. Moreover, as
0 ≤ Y <∞, Dom supp HY = Ω.

Lemma 2.4. Let µ as in Definition 2.2. Dµ is non-empty, closed-valued and H-

measurable.

It is possible to incorporate measurability in the definition of the essential
supremum (see [20, Section 5.3.1] for the definition and the proof of existence of
the classical essential supremum). This has been done by [3] for a single real-valued
random variable and by [21] for a family of vector-valued random variables and
with respect to a random partial order (see [21, Definition 3.1 and Lemma 3.9]).
Proposition 2.5 is given and proved for sake of completeness and for pedagogical
purpose. The authors thanks T. Jeulin who suggested this (elegant) proof.

Proposition 2.5. Let H and F be complete σ-algebras such that H ⊆ F and let

Γ = (γi)i∈I be a family of real-valued F-measurable random variables. There exists a

unique H-measurable random variable γH ∈ L0(R∪{∞},H) denoted ess supHΓ which

satisfies the following properties

1. For every i ∈ I, γH ≥ γi a.s.

2. If ζ ∈ L0(R ∪ {∞},H) satisfies ζ ≥ γi a.s. ∀i ∈ I, then ζ ≥ γH a.s.
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The conditional essential infimum ess infHΓ is defined symmetrically.
Proof. Considering the homeomorphism arctan we can restrict our-self to γi taking
values in [0, 1]. We denote by Pγi|H a regular version of the conditional law of γi
knowing H. Let ζ ∈ L0(R∪ {∞},H) such that ζ ≥ γi a.s. ∀i ∈ I. This is equivalent
to Pγi|H(]−∞, x])|x=ζ = 1 a.s. and suppHγi ⊂]−∞, ζ] a.s. follows from Definition
2.2. Let

Λγi|H = sup{x ∈ [0, 1], x ∈ suppHγi}. (2.2)

Then Λγi|H ≤ ζ a.s. and it is easy to see that Λγi|H is H-measurable. So tak-
ing the classical essential supremum, we get that ess supiΛγi|H ≤ ζ a.s. and that
ess supiΛγi|H is H-measurable. We conclude that γH = ess supiΛγi|H a.s. since for
every i ∈ I, P (γi ∈ suppHγi|H) = 1 (see Remark 2.3). 2

Lemma 2.6. Assume that d = 1 and consider X ∈ L0(R,F). Then, we have a.s. that

ess infHX = inf suppHX, ess supHX = sup suppHX,

ess infHX ∈ suppHX on the set {ess infHX > −∞},
ess supHX ∈ suppHX on the set {ess supHX <∞},

convsuppHX = [ess infHX, ess supHX] ∩R, (2.3)

where convsuppHX is the convex envelop of suppHX i.e. the smallest convex set that

contains suppHX.

The following proposition is one of the main ingredient of the paper. It extends
the fact that ess supHX = supx∈suppHX x a.s. (see (2.2)) and allows to compute a
conditional essential supremum as a classical supremum but on a random set. A
generalization is given in [25], see e.g. [26].

Proposition 2.7. Let X ∈ L0(Rd,F) be such that dom suppHX = Ω and let h :
Ω ×Rd → R be a H⊗ B(Rd)-measurable function which is l.s.c. in x. Then,

ess supHh(X) = sup
x∈suppHX

h(x) a.s. (2.4)

2.2 Fenchel-Legendre conjugate and bi-conjugate to express super-replication
prices and cost

We are now in position to perform the program announced in the beginning of the
section. Let Z ∈ L0(R,F). As x ∈ P(Z) if and only if there exists θ ∈ L0(Rd,H)
such that x ≥ Z − θ(Y − y) a.s., we get by definition of the conditional essential
supremum (see Proposition 2.5) that

P(Z) =
{

ess supH (Z − θ(Y − y)) , θ ∈ L0(Rd,H)
}

+ L0(R+,H), (2.5)

p(Z) = ess infH

{
ess supH (Z − θ(Y − y)) , θ ∈ L0(Rd,H)

}
. (2.6)

In the case where Z = g(Y ) we are able to perform an explicit computation of
p(Z). To do so we recall that the (upper) closure h of h is the smallest u.s.c. func-
tion which dominates h i.e. h(x) = lim supy→x h(y). The lower closure is defined
symmetrically.
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Theorem 2.8. The set P(g) of Definition 2.1 can be express as follows

P(g) =
{

ess supH (g(Y )− θY ) + θy, θ ∈ L0(Rd,H)
}

+ L0(R+,H). (2.7)

Suppose that g is a H-normal integrand. Then, for θ ∈ L0(Rd,H), we get that

ess supH (g(Y )− θY ) = sup
z∈suppHY

(g(z)− θz) = f∗(−θ) a.s. (2.8)

where f and f∗, its Fenchel-Legendre conjugate, are given by

f(ω, z) = −g(ω, z) + δsuppHY (ω)(ω, z)

f∗(ω, x) = sup
z∈Rd

(xz − f(ω, z)) , (2.9)

and δC(ω)(ω, z) = 0 if z ∈ C(ω) and +∞ else. Moreover suppose that g is proper and

that there exists some concave function ϕ such that g ≤ ϕ <∞ on convsuppHY
1. We

have that a.s.

p(g) = −f∗∗(y) = conc(g, suppHY )(y)− δconvsuppHY (y) (2.10)

= inf {αx+ β, α ∈ Rd, β ∈ R, αz + β ≥ g(z), ∀z ∈ suppHY } − δconvsuppHY (y),

where f∗∗ is the Fenchel-Legendre biconjugate of f i.e. f∗∗(ω, x) = supz∈Rd (xz − f∗(ω, z))
and the relative concave envelop of g with respect to suppHY is given by

conc(g, suppHY )(x) = inf{v(x), v is concave and v(z) ≥ g(z), ∀z ∈ suppHY }.

Notice that the infimum super-hedging cost is not a priori a price, i.e. an
element of P(g), as the later may be an open interval. Note also that [7] and
[4] have represented the super-hedging price as a concave envelop but this was
done under the no-arbitrage condition using the dual representation of the super-
replication price through martingale measures.

Remark 2.9. Let F = σ(Y ). For all θ ∈ L0(Rd,H), V = x + θ(Y − y) ≥ Z if
and only if V ≥ Z̃ where Z̃ = ess supFZ. Thus Z and Z̃ have the same super-
hedging cost and as Z̃ is F-measurable, Z̃ = δ(Y ) for some δ. In order to apply
the theorem above, one need to know δ (and also have nice properties on δ). But
the situation is somehow similar under the no-arbitrage condition where one need
to compute EQ(Z), for some Q ∼ P such that EQ(Y |H) = y: It is necessary to
understand how Z depends on Y . In the case where Z = g(Y, T ) for some random
variable T which is not necessarily F-measurable, we show that Z̃ = δ(Y ) where
δ(y) = supt∈suppFT g(y, t) is a F-normal integrand under the condition that g is
l.s.c. in (y, t), see Lemma 5.3.

Remark 2.10. Fenchel-Legendre duality have already been used many times in fi-
nancial mathematics. In particular, Pennanen obtains a dual representation of the
super-replication price thanks to deflators (see [28, Example 4.2] and [29, Theorem
10 and Corollary 15]). The proof of [29, Theorem 10] is also based on the (convex)
biconjugate theorem but the result is shown under the assumption that the set R
of claims that can be super-replicated from 0 (see (2.13)) is closed, which holds

1 This is equivalent to assume that there exists α, β ∈ R, such that g(x) ≤ αx + β for all
x ∈ convsuppHY .
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true under the no-arbitrage condition NA. In [30], the existence and the absence
of duality gap in a general stochastic optimization problem is proved through dy-
namic programming and under a condition (that does not rely on inf-compactness)
of linearity on sets constructed with recession functions. This condition in classical
mathematical finance problems is equivalent to the no-arbitrage condition (see [30,
Exemple 1]). Our approach is different as we do not postulate any assumption on
the market and we obtain from the biconjugate representation a formula for the
infimum super-hedging cost (see (2.10)). We will deduce from this the condition
that should be satisfied by the market (see Proposition 2.12). Importantly, our goal
is not to obtain a dual representation thanks to deflator or martingale measures.

Proof. First (2.7) follows from (2.5). Lemma 2.4 will be in force. Under the
assumption that g is a H-normal integrand, (2.8) follows from Proposition 2.7.
Under the additionnal assumptions that g is proper and that there exists some
concave function ϕ such that g ≤ ϕ < ∞ on convsuppHY , we show first that
conv f satisfies (2.11) and is proper, where conv f is the convex envelop of f i.e.
the greatest convex function dominated by f. It can be written as follows (see [32,
Proposition 2.31])

conv f(x) = inf
{∑n

i=1 λif(xi), n ≥ 1, (λi)i∈{1,...,n} ∈ Rn+, (xi)i∈{1,...,n} ∈ Rd×n,

x =
∑n
i=1 λixi,

∑n
i=1 λi = 1

}
.

Let x =
∑n
i=1 λixi for some n ≥ 1, (λi)i∈{1,...,n} ∈ Rn+ such that

∑n
i=1 λi = 1 and

(xi)i∈{1,...,n} ∈ Rd×n. Assume that x /∈ convsuppHY . Then (see [32, Proposition
2.27, Theorem 2.29]), there exists at least one xi /∈ suppHY and f(xi) = +∞
and also conv f(x) = +∞. If x ∈ convsuppHY , conv f(x) = −conc(g, suppHY )(x)
by definition. Moreover, for all x ∈ convsuppHY , x =

∑n
i=1 λixi for some n ≥

1, (λi)i∈{1,...,n} ∈ Rn+, and (xi)i∈{1,...,n} ⊂ suppHY such that
∑n
i=1 λi = 1 and

conc(g, suppHY )(x) ≥
n∑
i=1

λiconc(g, suppHY )(xi) ≥
n∑
i=1

λig(xi) > −∞.

Moreover, conc(g, suppHY ) ≤ ϕ <∞ on convsuppHY. Thus, for all x ∈ convsuppHY ,
conc(g, suppHY )(x) ∈ R and one may write that

conv f = −conc(g, suppHY ) + δconvsuppHY a.s. (2.11)

As convsuppHY is non-empty, conv f is proper and [32, Theorem 11.1] implies
that f∗ is proper, l.s.c and convex and that f∗∗(y) = conv f(y). Moreover, using
Lemma 5.2, f∗(ω, x) = supz∈suppHY (ω) (xz + g(ω, z)) is H⊗B(Rd)-measurable. We
obtain that a.s.

p(g) = ess infH{f∗(−θ) + θy, θ ∈ L0(Rd,H)} = −ess supH{θy − f
∗(θ), θ ∈ L0(Rd,H)}

= − sup
z∈Rd

(
zy − f∗(z)

)
= −f∗∗(y).

The first equality is a direct consequence of (2.7), the second one is trivial. So to
finish the proof it remains to prove the third one. Indeed (2.11) implies that

p(g) = −f∗∗(y) = −conv f(y) = conc(g, suppHY )(y)− δconvsuppHY (y) a.s.
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and the last equality follows easly. Recall that for all θ ∈ L0(Rd,H), we have
ess supH{θy− f

∗(θ)} ≥ θy− f∗(θ) a.s. Thus for any z ∈ Rd, choosing θ = z, we get
that ess supH{θy − f

∗(θ) ≥ zy − f∗(z) a.s. and

ess supH{θy − f
∗(θ)} ≥ sup

z∈Rd

(
zy − f∗(z)

)
a.s. (2.12)

Conversely, for all θ ∈ L0(Rd,H), we have θy − f∗(θ) ≤ supz∈Rd (zy − f∗(z)) a.s.
If supz∈Rd (zy − f∗(z)) is H-measurable, we shall conclude that the equality holds

true in (2.12). As f∗ is H ⊗ B(Rd)-measurable, graph dom f∗ = {(ω, x) ∈ Ω ×
Rd, f∗(ω, x) < ∞} ∈ H ⊗ B(Rd) and dom f∗ is H-measurable (see [32, Theorem
14.8]). As f∗ is proper, domf∗(ω, ·) 6= ∅. By measurable selection argument, we
obtain the existence of a H-measurable selector a such that a ∈ dom(f∗) a.s. On
dom(f∗) = {a}, we have supz∈Rd (zy − f∗(z)) = ay−f∗(a) which is H-measurable.
Otherwise, on dom(f∗) 6= {a}, ri dom(f∗) 6= ∅ and z 7→ zy− f∗(z) is concave hence
continuous on this set. We deduce that a.s.

sup
z∈Rd

(
zy − f∗(z)

)
= sup

z∈ri domf∗

(
zy − f∗(z)

)
= sup
z∈Γ̂

(
zy − f∗(z)

)
where Γ̂ is a countable H-measurable dense subset of Rd. The first equality is
classical (see for example Lemma A.32 of [6]).

The second equality is shown as follows. By lemma 5.4, consider aH-measurable
version of the affine hull H of dom(f∗) . Let (qn)n≥1 be a dense subset of Rd
and let us denote by pH(qn) the projection of qn onto H, n ≥ 1. By lemma
5.4, we may suppose that pH(qn) is H-measurable for all n ≥ 1 and it is well
known that (pH(qn))n≥1 is dense in H. Therefore, as ri dom(f∗) is the largest
open set in dom(f∗) relatively to the affine hull H of dom(f∗), we deduce that any
z ∈ ri dom(f∗) ⊆ H is the limit of a countable (with random index) family (zn)n≥1,

which is a subfamily of the larger countable family Γ̂ (ω) = (pH(qn)(ω))n≥1. By
continuity on the relative interior, we then deduce that supz∈ri domf∗ (zy − f∗(z)) ≤
supz∈Γ̂ (zy − f∗(z)) hence the equality holds by the first equality. In particular,
supz∈Rd (zy − f∗(z)) is H-measurable, which allows to conclude. 2

2.3 The AIP condition

Theorem 2.8 shows that if y /∈ convsuppHY the infimum super-hedging cost of
a European claim p(g) equals −∞. Avoiding this situation leads to the notion
of absence of immediate profit that we present now. Let R be the set of all F-
measurable claims that can be super-replicate from 0:

R :=
{
θ(Y − y)− ε+, θ ∈ L0(Rd,H), ε+ ∈ L0(R+,F)

}
. (2.13)

Then

P(0) = {x ∈ L0(R,H), ∃ θ ∈ L0(Rd,H), x+ θ(Y − y) ≥ 0 a.s.} = (−R) ∩ L0(R,H).

Note that 0 ∈ P(0), so p(0) ≤ 0. We say that there is an immediate profit when
P (p(0) < 0) > 0 i.e. if it is possible to super-replicate the contingent claim 0 at a
negative super-hedging price.
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Definition 2.11. There is an immediate profit (IP) if P (p(0) < 0) > 0. On the

contrary case if p(0) = 0 a.s. we say that the Absence of Immediate Profit (AIP)

condition holds.
We know propose several characterisations of the AIP condition. We will dis-

cuss in Proposition 2.18, Remark 2.20 and Lemma 2.21 the link with the no-
arbitrage conditions and show that AIP is indeed very week.

Proposition 2.12. AIP holds if and only if one of the following condition holds true.

1. y ∈ convsuppHY a.s. or 0 ∈ convsuppH(Y − y) a.s.

2. σsuppH(Y−y) ≥ 0 a.s. where σD(z) = supx∈D(−xz) is the support function of −D
3. P(0) ∩ L0(R−,H) = {0} or R∩ L0(R+,H) = {0}.

Remark 2.13. In the case d = 1, (2.3) implies that the previous conditions are
equivalent to y ∈ [ess infHY, ess supHY ] ∩R a.s.

Remark 2.14. The AIP condition is tailor-made for pricing issues. It allows to
give a super-hedging cost even in case of arbitrage opportunity (see Example 2.27
below). Note that an IP is a very strong strategy. Assume that H is trivial, then
an IP corresponds to some θ ∈ Rd such that θ(Y − y) is deterministic and strictly
positive. So excluding IP and not NA may not be enough to get existence in the
problem of maximization of expected utility. Technically AIP may not insure some
maximizing sequence to be bounded.

Example 2.15. The AIP condition is very easy to check in practice as it suffices
to observe that the price of any non negative payoff is non negative. For d = 1,
consider R = Y/y. To check AIP, it is enough to compute either convsuppHR or
ess infHR and ess supHR and compare with 1. For example, suppose that R =

exp ((µ− σ2

2 ) + σ(Bt+1 −Bt)) where B is a Brownian motion, H = σ({Bu, u ≤ t})
and F = σ({Bu, u ≤ t+ 1}). Then convsuppHR = [0,∞) and AIP holds true.

Proof. The assumptions of Theorem 2.8 are satisfied for g = 0 and we get that
p(0) = −δconvsuppHY (y) a.s. Hence, AIP holds true if and only if y ∈ convsuppHY
a.s. or equivalently 0 ∈ convsuppH(Y − y) a.s. and AIP is equivalent to 1. Using
Theorem 2.8, we get that

P(0) =
{

ess supH (−θ(Y − y)) , θ ∈ L0(Rd,H)
}

+ L0(R+,H).

Proposition 2.7 implies that for θ ∈ L0(Rd,H),

ess supH (−θ(Y − y)) = sup
x∈suppH(Y−y)

(−θx) = σsuppH(Y−y)(θ).

So, P(0) ∩ L0(R−,H) = {0} if and only if σsuppH(Y−y) ≥ 0 a.s. and 2. and 3.
are equivalent. To finish the proof, it remains to prove that 2. is equivalent to 1.
First remark that σsuppH(Y−y) = σconvsuppH(Y−y). So, it remains to prove that,

for any closed convex set D of Rd, σD ≥ 0 if and only if 0 ∈ D. If 0 ∈ D it is
clear that σD ≥ 0. Assume that 0 /∈ D. Then, by Hahn-Banach theorem, there
exists some β > 0 and some θ0 ∈ Rd \ {0} such that −xθ0 ≤ −β for all x ∈ D and
σD(θ0) ≤ −β < 0 follows. 2

Corollary 2.16. The AIP condition holds true if and only if p(g) ≥ 0 a.s. for some

non-negative H-normal integrand g such that there exists some concave function ϕ

verifying that g ≤ ϕ <∞.
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In particular, the AIP condition holds true if and only if the infimum super-
hedging cost of some European call option is non-negative. Note that, under AIP,
the price of some non-zero payoff call option may be zero (see Example 2.27 below).

Proof. Assume that AIP condition holds true. Then, by Definition 2.11, we get
that p(0) = 0 a.s. As g ≥ 0, it is clear that p(g) ≥ p(0) = 0 a.s. Conversely, assume
that there exists an IP, Proposition 2.12 leads to P (y ∈ convsuppHY ) < 1 and,
since conc(g, suppHY )(y) ≤ ϕ < ∞, (2.10) implies that P (p(g) = −∞) > 0. The
converse is proved.2

2.4 Comparison of AIP with other no-arbitrage conditions

The no-arbitrage conditions may be quite different in discrete and continuous
time. For example, going back to [18] the classical no-arbitrage (see Definition
2.17) is equivalent to the no-arbitrage with no interim losses (“weakly arbitrage-
free”). We will compare AIP with the classical conditions of the literature, i.e.
with NA, with No Unbounded Profit with Bounded Risk (NUPBR) and with No
Free Lunch with Vanishing Risk (NFLVR). We also compare with the notions of
arbitrage introduced by Ingersoll (see [17]). We will make the comparison with No
Unbounded Increasing Profit (NUIP) in the multi-period part as an unbounded
increasing profit is an increasing portfolio process starting from zero and strictly
positive with strictly positive probability.

Definition 2.17. The no-arbitrage (NA) condition holds true if θ(Y − y) ≥ 0 a.s. for

some θ ∈ L0(Rd,H) implies that θ(Y−y) = 0 a.s. or equivalently R∩L0(R+,F) = {0}.

We remark first that the AIP condition is strictly weaker than the NA one.
Indeed it is clear from Proposition 2.12 and Definition 2.17 that NA implies AIP.
Fix d = 1, H = {∅, Ω}, y = 0 and Y follows a uniform distribution on [0, 1]. Then
P (Y −y > 0) = 1 and the constant strategy equal to 1 is an arbitrage opportunity.
Nevertheless y = 0 ∈ convsuppHY = [0, 1] and AIP holds true. We now provide a
necessary and sufficient condition for the equivalence between AIP and NA.

Proposition 2.18. The AIP and NA conditions are equivalent if and only if

0 ∈ convsuppH(Y − y) a.s.⇔ 0 ∈ ri (convsuppH(Y − y)) a.s. (2.14)

This last condition is satisfied if

P (0 /∈ convsuppH(Y − y) \ ri (convsuppH(Y − y))) = 1. (2.15)

Remark 2.19. Note that, if H = {∅, Ω}, then (2.15) is a necessary and sufficient
condition for the equivalence between the AIP and the NA conditions.
We first have a look on the case d = 1. Remark 2.13 shows that

convsuppH(Y − y) \ ri (convsuppH(Y − y)) = {ess infHY − y, ess supHY − y}

and (2.15) is equivalent to P (ess infHY = y) = P (ess supHY = y) = 0.
The preceding counter-example corresponds to ess infHY = 0, ess supHY = 1
and y = 0. The equivalence between AIP and NA will hold true in this setup if
y ∈ (0, 1).
The proof in the case d = 1 enlightens the difference between both conditions.
Assume that AIP holds true and that P (ess infHY = y) = P (ess supHY = y) = 0.
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Using Remark 2.13, y ∈ [ess infHY, ess supHY ] ∩ R a.s. Let θ ∈ L0(R,H) such that
θ(Y − y) ≥ 0. On the set {θ > 0} ∈ H, we have that Y ≥ y hence ess infHY ≥ y ≥
ess infHY . We deduce that P (θ > 0) = 0. Similarly, we get that P (θ < 0) = 0 and
finally θ = 0.

Proof. Proposition 2.12 shows that AIP is equivalent to 0 ∈ convsuppH(Y − y)
a.s. On the other hand, [18, Theorem 3g)] shows that NA is equivalent to 0 ∈
ri (suppH(Y − y)) a.s. So AIP is equivalent to NA if and only if (2.14) holds true.
This last condition is implied by (2.15). 2

Remark 2.20. We compare IP with other notions of arbitrage as introduced by
Ingersoll (see [17]) in a one step setting with a finite set of states of the world.
Arbitrage opportunity of the first type is the classical arbitrage. An arbitrage
opportunity θ of the second type is limited liability investments with a current
negative commitment. As we assume the existence of a riskless asset, it means
that θ(Y − y) is not deterministic but always greater that some strictly positive
deterministic number. Finally, a riskless arbitrage opportunity is a non-positive
investment with a constant, positive profit. This notion is equivalent to our notion
of IP (recall that there exits a riskless asset) in the context of a trivial initial
filtration. If H is not trivial anymore, a riskless arbitrage is an IP but the converse
is not true anymore.

At last, we compare the AIP condition to the No Unbounded Profit with
Bounded Risk (NUPBR) condition, which is also equivalent to the No Arbitrage
of First Kind (NA1) condition, see [19]. An arbitrage opportunity of first kind is a
payoff ξ ∈ L0(R+,F) \ {0} such that every x > 0, there exists θ ∈ L0(Rd,H) such
that x + θ(Y − y) ≥ ξ a.s. i.e. it is possible to super-hedge ξ from any arbitrarily
small initial capital. We also compare with No free Lunch with Vanishing Risk
(NFLVR) condition, see [10].

Lemma 2.21. The NUPBR implies AIP and AIP may be strictly weaker. The same

holds true for the NFLVR.

Proof. Assume that there exists an immediate profit i.e. some θ ∈ L0(Rd,H)
such that ξ = θ(Y − y) ∈ L0(R+,H) \ {0}. Then ξ is an unbounded profit with
bounded risk i.e. an arbitrage of first kind since for all x > 0 x+ θ(Y − y) ≥ ξ a.s.
On the contrary, AIP may hold while NUPBR fails. Assume that y = 0 and Y

follows an uniform distribution on [0, 1.5]. As y = 0 ∈ convsuppHY = [0, 1.5] AIP
holds true. Let ξ = 1{Y >1}. Then ξ ∈ L0(R+,F) \ {0} as P (Y > 1) > 0. Moreover
for all x > 0 x+ (Y − y) > Y ≥ ξ a.s. as P (Y ≥ 0) = 1.

As NFLVR condition is equivalent to the NA condition and the NA1 condition,
NFLVR implies AIP but the reverse does not hold true. 2

We finish this section with the following interesting result: Contrary to the
no-arbitrage condition, AIP makes it possible to obtain super-hedging cost which
are AIP free. We adopt the definition and concepts of [13, Section 1]. Precisely,
the goal is to understand whether the cost we have defined in the last sections
under AIP is compatible in the sense that it does not create immediate profits in
the extended market where it is possible to trade the additional asset whose initial
value is p(Z), the infimum super-hedging cost of the terminal claim Z ∈ L0(R,F).
In that case, such cost is said immediate profit-free, in the spirit of [13, Definition
1.29] where the concept was introduced for the no-arbitrage condition and the
super-replication price. This problem naturally arises in the models under NA but
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also, more generally, for other types of no-arbitrage condition, as in [34]. In the
following, Z ∈ L0(R,F) is fixed and p(Z) is defined in Definition 2.1.

As in Definition 2.11, AIP in the extended market is equivalent to pY,Z(0) =
0 where pY,Z(0) is the super-hedging cost of 0 in the extended market i.e. the
conditional essential infimum of the x ∈ L0(R,H) such that x + α(Z − p(Z)) +
θ(Y − y) ≥ 0 a.s. where α ∈ L0(R,H) and θ ∈ L0(Rd,H).

Theorem 2.22. The AIP condition holds if and only if it holds true in the extended

market, i.e. the market with the additional asset (p(Z), Z).

Proof. If the extended market satisfies AIP, then Proposition 2.12 implies that
0R2 ∈ convsuppH(Ŷ − ŷ) a.s. where ŷ = (y, p(Z)) and Ŷ = (Y,Z). As

suppH(Ŷ − ŷ) ⊂ suppH(Y − y)× suppH(Z − p(Z)), (2.16)

0 ∈ convsuppH(Y −y) a.s. and the initial market satisfies AIP as well. Reciprocally,
suppose that the initial market satisfies AIP. Consider a super-hedging price x ∈
L0(R,H) in the extended market for the zero claim at time 1 i.e. such that x +
α(Z − p(Z)) + θ(Y − y) ≥ 0 a.s. where α ∈ L0(R,H) and θ ∈ L0(Rd,H). We show
below that x ≥ 0 a.s. which will imply that pY,Z(0) = 0 and thus AIP in the
extended market. Let A1 = {α < 0} ∈ H. Then,(

x

−α + p(Z)
)

1A1 +
θ1A1

−α (Y − y) ≥ Z1A1 .

Let x̄ ∈ P(Z) and θ̄ ∈ L0(Rd,H) such that x̄+ θ̄(Y − y) ≥ Z a.s. Thus(
x̄1Ω\A1 +

(
x

−α + p(Z)
)

1A1

)
+

(
θ̄1Ω\A1 +

θ1A1

−α

)
(Y − y) ≥ Z

and x̄1Ω\A1 +
(
x
−α + p(Z)

)
1A1 ≥ p(Z) and we conclude that x ≥ 0 on {α < 0}.

On the set A2 = {α = 0} ∈ H, we have x1A2 + θ1A2(Y − y) ≥ 0. Therefore,
x1A2 ≥ p(0) = 0 since AIP holds true for the initial market defined only by (y, Y ).
We deduce that x ≥ 0 on {α = 0}.

At last, before analyzing the problem on the set A3 = {α > 0} ∈ H, let
us recall that as P(Z) is downward-directed there exists zn ∈ P(Z), for all n
such that p(Z) = limn ↓ zn. Fix n > 0. Let kn = inf{k, zk < p(Z) + n−1}.
Then, by a measurable selection argument one may assume that kn ∈ L0(R,H).
Let rn =

∑
l≥0 z

l1{kn=l}. As {kn = l} ∈ H and zl ∈ P(Z), rn ∈ P(Z) and

rn + θn(Y − y) ≥ Z for some θn ∈ L0(Rd,H). Hence p(Z) ≤ rn ≤ p(Z) + n−1

and Z − p(Z) ≤ θn(Y − y) + n−1. Therefore, on the set A3, we have that

x

α
+ n−1 +

(
θn +

θ

α

)
(Y − y) ≥ x

α
+ (Z − p(Z)) +

θ

α
(Y − y) ≥ 0

and ( xα +n−1)1A3 ≥ p(0) = 0 as AIP holds for the initial market defined by (y, Y ).
Therefore, as n→∞, we deduce that x ≥ 0 on {α > 0}. The conclusion follows. 2

Corollary 2.23. Suppose that AIP holds. Then, p(Z) ∈ [ess infHZ, ess supHZ]∩R a.s.

Proof. Suppose that AIP holds. Then the extended market i.e. the market with
the additional asset (p(Z), Z) satisfies the AIP condition by the theorem above.
Thus (2.16) shows that 0 ∈ convsuppH(Z − p(Z)) a.s. and Remark 2.13 implies
that p(Z) ∈ [ess infHZ, ess supHZ] ∩R a.s. 2
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Remark 2.24. Remark that Theorem 2.22 does not hold true in an incomplete
market for the super-replication price under the no-arbitrage condition NA. In-
deed, let us consider a one step incomplete market. Let Z ∈ L0(R,F) be a non repli-
cable contingent claim. Then [13, Theorem 1.32] implies that there exists θ ∈ Rd
such that z+θ(Y −y) ≥ Z a.s. where z = inf{x ∈ R, ∃θ ∈ Rd, x+θ(Y −y) ≥ Z a.s.}
is the super-replication price of Z. As Z is not replicable P (z + θ(Y − y) > Z) > 0
and θ(Y − y)− (Z − z) is a.s. non negative and strictly positive with strictly pos-
itive probability. There exists an arbitrage opportunity in the extended market
((y, Y ), (z, Z)).

2.5 Super-hedging cost under AIP

We now provide the characterization of the infimum super-hedging cost under the
AIP condition.

Corollary 2.25. Suppose that AIP holds true. Let g be a proper H-normal inte-

grand such that there exists some concave function ϕ verifying that g ≤ ϕ < ∞ on

convsuppHY . Then, a.s.

p(g) = conc(g, suppHY )(y)

= inf {αy + β, α ∈ Rd, β ∈ R, αx+ β ≥ g(x), ∀x ∈ suppHY }.
(2.17)

If g is concave and u.s.c., p(g) = g(y) a.s.

Proof. The two equalities are direct consequence of Theorem 2.8. If g is concave
and u.s.c., the result is trivial. 2

We finish the one-period analysis with the computation of the infimum super-
hedging cost of a convex derivative when d = 1. In this case, the cost is in fact a
super-hedging price and we get the super-hedging strategy explicitly.

Corollary 2.26. Suppose that AIP holds true and that d = 1. Let g : R → R be a

non-negative convex function with dom g = R and limx→∞ x−1g(x) = M ∈ [0,∞),

then a.s.

p(g) = θ∗y + β∗ = g(ess infHY ) + θ∗ (y − ess infHY ) , (2.18)

θ∗ =
g(ess supHY )− g(ess infHY )

ess supHY − ess infHY
, (2.19)

where we use the conventions θ∗ = 0
0 = 0 in the case ess supHY = ess infHY a.s. and

θ∗ = g(∞)
∞ = M if ess infHY < ess supHY = +∞ a.s. Moreover, p(g) ∈ P(g).

Proof. As g is convex, the relative concave envelop of g with respect to suppHY
is the affine function that coincides with g on the extreme points of the interval
convsuppHY and (2.18) and (2.19) follow from (2.17) and Remark 2.13. Then
using (2.17) and (2.18), we get that (recall that Y ∈ suppHY )

p(g) + θ∗(Y − y) = θ∗Y + β∗ ≥ g(Y ) a.s. (2.20)

and p(g) ∈ P(g) follows. 2

Example 2.27. We compute the price of a call option under AIP in the case d = 1.
Let G = g(Y ) = (Y −K)+ for some K ≥ 0.
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– If K ≥ ess supHY then Y −K ≤ ess supHY −K and G = 0. As AIP condition
holds true, p(g) = p(0) = 0.

– If K ≤ ess infHY then Y −K ≥ ess infHY −K and G = Y −K. As g is concave
and u.s.c., p(g) = g(y) = y −K a.s.

– If ess infHY ≤ K ≤ ess supHY. Then, (2.19) and (2.18) imply that

p(g) =
ess supHY −K

ess supHY − ess infHY
(y − ess infHY )

on {ess supHY 6= ess infHY } and 0 else. So p(g) = 0 if and only if y = ess infHY
or ess supHY = ess infHY . A non-negative call option can have a zero price.

We finish with an example of computation for a call price under AIP but when
there is some arbitrage opportunity. We choose a simple model that will be studied
in Section 4. We assume a.s. that for y > 0, ess infHY = dy and ess supHY = uy

for two constants u and d. From Remark 2.13, AIP is equivalent to d ≤ 1 ≤ u. If
(d = 1 and u > 1) or (u = 1 and d < 1), AIP holds but the NA condition does
not hold true. Suppose that d = 1 and u > 1. If K ≥ y, the super-replication price
under AIP is zero and if K ≤ y, it is y − K. The same holds true if u = 1 and
d < 1.

3 The multi-period framework

3.1 Multi-period super-hedging prices

For every t ∈ {0, . . . , T}, the set RTt of all claims that can be super-replicated from
the zero initial endowment at time t is defined by

RTt :=

{
T∑

u=t+1

θu−1∆Su − ε+T , θu−1 ∈ L0(Rd,Fu−1), ε+T ∈ L
0(R+,FT )

}
. (3.21)

The set of (multi-period) super-hedging prices and the (multi-period) infimum
super-hedging cost of some contingent claim gT ∈ L0(R,FT ) at time t are given
for all t ∈ {0, . . . , T}, by

PT,T (gT ) = {gT } and πT,T (gT ) = gT

Pt,T (gT ) = {xt ∈ L0(R,Ft), ∃R ∈ RTt , xt +R = gT a.s.} (3.22)

πt,T (gT ) = ess infFt
Pt,T (gT ).

As in the one-period case, it is clear that the infimum super-hedging cost is not
necessarily a price in the sense that πt,T (gT ) /∈ Pt,T (gT ) when Pt,T (gT ) is not
closed.

We now define a local version of super-hedging prices. The set of one-step
super-hedging prices of the payoff gt+1 ∈ L0(R,Ft+1) and it associated infimum
super-hedging cost are given by

Pt,t+1(gt+1) =
{
xt ∈ L0(R,Ft), ∃ θt ∈ L0(Rd,Ft), xt + θt∆St+1 ≥ gt+1 a.s.

}
πt,t+1(gt+1) = ess infFt

Pt,t+1(gt+1)

= ess infFt

{
ess supFt

(gt+1 − θt∆St+1) , θt ∈ L0(Rd,Ft)
}
, (3.23)
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see (2.6). In the following, we extend the definition of Pt,u(gu), u ≥ t + 1, so
that the argument gu may be a subset Gu ⊆ L0(R,Fu). Precisely, Pt,u(Gu) =
∪gu∈Gu

Pt,u(gu). The following lemma makes the link between local and global
super-hedging prices. It also provides a dynamic programming principle, meaning
that the prices are time consistent.

Lemma 3.1. Let gT ∈ L0(R,FT ) and t ∈ {0, . . . , T − 1}. Then

Pt,T (gT ) = Pt,t+1(Pt+1,T (gT )) and πt,T (gT ) ≥ πt,t+1(πt+1,T (gT )).

Moreover, assume that πt+1,T (gT ) ∈ Pt+1,T (gT ). Then

Pt,T (gT ) = Pt,t+1(πt+1,T (gT )) and πt,T (gT ) = πt,t+1(πt+1,T (gT )).

Proof. Consider xt ∈ Pt,T (gT ). Then, for all u ∈ {t, . . . , T − 1}, there exist

θu ∈ L0(Rd,Fu) such that

xt + θt∆St+1 +
T∑

u=t+2

θu−1∆Su ≥ gT a.s.

We deduce that xt+1 := xt + θt∆St+1 ∈ Pt+1,T (gT ). Moreover xt ∈ Pt,t+1(xt+1)
and xt ∈ Pt,t+1(Pt+1,T (gT )). Reciprocally, suppose that xt ∈ Pt,t+1(Pt+1,T (gT )),
i.e. xt ∈ Pt,t+1(xt+1) for some xt+1 ∈ Pt+1,T (gT ). Then, xt + θt∆St+1 ≥ xt+1 for

some θt ∈ L0(Rd,Ft) and xt+1 +
∑T
u=t+2 θu−1∆Su ≥ gT where θu ∈ L0(Rd,Fu)

for all u ≥ t+1. It follows that xt+
∑T
u=t+1 θu−1∆Su ≥ gT a.s. and xt ∈ Pt,T (gT ).

Let xt ∈ Pt,T (gT ) = Pt,t+1(Pt+1,T (gT )), then there exists θt ∈ L0(Rd,Ft) and
xt+1 ∈ Pt+1,T (gT ) such that

xt + θt∆St+1 ≥ xt+1 ≥ ess infFt+1
Pt+1,T (gT ) = πt+1,T (gT ) a.s.

Thus xt ∈ Pt,t+1(πt+1,T (gT )) and Pt,T (gT ) ⊂ Pt,t+1(πt+1,T (gT )). Moreover xt ≥
πt,t+1(πt+1,T (gT )) and the first statement follows. If πt+1,T (gT ) ∈ Pt+1,T (gT ),
then Pt,t+1(πt+1,T (gT )) ⊂ Pt,t+1(Pt+1,T (gT )) = Pt,T (gT ). 2

Remark 3.2. Under AIP, if at each step, πt+1,T (gT ) ∈ Pt+1,T (gT ) and if we
have πt+1,T (gT ) = gt+1(St+1) for some “nice” Ft-normal integrand gt+1, we will
get from Corollary 2.25 that πt,T (gT ) = conc(gt+1, suppFt

St+1)(St) a.s. We will
propose in Section 4 a quite general setting where this holds true.

Note that the super-hedging problem is solved for general claims ξT through
the formula (3.23). For claims of Asian type g((Su)u≤T ) or of American type, what
we propose for European claims could be easily adapted. Consider a general claim
ξT and the natural filtration i.e. the one generated by the price process S. Then for
any self-financing portfolio θ, VT = x+

∑T
t=1 θt−1∆St ≥ ξT if and only if VT ≥ ξ̃T

where ξ̃T = esssupFT
ξT . Thus ξT and ξ̃T have the same super-replication cost and

as ξ̃T is FT -measurable, it is of the form ξ̃T = g((Su)u≤T ). Of course, in practice,
it is necessary to have an idea about g but the same difficulty arises under the NA
condition.
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3.2 Multi-period AIP

Definition 3.3. The AIP condition holds true if for all t ∈ {0, . . . , T}

Pt,T (0) ∩ L0(R−,Ft) = {0}.

We now study the link between global and local immediate profit. The global
(resp. local) profit means that it is possible to super-replicate from a negative cost
at time t the claim 0 payed at time T (resp. time t+1). The next proposition shows
that the local and global AIP conditions are equivalent in the following sense.

Proposition 3.4. The following assertions are equivalent.

1. Pt,T (0) ∩ L0(R−,Ft) = {0} for all t ∈ {0, . . . , T − 1} i.e. AIP.

2. Pt,t+1(0) ∩ L0(R−,Ft) = {0} for all t ∈ {0, . . . , T − 1}.
3. St ∈ convsuppFt

St+1 a.s. or 0 ∈ convsuppFt
∆St+1 a.s. for all t ∈ {0, . . . , T − 1}.

4. σsuppFt
∆St+1

≥ 0 a.s. for all t ∈ {0, . . . , T − 1}.
5. πt,T (0) = 0 a.s. for all t ∈ {0, . . . , T − 1}.

Proof. For some fix t ∈ {0, . . . , T − 1} we show that

Pt,T (0) ∩ L0(R−,Ft) = {0} ⇐⇒ πt,T (0) = 0. (3.24)

For the implication, note that πt,T (0) ≤ 0 is always true. Let xt ∈ Pt,T (0). Then

there exist θu ∈ L0(Rd,Fu) for u ≥ t such that xt+
∑T
u=t+1 θu−1∆Su ≥ 0 a.s. Thus

xt1xt<0+
∑T
u=t+1 θu−11xt<0∆Su ≥ 0 a.s. If P (xt < 0) > 0 then xt1xt<0 ∈ Pt,T (0)∩

L0(R−,Ft), a contradiction. Thus xt ≥ 0 a.s. and πt,T (0) = ess infFt
Pt,T (0) ≥ 0.

For the reverse implication let xt ∈ Pt,T (0) ∩ L0(R−,Ft). If P (xt < 0) > 0 then
xt1xt<0 ∈ Pt,T (0) and xt1xt<0 ≥ πt,T (0) = 0 a.s., a contradiction. Thus xt ≥ 0 a.s.
and xt = 0 a.s. follows.
It is clear that (3.24) implies that 1. is equivalent to 5. Now we show that 1.
is equivalent to 2. Suppose that 1. holds. Then, πt+1,T (0) = 0 ∈ Pt+1,T (0) and
Lemma 3.1 implies that Pt,T (0) = Pt,t+1(πt+1,T (0)) = Pt,t+1(0). and 2. holds.
Reciprocally suppose that 2. holds. Then, PT−1,T (0)∩L0(R−,FT−1) = {0}. From
(3.24) with t = T − 1 we get that πT−1,T (0) = 0 ∈ PT−1,T (0) and Lemma 3.1
implies that

PT−2,T (0) = PT−2,T−1(πT−1,T (0)) = PT−2,T−1(0) = L0([0,∞),FT−2).

It is trivial L0([0,∞),FT−2) ⊂ PT−2,T−1(0). As PT−2,T−1(0) ∩ L0(R−,FT−2) =
{0}, the same reasoning as in the proof of the implication in (3.24) proves the
reverse inclusion. It follows that PT−2,T (0)∩L0(R−,FT−2) = {0}. Using backward
induction, 1. holds true. By Proposition 2.12 and Definition 2.11, we conclude that
3. and 4. are equivalent to 2. 2

3.3 Comparison with other no-arbitrage conditions

In this section we compare again with others no-arbitrage conditions. In particular,
we study a condition stronger than AIP in the spirit of the No free Lunch condition,
i.e., by considering the closure of the setRTt . Before that, we first recall the classical
multiperiod no-arbitrage NA condition.
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Definition 3.5. The no-arbitrage NA condition holds if for all t ∈ {0, . . . , T},

RTt ∩ L0(R+,FT ) = {0}.

It is easy to see that the NA condition can also be formulated as follows :
V 0,θ
T ≥ 0 a.s. implies that V 0,θ

T = 0 a.s. Recall that the set of all super-hedging

prices for the zero claim at time t is given by Pt,T (0) = (−RTt ) ∩ L0(R,Ft) (see
(3.21) and (3.22)). It follows that (see Definition 3.3)

AIP reads as RTt ∩ L0(R+,Ft) = {0} for all t ∈ {0, . . . , T}.

It is clear that the NA condition implies the AIP one and, as already mentioned,
the equivalence does not hold true: The AIP condition is strictly weaker than the
NA one. As in the one period case, this is also true for the NUPBR and NFLVR
conditions (see Lemma 2.21). We now consider the No Unbounded Increasing
Profit (NUIP) no-arbitrage condition of [22], see also [14], that we compare to the
AIP condition. The NUIP condition means the absence of non decreasing portfolio
process V starting from zero and such that P (VT > 0) > 0.

Lemma 3.6. The condition NUIP implies AIP and AIP may be strictly weaker.

Proof. Assume that AIP fails. By Proposition 3.4, there exists t ∈ {0, . . . , T −
1} such that Pt,t+1(0) ∩ L0(R−,Ft) 6= {0}. Let pt ∈ L0(R−,Ft) \ {0} such that
pt + θt∆St+1 ≥ 0 for some θt ∈ L0(R,Ft). Let us define Vu = 0 if u ≤ t and
Vu = θt∆St+1 if u ≥ t+ 1. Since pt is a.s. non positive and strictly negative with
strictly positive probability, V is non decreasing and P (VT > 0) > 0 hence an
unbounded increasing profit.

Consider T = 2 and the model where for i ∈ {0, 1}, Si+1 ∈ {Si, 2Si} with
S0 > 0 and P (Si+1 = 2Si) ∈ (0, 1). Then for i ∈ {0, 1}, ess infFi

Si+1 = Si ≤
Si ≤ ess supFi

Si+1 = 2Si and AIP holds true. However, the constant strategy
equal to one and starting from zero generates an unbounded increasing profit
since V1 = ∆S1 ∈ {0, S0} and V2 − V1 = ∆S2 ∈ {0, S1} are a.s. non negative and
strictly positive with strictly positive probability. Thus AIP does not necessarily
implies NUIP. 2

As in the one period case, we able to prove that the super-hedging cost is
immediate profit-free i.e. does not create immediate profits in the extended market
where it is possible to trade the additional asset. In the following, CT ∈ L0(R,FT )
is fixed and Ct = πt,t+1(Ct+1) is defined recursively for t ≤ T − 1 by (3.23).

Theorem 3.7. The AIP condition holds if and only if the extended market, i.e. the

market with the additional asset (Ct)t∈{0,··· ,T} satisfies AIP.

Suppose that AIP holds. Then, ess infFt
Ct+1 ≤ Ct ≤ ess supFt

Ct+1 a.s. for all t ∈
{0, . . . , T − 1}.

Proof. Proposition 3.4 implies that AIP holds true if and only if Pt,t+1(0) ∩
L0(R−,Ft) = {0}, for all t ∈ {0, . . . , T − 1} and Theorem 2.22 shows that this last

condition is equivalent to πS,Ct,t+1(0) = 0 where πS,Ct,t+1(0) is the super-hedging cost in

the extended market of 0 i.e. the conditional essential infimum of the pt ∈ L0(R,Ft)
such that pt+αt∆Ct+1+θt∆St+1 ≥ 0 a.s. where αt ∈ L0(R,Ft) and θt ∈ L0(Rd,Ft).
Using again Proposition 3.4 (in the extended market) this is equivalent to AIP in
the extended market. The last assertion follows from Corollary 2.23. 2

We now introduce a weaker form of IP.
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Definition 3.8. The absence of weak immediate profit (AWIP) condition holds true if

for all ∈ {0, . . . , T}

RTt ∩ L
0(R+,Ft) = {0},

where the closure of RTt is taken with respect to the convergence in probability.

We shall see in Lemma 3.11 that the AIP condition is not necessarily equivalent
to AWIP. Before, in the case d = 1, we show that AWIP may be equivalent to AIP
condition under an extra closeness condition. It also provides a characterization
through (absolutely continuous) martingale measures.

Theorem 3.9. Assume that d = 1. The following statements are equivalent.

1. AWIP holds.

2. For every t ∈ {0, . . . , T}, there exists Q � P with E(dQ/dP |Ft) = 1 such that

(Su)u∈{t,...,T} is a Q-martingale.

3. AIP holds and RTt ∩ L
0(R,Ft) = RTt ∩ L0(R,Ft) for every t ∈ {0, . . . , T}.

The proof, which is postponed to the appendix, is based on classical Hahn-
Banach Theorem arguments, see for example the textbooks of [10] and [20].

Remark 3.10. From above, it is clear that AIP and AWIP are equivalent if RTt
is closed. Therefore, Lemma 3.11 implies that RTt is not necessarily closed under
AIP.
Suppose now that P (ess infFt

St+1 = St) = P (ess supFt
St+1 = St) = 0 for all

t ∈ {0 . . . , T − 1}. Then, using Proposition 2.18, AIP is equivalent to NA. Under
NA, the set RTt is closed in probability for every t ∈ {0 . . . , T − 1} and Theorem
3.9 implies that AWIP, AIP and NA are equivalent conditions.

Lemma 3.11. The AIP condition is not necessarily equivalent to AWIP.

Proof. Assume that d = 1. Let us consider a positive process (S̃t)t∈{0,...,T}
which is a P -martingale. We suppose that ess infF0

S̃1 < S̃1 a.s., which holds in
particular if S̃ a geometric Brownian motion as ess infF0

S̃1 = 0 a.s. Let us define
St := S̃t for t ∈ {1, . . . , T} and S0 := ess infF0

S1. We have ess infF0
S1 ≤ S0 and

ess supF0
S1 ≥ ess infF0

S1 = S0 hence AIP holds at time 0 (see Remark 2.13).
Moreover, by the martingale property (see Theorem 3.9), AIP and also AWIP hold
at any time t ∈ {1, . . . , T}. Let us suppose that AWIP holds true at t = 0. Using
Theorem 3.9, there exists ρT ≥ 0 with E(ρT ) = 1 such that S is a Q-martingale
where dQ = ρT dP . Therefore, E(ρT∆S1) = 0. Since ∆S1 > 0 by assumption, we
deduce that ρT = 0 hence a contradiction. 2

4 Explicit pricing of a convex payoff under AIP

In the first section, we obtain the same computative scheme (see (4.25)) as in
[8] but assuming only AIP and not NA. Then this result is illustrated through a
numerical experiment in Section 4.2.
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4.1 The algorithm

Proposition 4.1. Suppose that the model is defined by ess infFt−1
St = kdt−1St−1 a.s.

and ess supFt−1
St = kut−1St−1 a.s. where (kdt−1)t∈{1,...,T}, (kut−1)t∈{1,...,T} and S0

are deterministic non-negative numbers.

The AIP condition holds true if and only if kdt−1 ∈ [0, 1] and kut−1 ∈ [1,+∞] for

all t ∈ {1, . . . , T}.
Suppose that the AIP condition holds. Let h : R → R be a non-negative convex

function with dom h = R such that limz→+∞
h(z)
z ∈ [0,∞). Then the infimum super-

hedging cost of the European contingent claim h(ST ) is a price and it is given by

πt,T (h) = h(t, St) ∈ Pt,T (h(ST ))a.s. where

h(T, x) = h(x)

h(t− 1, x) = λt−1h(t, kdt−1x) + (1− λt−1)h (t, kut−1x) ,
(4.25)

where λt−1 =
kut−1−1

kut−1−kdt−1

∈ [0, 1] and 1− λt−1 =
1−kdt−1

kut−1−kdt−1

∈ [0, 1], with the following

conventions. When kdt−1 = kut−1 = 1 or St−1 = 0, λt−1 = 0
0 = 0 and 1 − λt−1 = 1

and when, kdt−1 < kut−1 =∞, λt−1 = ∞
∞ = 1,

(1− λt−1)h(t, (+∞)x) =(1− kdt−1)x
h(t, (+∞x))

(+∞x)
= (1− kdt−1)x lim

z→+∞

h(z)

z
. (4.26)

Moreover, for every t ∈ {1, . . . , T}, limz→+∞
h(z)
z = limz→+∞

h(t,z)
z and h(·, x) is

non-increasing for all x ≥ 0.

In the proof, which is postponed to the appendix, the strategy associated to
the infimum super-hedging price is given.

Remark 4.2. The infimum super-hedging cost of the European contingent claim
h(ST ) in our model is a price, precisely the same than the price we get in a binomial
model St ∈ {kdt−1St−1, k

u
t−1St−1} a.s., t ∈ {1, . . . , T}. Moreover, as in Corollary

2.16, one can prove that the AIP condition holds at every instant t if and only if
the super-hedging price of some European call option at t is non-negative.

4.2 Numerical experiments

4.2.1 Calibration

In this sub-section, we suppose that the discrete dates are given by tni = iT
n ,

i ∈ {0, . . . , n} where n ≥ 1. We assume that for i ∈ {1, . . . , n}

kutni−1
= 1 + σtni−1

√
∆tni and kdtni−1

= 1− σtni−1

√
∆tni ≥ 0, (4.27)

where t 7→ σt is a positive Lipschitz-continuous function on [0, T ]. In this sub-
section our aim is to calibrate σ. Note that the assumptions on the multipliers
kutni−1

and kdtni−1
imply that∣∣∣∣Stni+1

Snti
− 1

∣∣∣∣ ≤ σtni √∆tni+1, a.s. (4.28)



Pricing without martingale measure 21

By Proposition 4.1, the infimum super-hedging cost of the European Call option
(ST − K)+ is given by hn

(
tni , Stni

)
where hn is defined by (4.25) with terminal

condition hn(T, x) = g(x) = (x − K)+. We extend the function hn on [0, T ] in
such a way that hn is constant on each interval [tni , t

n
i+1[, i ∈ {0, . . . , n}. Such a

scheme is proposed by Milstein [27] where a convergence theorem is proved when
the terminal condition, i.e. the payoff function, is smooth. Precisely, the sequence
of functions (hn(t, x))n≥1 converges uniformly to h(t, x), solution of the Black and
Scholes formula with time-dependent volatility:

∂th(t, x) + σ2t
x2

2
∂xxh(t, x) = 0, h(T, x) = g(x). (4.29)

In [27], it is supposed that the successive derivatives of the solution of the P.D.E.
solution h are uniformly bounded. This is not the case for the Call payoff function
g. On the contrary the successive derivatives of the solution of the P.D.E. explode
at the horizon date, see [24]. In [2], it is proven that the uniform convergence
still holds when the payoff function is not smooth provided that the successive
derivatives of the solution of the P.D.E. do not explode too much.

Supposing that ∆tni is closed to 0, we can identify the observed prices of the
Call option with the theoretical limit prices h(t, St) at any instant t given by (4.29).
For several strikes, matching the observed prices to the theoretical ones allows to
deduce the associated implied volatility t 7→ σt, see [11] for a study of the implied
volatility.

The data set is composed of historical values of the french index CAC 40 and
European call option prices of maturity 3 months from the 23rd of October 2017
to the 19th of January 2018. The values of S are distributed as in Figure 1.

Fig. 1: Distribution of the observed prices.

We compute the proportion of observations satisfying (4.28). The results are
satisfactory for strikes lower that 5000, see Fig. 2. Note that, when the strikes are
too large with respect to the current price S, price observations are less available
for the calibration, see Figure 1. This could explain the degradation of our results.

4.2.2 Super-hedging prices

We now propose an approach where the ku and the kd of Proposition 4.1 are not
strike dependent as before and which is in this sens model free. The data set is
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Strike 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

Ratio 96,7% 95,1% 95,1% 88,5% 86,9% 80,3% 70,5% 78,7% 75,4% 77,0% 73,8% 75,4% 72,1%

Fig. 2

composed of historical daily closing values of the french index CAC 40 from the 5th
of January 2015 to the 12th of March 2018. The chosen interval [0, T ] corresponds
to one week of 5 working days so that the discrete dates are t4i , i ∈ {0, · · · , 4} and
n = 4. We estimate the parameters of the model kdtni−1

and kutni−1
. The first approach

is called symmetric : σti is estimated as an upper bound in (4.28) and then the
kd and ku are given in (4.27). The asymmetric approach is the intuitive approach
where the empirical minimum and maximum are taken. For i ∈ {0, · · · , 3}

σti = max

(∣∣∣∣Sti+1

Sti
− 1

∣∣∣∣ /√∆t4i+1,

)
(4.30)

kdtni−1
= min

Stni
Stni−1

and kutni−1
= max

Stni
Stni−1

.

Note that max (resp. min), the empirical maximum (resp. min), is taken over a one
year sliding sample window of 52 weeks. We estimate the parameters on 52 weeks
and we implement our hedging strategy on the fifty third one. We then repeat the
procedure by sliding the window of one week.

For a payoff function g(x) = (x−K)+, we implement the super-hedging strate-
gies (θ∗t4i

)i∈{0,...,3} associated to the super-hedging cost given by Proposition 4.1

and (5.32). We denote by VT the terminal value of our strategy starting from the
super-hedging cost V0 = π0,T = h(0, S0) i.e. VT = V0 +

∑3
i=0 θ

∗
t4i
∆St4i+1

.

We study below the super-hedging error εT = VT − (ST − K)+ for different
strikes. In the symmetric case, we present in Figures 3a and 3b the distribution
of the super-hedging error εT and of V0/S0 for K = 4700. The graphs in the
asymmetric case are similar.

(a) Distribution of the super-hedging error
εT = VT − (ST −K)+ for K = 4700.

(b) Distribution of the ratio V0/S0 for K =
4700.

Fig. 3: Symmetric case.

We now compare the result of both methods in the table below. In the sym-
metric (resp. asymmetric) case the empirical average of the error εT is 12.76 (resp.
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Mean of V0/S0 Variance of V0/S0 Mean of εT Variance of εT P (εT < 0) VaR 95 %

Symmetric 5.61% 5.14 % 12.76 21.65 14.29% -10.33

Asymmetric 5.52% 5.22% 9.47 14.20 8.04% -1.81

Fig. 4: Comparison of the two methods of estimation for K = 4700. The mean of
S0 is 4844,93 and the mean of (S0 −K)+ is 278.73.
9.47) and its standard deviation is 21.65 (resp. 14.20). This result is rather satis-
factory in comparison to the large value of the empirical mean of S0 which is equal
to 4044. Notice that we observe E(ST −K)+ ' 282.69. This empirically confirms
the efficiency of our suggested method. The empirical probability of {εT < 0} is
equal to 14.29% (resp. 8.04%) but the Value at Risk at 95 % is −10.33 (resp. -1.81)
which shows that our strategy is conservative.

Now we estimate the cost of our strategy in comparison with S0. The empirical
average of V0/S0 is 5.61% (resp. 5.52%) and its standard deviation is 5.14% (resp.
5.22%). This means that V0 is much smaller that S0 which is the theoretical super-
hedging price in some incomplete markets (this is for example the case when kd = 0
and ku = ∞, in particular when the dynamics of S is modeled by a (discrete)
geometric Brownian motion, see [7]). Note that the huge loss (50 in the symmetric
case) is linked to so-called black friday week that occurs the 24th of June 2016.
Large falls of risky assets were observed in European markets, mainly explained
by the Brexit vote. In particular, the CAC 40 felt from 4340 to 4106, with a loss
of −8% on Friday.

We also present the “at the money” case K = S0, see Fig. 5. We see that the
results are better than for K = 4700: V0 is smaller with respect to S0 and the
probability of loss is smaller.

Mean of V0/S0 Variance of V0/S0 Mean of εT Variance of εT P (εT < 0) VaR 95 %

Symmetric 1.51% 0.47 % 35.69 34.11 9.82 % -11.41%

Asymmetric 1.47% 0.49% 33.37 32.78 12.50% -9.29

Fig. 5: Comparison of the two methods of estimation for K = S0. The mean of S0
is 4844.93.

Fig. 6
Remark 4.3. We have compared our results, i.e. when σti is given by (4.30), to the
ones where σti is the implied volatility. The comparison is made for K = 5400, see
Figure 6. The implementation of the classical approach gives worse results as we
may expect. Indeed, as observed in the Section 4.2.1, the implied volatility does
not capture the coefficients as well as the empirical observations do. Therefore,
from the implied volatility, we get larger coefficients kd and smaller coefficients
ku. Thus, the minimal super-hedging prices are smaller, as observed in Figure 6,
but the super-hedging error is negative in most of the cases, see Figure 7. Our
approach is definitively more conservative.
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5 Appendix

Proof of Lemma 2.4. It is clear from (2.1) that for all ω ∈ Ω, Dµ(ω) is a non-empty
and closed subset of Rd. We show that Dµ is H-measurable. Let O be a fixed open
set in Rd and µO : ω ∈ Ω 7→ µO(ω) := µ(O,ω). As µ is a stochastic kernel, µO is
H-measurable. By definition of Dµ(ω) we get that {ω ∈ Ω, Dµ(ω)∩O 6= ∅} = {ω ∈
Ω, µO(ω) > 0} ∈ H and Dµ is H-measurable. 2
Proof of Lemma 2.6. The two first statements follow from the construction of
ess supHX in Proposition 2.5 (see (2.2)). Suppose that ess infHX /∈ suppHX on
some non-null measure subset Λ ∈ H of {ess infHX > −∞}. As suppHX is H-
measurable and closed-valued, by a measurable selection argument, we deduce the
existence of r ∈ L0(R+,H) such that r > 0 a.s. and (ess infHX−r, ess infHX+r) ⊆
R \ suppHX on Λ. As X ∈ suppHX a.s. (see Remark 2.3) and X ≥ ess infHX
a.s., we deduce that X ≥ ess infHX + r on Λ, which contradicts the definition of
ess infHX. The next statement is similarly shown and the last one follows. 2

The proof of Proposition 2.7 is based on the two following useful lemmata.

Lemma 5.1. Let K : Ω � Rd be a H-measurable and closed-valued random set such

that dom K = Ω and let h : Ω ×Rd → R be l.s.c. in x. Then,

sup
x∈K

h(x) = sup
n∈N

h(ηn), (5.31)

where (ηn)n∈N is a Castaing representation of K.

Proof. Let ω ∈ Ω. As (ηn(ω))n∈N ⊂ K(ω), h(ω, ηn(ω)) ≤ supx∈K(ω) h(ω, x)
and thus supn h(ηn) ≤ supx∈K h(x). Let x ∈ K(ω) = cl{ηn(ω), n ∈ N}, by lower
semicontinuity of h, we get that h(ω, x) ≤ lim infn h(ω, ηn(ω)) ≤ supn h(ω, ηn(ω)).
We conclude that supx∈K h(x) ≤ supn h(ηn) and (5.31) is proved. 2

Lemma 5.2. Let K : Ω � Rd be a H-measurable and closed-valued random set such

that dom K = Ω and let h : Ω × Rk × Rd → R be a H ⊗ B(Rk) ⊗ B(Rd)-measurable

function such that h(ω, x, ·) is l.s.c. for all (ω, x) ∈ Ω × Rk. Then (ω, x) ∈ Ω × Rk 7→
s(ω, x) = supz∈K(ω) h(ω, x, z) is H⊗ B(Rk)-measurable.

Proof. Lemma 5.1 implies that s(ω, x) = supn h(ω, x, ηn(ω)), where (ηn)n∈N is
a Castaing representation of K. This implies that for any fixed c ∈ R

{(ω, x) ∈ Ω ×Rd, s(ω, x) ≤ c} = ∩n{(ω, x) ∈ Ω ×Rd, h(ω, x, ηn(ω)) ≤ c}.

As h isH⊗B(Rk)⊗B(Rd)-measurable and ηn isH-measurable, (ω, x) 7→ h(ω, x, ηn(ω))
is H⊗ B(Rk)-measurable and so is s. 2

Proof of Proposition 2.7. As P (X ∈ suppHX|H) = 1 (see Remark 2.3) we have that
supx∈suppHX h(x) ≥ h(X) a.s. and the definition of ess supHh(X) implies that
supx∈suppHX h(x) ≥ ess supHh(X) a.s. since supx∈suppHX h(x) is H-measurable
by Lemmata 2.4 and 5.2.

Let (γn)n∈N be a Castaing representation of suppHX. Lemmata 2.4 and 5.1
imply that supx∈suppHX h(x) = supn h(γn). Fix some rational number ε > 0 and
some integer n > 0 and set Zε,n = 1B(γn,ε)(X), where B(γn, ε) is the closed ball of
center γn and radius ε. Let Ωε,n = {E(Zε,n|H) > 0}. Then P (Ωε,n) = 1. Otherwise,
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P (Ω \Ωε,n) > 0 and on Ω \Ωε,n ∈ H, P (X ∈ Rd \B(γn, ε)|H) = 1 and by definition
2.2, suppHX ⊂ Rd \B(γn, ε), which contradicts γn ∈ suppHX. By definition of the
essential supremum, we have that ess supHh(X) ≥ h(X) a.s. and that ess supHh(X)
is H-measurable. This implies that, for all fixed ω ∈ Ωε,n,

ess supHh(X)(ω) ≥ E(Zε,nh(X)|H)

E(Zε,n|H)
(ω) =

∫
1B(γn(ω),ε)(x)h(ω, x)PX|H(dx;ω)

E(Zε,n|H)(ω)

≥
∫ (

infy∈B(γn(ω),ε) h(ω, y)
)

1B(γn(ω),ε)(x)PX|H(dx;ω)

E(Zε,n|H)(ω)

≥ inf
y∈B(γn(ω),ε)

h(ω, y).

As h is l.s.c. (recall [32, Definition 1.5, equation 1(2)]), we have that

lim
ε→0

inf
y∈B(γn,ε)

h(y) = lim inf
x→γn

h(x) = h(γn).

So on the full measure set ∩ε∈Q ε>0,n∈NΩe,n, ess supHh(X) ≥ h(γn). Taking the
supremum over all n, we get that

ess supHh(X) ≥ sup
n
h(γn) = sup

x∈suppHX
h(x) ≥ ess supHh(X) a.s. 2

Lemma 5.3. Let F = σ(Y ) and T be a Rd-valued random variable, which is not

necessarily F-measurable, such that dom suppFT = Ω. Let g : Ω×Rd×Rd → R be a

F⊗B(Rd)⊗B(Rd)-measurable function such that (y, t) 7→ g(ω, y, t) is l.s.c. for all ω ∈
Ω. Let Z = g(Y, T ). Then Z̃ = ess supFZ = δ(Y ) where δ(y) = supt∈suppFT g(y, t)

is l.s.c in y and F ⊗ B(Rd)-measurable w.r.t. (ω, y).

Proof. Proposition 2.7 implies that δ(y) = ess supFg(y, T ). Lemmata 2.4 and
5.2 prove that δ is F ⊗ B(Rd)-measurable. In particular, δ(Y ) is F-measurable.
As g(Y, T ) ≤ δ(Y ), we deduce that Z̃ ≤ δ(Y ) a.s. Moreover, by Lemma 5.1,
δ(y) = supn g(y, τn) where (τn)n≥1 is a Castaing representation of suppFT . More-
over, T (ω) ∈ Λ(ω) a.s. where Λ is the closed F-measurable random set defined as
Λ(ω) = {t ∈ Rd, g(ω, Y (ω), t) ≤ Z̃(ω)}. Therefore, suppF (T ) ⊆ Λ and we deduce
that g(Y, τn) ≤ Z̃ a.s. hence δ(Y ) ≤ Z̃ a.s. Therefore, δ(Y ) = Z̃ a.s., δ is jointly
measurable w.r.t. (ω, y) and is clearly l.s.c. in y. 2

Proof of Theorem 3.9. First we prove that 1. implies 2. Suppose that AWIP holds
and fix some t ∈ {0, . . . , T}. We may suppose without loss of generality that the

process S is integrable under P . Under AWIP, we then have RTt ∩L
1(R+,Ft) = {0}

where the closure is taken in L1. Therefore, for every nonzero x ∈ L1(R+,Ft),
there exists by the Hahn-Banach theorem a non-zero Zx ∈ L∞(R+,FT ) such that
(recall that RTt is a cone) EZxx > 0 and EZxξ ≤ 0 for every ξ ∈ RTt . Since
−L1(R+,FT ) ⊆ RTt , we deduce that Zx ≥ 0 and we way renormalise Zx so that
‖Zx‖∞ = 1. Let us consider the family

G = {{E(Zx|Ft) > 0}, x ∈ L1(R+,Ft) \ {0}}.

Consider any non-null set Γ ∈ Ft. Taking x = 1Γ ∈ L1(R+,Ft) \ {0}, since
E(Zx1Γ ) > 0, we deduce that Γ has a non-null intersection with {E(Zx|Ft) > 0}.
By [20, Lemma 2.1.3], we deduce an at most countable subfamily (xi)i≥1 such that
the union

⋃
i{E(Zxi |Ft) > 0} is of full measure. Therefore, Z =

∑∞
i=1 2−iZxi ≥ 0
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is such that E(Z|Ft) > 0 and we define Q � P such that dQ = (Z/E(Z|Ft))dP .

As the subset {
∑T
u=t+1 θu−1∆Su, θu−1 ∈ L(R,Fu−1)} is a linear vector space

contained in RTt , we deduce that (Su)u∈{t,...,T} is a Q-martingale.
We now prove that 2. implies 3. Suppose that for every t ∈ {0, . . . , T}, there

exists Q � P such that (Su)u∈{t,...,T} is a Q-martingale with E(dQ/dP |Ft) = 1.
Let us define, for u ∈ {t, . . . , T}, ρu = EP(dQ/dP|Fu). Then, ρu ≥ 0 and ρt = 1.
Consider γt ∈ RTt ∩ L0(R+,Ft), i.e. γt is Ft-measurable and is of the form γt =∑T−1
u=t θu∆Su+1 − ε+T . Since θu is Fu-measurable, θu∆Su+1 admits a generalized

conditional expectation under Q, knowing Fu, and we have, by assumption, that
EQ(θu∆Su+1|Fu) = 0. The tower law implies that a.s.

γt = EQ(γt|Ft) =
T−1∑
u=t

EQ(EQ(θu∆Su+1|Fu)|Ft)− EQ(ε+T |Ft) = −EQ(ε+T |Ft).

Hence γt = 0 a.s., i.e. AIP holds. Let us show that RTt ∩ L
0(R,Ft) ⊆ RTt ∩

L0(R,Ft).Consider first a one step model, where (Su)u∈{T−1,T} is a Q-martingale

with ρT ≥ 0 and ρT−1 = 1. Suppose that γn = θnT−1∆ST − εn+T ∈ L0(R,FT )

converges in probability to γ∞ ∈ L0(R,FT−1). We need to show that γ∞ ∈ RTT−1∩
L0(R,FT−1).

On the FT−1-measurable set ΛT−1 := {lim infn |θnT−1| < ∞}, by [20, Lemma

2.1.2], we may assume w.l.o.g. that θnT−1 is convergent to some θ∞T−1 hence εn+T
is also convergent and we can conclude that γ∞1ΛT−1

∈ RTT−1 ∩ L
0(R,FT−1).

Otherwise, on Ω \ ΛT−1, we use the normalized sequences for i ∈ {1, . . . , d}

θ̃n,iT−1 := θn,iT−1/(|θ
n
T−1|+ 1), ε̃n+T := εn+T /(|θnT−1|+ 1).

By [20, Lemma 2.1.2] again, we may assume, taking d+ 1 sub-sequences, that a.s.
θ̃nT−1 → θ̃∞T−1, ε̃n+T → ε̃∞+

T and θ̃∞T−1∆ST − ε̃
∞+
T = 0 a.s. Remark that |θ̃∞T−1| = 1

a.s. First consider the subset Λ2
T−1 := (Ω \ ΛT−1) ∩ {θ̃∞T−1 = 1} ∈ FT−1 on which

∆ST ≥ 0 a.s. Since EQ(∆ST 1Λ2
T−1
|FT−1) = 0 a.s., we get that ρT∆ST 1Λ2

T−1
= 0

a.s. Hence ρT γ
n1Λ2

T−1
= −ρT εn+T 1Λ2

T−1
≤ 0 a.s. Taking the limit, we get that

ρT γ
∞1Λ2

T−1
≤ 0 a.s. and, since γ∞ ∈ L0(R,FT−1), we deduce that ρT−1γ

∞1Λ2
T−1
≤

0 a.s. Recall that ρT−1 = 1 hence γ∞1Λ2
T−1

≤ 0 a.s. and γ∞1Λ2
T−1

∈ RTT−1 ∩
L0(R,FT−1). On the subset (Ω \ ΛT−1) ∩ {θ̃∞T−1 = −1} we may argue similarly
and the conclusion follows in the one step model.

We now show the result in multi-step models by recursion. Fix some s ∈
{t, . . . , T − 1}. We show that RTs+1 ∩ L

0(R,Fs+1) ⊆ RTs+1 ∩ L0(R,Fs+1) implies
the same property for s instead of s + 1. By assumption (Su)u∈{s,...,T} is a Q-
martingale with EP (dQ/dP |Fu) = ρu ≥ 0 for u ∈ {s, . . . , T} and ρs = 1. Suppose

that γn =
∑T
u=s+1 θ

n
u−1∆Su− εn+T ∈ RTs ∩L0(R,FT ) converges to γ∞ ∈ L0(R,Fs).

If γ∞ = 0 there is nothing to prove. As before on the Fs-measurable set Λs :=
{lim infn |θns | < ∞}, we may assume w.l.o.g. that θns converges to θ∞s . Therefore
on Λs

T∑
u=s+2

θnu−1∆Su − εn+T = γn − θns∆Ss+1 → γ∞ − θ∞s ∆Ss+1

and, by the induction hypothesis,
∑T
u=s+2 θ

n
u−1∆Su − εn+T also converges to an

element of RTs+1 ∩ L0(R,Fs+1) and we conclude that γ∞1Λs
∈ RTs ∩ L0(R,Fs).

On Ω\Λs−1, we use the normalisation procedure as before, and deduce the equality
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∑T
u=s+1 θ̃

∞
u−1∆Su − ε̃∞+

T = 0 a.s. for some θ̃∞u ∈ L0(R,Fu), u ∈ {s, . . . , T − 1} and

ε̃∞+
T ≥ 0 such that |θ̃∞s | = 1 a.s. We then argue on Λ2

s := (Ω \ Λs−1) ∩ {θ̃∞s = 1} ∈
Fs and Λ3

s := (Ω \ Λs−1)∩{θ̃∞s = −1} ∈ Fs respectively. When θ̃∞s = 1, we deduce
that

∆Ss+1 +
T∑

u=s+2

θ̃∞u−1∆Su − ε̃∞+
T = 0 a.s., i.e. ∆Ss+1 ∈ Ps+1,T (0)

hence ∆Ss+1 ≥ πs+1,T (0) = 0 a.s. under AIP, see Proposition 3.4. Since
EQ(∆Ss+11Λ2

s
|Fs) = 0 a.s., ρs+1∆Ss+11Λ2

s
= 0 a.s. So,

ρs+1γ
n1Λ2

s
=

T∑
u=s+2

θnu−1ρs+11Λ2
s
∆Su − εn+T ρs+11Λ2

s
∈ RTs+1 ∩ L0(R,Fs+1).

Hence, ρs+1γ
∞1Λ2

s
∈ RTs+1 ∩ L0(R,Fs+1) by induction. As ρs+1γ

∞1Λ2
s

admits a
generalized conditional expectation knowing Fs, the tower property implies a.s.

1Λ2
s
E(ρsγ

∞|Fs) = E(ρs+1γ
∞1Λ2

s
|Fs) =

T∑
u=s+2

1Λ2
s
E
(
θ∞u−1E

(
dQ

dP
∆Su|Fu−1

)
|Fs
)

−1Λ2
s
E(ε∞+

T ρs+1|Fs) ≤ 0,

since (Su)u∈{s,...,T} is a Q-martingale. Hence, ρsγ
∞1Λ2

s
≤ 0 a.s. As ρs = 1,

γ∞1Λ2
s
≤ 0 a.s. so that γ∞1Λ2

s
∈ RTs ∩ L0(R,Fs).

Finally, notice that the AIP condition implies AWIP as soon as the equality

RTt ∩ L
0(R+,Ft) = RTt ∩ L0(R+,Ft) holds for every t ∈ {0, . . . , T}. 2

Proof of Proposition 4.1. The conditions kdt−1 ∈ [0, 1] and kut−1 ∈ [1,+∞] for all
t ∈ {1, . . . , T} are equivalent to the AIP condition (see Remark 2.13). Let M =
h(∞)
∞ and Mt = limz→+∞

h(t,z)
z . We prove the second statement. Assume that AIP

holds true. We establish (i) the recursive formulation πt,T (h(ST )) = h(t, St) given
by (4.25), (ii) h(t, ·) ≥ h(t+1, ·) and (iii) Mt = Mt+1. The case t = T is immediate.
As h : R → R is a convex function with dom h = R, h is clearly a FT−1-normal
integrand, we can apply Corollary 2.26 (see (2.18) and (2.19)) and we get that a.s.

πT−1,T (h(ST )) = h(kdT−1ST−1) + θ∗T−1

(
ST−1 − kdT−1ST−1

)
,

θ∗T−1 =
h(kuT−1ST−1)− h(kdT−1ST−1)

kuT−1ST−1 − kdT−1ST−1

,
(5.32)

with the conventions θ∗T−1 = 0
0 = 0 if either ST−1 = 0 or kuT−1 = kdT−1 = 1 and

θ∗T−1 = h(∞)
∞ = M if kdT−1 < kuT−1 = +∞. Moreover, using (2.20), we obtain that

πT−1,T (h(ST )) + θ∗T−1∆ST ≥ h(ST ) a.s. i.e. πT−1,T (h(ST )) ∈ PT−1,T (h(ST )).

So, using Lemma 3.1, we get that PT−2,T (h(ST )) = PT−2,T−1(πT−1,T (h(ST ))),

πT−2,T (h(ST )) = πT−2,T−1(πT−1,T (h(ST )))

and we may continue the recursion as soon as πT−1,T (h(ST )) = h(T − 1, ST−1)
where h(T − 1, ·) satisfies (4.25), is convex with domain equal to R, is such that
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h(T − 1, z) ≥ 0 for all z ≥ 0 and MT−1 = M ∈ [0,∞). To see that, we distinguish
three cases. If either ST−1 = 0 or kuT−1 = kdT−1 = 1, πT−1,T (h(ST )) = h(ST−1)

and h(T − 1, z) = h(z) = h(T, z) satisfies all the required conditions. If kdT−1 <

kuT−1 = +∞, θ∗T−1 = M and πT−1,T (h(ST )) = h(T − 1, ST−1), where

h(T − 1, z) = h(kdT−1z) +Mz
(

1− kdT−1

)
= lim

ku→+∞

(
ku − 1

ku − kdT−1

h(kdT−1z) +
1− kdT−1

ku − kdT−1

h(kuz)

)
,

using (4.26). The term in the r.h.s. above is larger than h(z) = h(T, z) by convexity.
As kdT−1 ∈ [0, 1] and M ∈ [0,∞), h(T −1, z) ≥ 0 for all z ≥ 0, we get that h(T −1, ·)
is convex function with domain equal to R since h is so. The function h(T − 1, ·)
also satisfies (4.25) (see (4.26)). Finally

MT−1 = lim
z→+∞

kdT−1

h(kdT−1z)

kdT−1z
+M

(
1− kdT−1

)
= M.

The last case is when ST−1 6= 0 and kuT−1 6= kdT−1 and kuT−1 < +∞. It is

clear that (5.32) implies (4.25). Moreover as kdT−1 ∈ [0, 1] and kuT−1 ∈ [1,+∞),
λT−1 ∈ [0, 1], 1− λT−1 ∈ [0, 1] and (4.25) implies that h(T − 1, z) ≥ 0 for all z ≥ 0,
h(T − 1, ·) is convex with domain equal to R since h is so. Moreover, by convexity

MT−1 = λT−1k
d
T−1 lim

z→+∞

h(kdT−1z)

kdT−1z
+ (1− λT−1)kuT−1 lim

z→+∞

h(kuT−1z)

kuT−1z
= M.2

Lemma 5.4. Let Γ be a F-measurable random set in Rd. Suppose that Γ is non empty

almost surely. There exists a F-measurable version H of the pointwise affine hull H̄(ω)
of Γ (ω), ω ∈ Ω, such that L0(H̄,F) = L0(H,F). Moreover, for any x ∈ L0(Rd,F),

there exists a F-measurable version of the orthogonal projection pH(x) of x onto H.

Proof. Recall that the affine hull of Γ is the smallest affine subspace H which
contains Γ . As H is also the affine hull of the closed convex hull of Γ , we may
suppose without loss of generality that Γ is convex almost surely as there exists
a measurable version of the closed convex hull by [26]. As Γ 6= 0 a.s., consider a
measurable selection γ̂ ∈ Γ a.s. Then, Γ̃ = Γ − γ̂ is a convex set containing zero.
Therefore, we may assume without loss of generality that γ̂ = 0.

Consider the pointwise affine hull H̄(ω) of Γ (ω). By [26, Proposition 2.8], there
exists a measurable version H of H̄ such that L0(H̄,F) = L0(H,F). As H contains
0, it is a convex cone by [26, Proposition 2.8]. Moreover, the same holds for −H
hence H is a linear space.

As H is closed, consider a Castaing representation of H, i.e. a countable family
(hn)n≥1 of L0(H,F) such that (hn(ω))n≥1 is almost surely dense in H(ω), ω ∈ Ω.
Then, d(H,x) = infn ‖x − hn‖ is F-measurable and the random set Γ (ω) = {y ∈
H : ‖x(ω) − y‖ ≤ d(H,x)} is F-measurable and non empty almost surely as
it contains the pointwise projection pH(x). Therefore, by measurable selection
argument, it is possible to choose a F-measurable version of pH(x). 2
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