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Abstract: For several decades, the no-arbitrage (NA) condition and
the martingale measures have played a major role in the financial asset’s
pricing theory. Here, we propose a new approach based on convex duality
instead of martingale measures duality : our prices will be expressed
using Fenchel conjugate and bi-conjugate. This is lead naturally to a
weak condition of absence of arbitrage opportunity, called Absence of
Immediate Profit (AIP), which asserts that the price of the zero claim
should be zero. We study the link between (AIP), (NA) and the no-
free lunch condition. We show in a one step model that, under (AIP),
the super-hedging cost is just the payoff’s concave envelop and that
(AIP) is equivalent to the non-negativity of the super-hedging prices of
some call option. In the multiple-period case, for a particular, but still
general setup, we propose a recursive scheme for the computation of a
the super-hedging cost of a convex option. We also give some numerical
illustrations.

Keywords and phrases: Financial market models, Super-hedging prices,
No-arbitrage condition, Conditional support, Essential supremum.
2000 MSC: 60G44, G11-G13.

1. Introduction

The problem of giving a price to a financial asset G is central in the economic
and financial theory. A selling price should be an amount which is enough to
initiate a hedging strategy for G, i.e. a strategy whose value at maturity is
always above G. It seems also natural to ask for the infimum of such amount.
This is the so called super-replication price and it has been introduced in the
binomial setup for transaction costs by [4]. Characterising and computing
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the super-replication price has become one of the central issue in mathemat-
ical finance theory. Until now it was intimately related to the No-Arbitrage
(NA) condition. This condition asserts that starting from a zero wealth it is
not possible to reach a positive one (non negative almost surely and strictly
positive with strictly positive probability measure). Characterizing the (NA)
condition or, more generally, the No Free Lunch condition leads to the Fun-
damental Theorem of Asset Pricing (FTAP in short). This theorem proves
the equivalence between those absence of arbitrage conditions and the exis-
tence of risk-neutral probability measures (also called martingale measures
or pricing measures) which are equivalent probability measures under which
the (discounted) asset price process is a martingale. This was initially for-
malised in [11], [12] and [16] while in [8] the FTAP is formulated in a general
discrete-time setting under the (NA) condition. The literature on the subject
is huge and we refer to [9] and [14] for a general overview. Under the (NA)
condition, the super-replication price of G is equal to the supremum of the
(discounted) expectation of G computed under the risk-neutral probability
measures. This is the so called dual formulation of the super-replication price
or Superhedging Theorem. We refer to [10] and the references therein.

In this paper a super-hedging or super-replicating price is the initial value
of some super-hedging strategy. We propose an innovating approach: we anal-
yse from scratch the set of super-replicating prices and its infimum value,
which will be called the infimum super-replication cost. Note that this cost
is is not automatically a super-replicating price. Under mild assumptions,
we show that the one-step set of super-replication prices can be expressed
using Fenchel-Legendre conjugate and the infimum super-replication cost is
obtained by the Fenchel-Legendre biconjugate. So we use here the convex
duality instead of the usual financial duality based on martingale measures
under the (NA) condition. We then introduce the condition of Absence of
Immediate Profit (AIP). An Immediate Profit is the possibility of super-
hedging 0 at a negative cost. We prove that (AIP) is equivalent to the fact
that the stock value at the beginning of the period belongs to the convex
envelop of the conditional (with respect to the information of the beginning
of the period) support of the stock value at the end of the period. Using
the notion of conditional essential supremum, it is equivalent to say that the
initial stock price is between the conditional essential infimum and supre-
mum of the stock value at the end of the period. Under (AIP) condition we
show that the one-step infimum super-replication cost is the concave envelop
of the payoff relatively to the convex envelop of the conditional support. We
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also show that (AIP) is equivalent to the non-negativity of the super-hedging
prices of any fixed call option. We then study the multiple-period framework.
We show that the global (AIP) condition and the local ones are equivalent.
We then focus on a particular, but still general setup, where we propose a
recursive scheme for the computation of the super-hedging prices of a convex
option. We obtain the same computative scheme as in [5] and [6] but here it
is obtained by only assuming (AIP) instead of the stronger (NA) condition.
We also give some numerical illustrations; we calibrate historical data of the
french index CAC 40 to our model and implement the super-hedging strategy
for a call option.

Finally, we study the link between (AIP), (NA) and the weak no-free lunch
(WNFL) conditions. We show that the (AIP) condition is the weakest-one
and we also provide conditions for the equivalence between the (AIP) and
the (WNFL) conditions.

The paper is organized as follows. In Section 2, we study the one-period
framework while in Section 3 we study the multi-period one. Section 4 is
devoted to the comparison between (AIP), (NA) and (WNFL) conditions.
Section 5 contains the numerical experiments. Finally, Section 6 collects the
results on conditional support and conditional essential supremum.

In the remaining of this introduction we introduce our framework and
recall some results that will be used without further references in the se-
quel. Let (2, (Ft)ieqo,...my, Fr, P) be a filtered probability space where T
is the time horizon. We consider a (F)cqo,...,r}-adapted, real-valued, non-
negative process S := {S;, t €{0,...,T}}, where for t € {0,...,T}, S;
represents the price of some risky asset in the financial market in con-
sideration. Trading strategies are given by (F;)cqo,.,r3-adapted processes
0 := {0t € {0,...,T — 1}} where for all t € {0,...,T — 1}, 6, represents
the investor’s holding in the risky asset between time ¢ and time t 4 1.

We assume that trading is self-financing and that the riskless asset’s price is
constant equal to 1. The value at time t of a portfolio # starting from initial
capital x € R is given by

t
VA =24 0,1A8,.

u=1

For any o-algebra H and any k& > 1, we denote by L°(R* ) the set of
H-measurable and R¥-valued random variables. Let A : Q x R¥ — R. The
effective domain of h(w,-) is domh(w, ) = {r € R¥ h(w,z) < oo} and
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h(w,-) is proper if domh(w,-) # 0 and h(w,x) > —oo for all z € R*. Then
h is H-normal integrand (see Definition 14.27 in [21]) if and only if A is
H @ B(R*)-measurable and is lower semi-continuous (l.s.c. in the sequel) in
z, see [21, Corollary 14.34]. Let Z € L°(R* H), we will use the notation
h(Z):w— h(Z(w)) = h(w, Z(w)) and if h is H ® B(R*)-measurable, h(Z) €
LY(R*,H). Let K be a H-measurable (see Definition 14.1 of [21]) and closed-
valued random set of R¥ then K admits a Castaing representation (M )nen
(see Theorem 14.5 in [21]) : K(w) = cl{n,(w), n € N} for all w € dom K =
{we Q, K(w) NR* #£ 0}, where the closure is taken in RF.

2. The one-period framework

For ease of notation, we consider two complete sub-c-algebras of Fr: H C F
and two random variables y € L°(R,,H) and Y € L°(R.,F). The setting
will be applied in Section 3 with the choices H = F;, F = Fii1, ¥ = S,
y =S

Section’s objective is to obtain a characterisation of the one-step set of super-
hedging or super-replicating prices of ¢g(Y’) under suitable assumptions on
g: QxR —R.

In the following, the notion of conditionnal support (supp,Y’), conditional
essential infinimum (essinfy) or supremum (esssupy) will be in force, see
Section 6.

Definition 2.1. The set P(g) of super-hedging prices of the contingent claim
g(Y') consists in the initial values of super-hegging strategies 0:

Plg) ={z € L°(R,H),30 €c L°R,H), 2+ 0(Y —y) > g(Y)as.}.

The infinimum super-hedging cost of g(Y') is defined as p(g) := essinfy,P(g).

Notice that the infinimum super-hedging cost is not a priori a price, i.e.
an element of P(g), as the later may be an open interval.

Remark 2.2. As P(Y € suppyY) =1 (see [1, definition of support on page
441, Theorems 12.7 and 12.14]), we have that supp,Y is a.s. non-empty.
Moreover since 0 < Y < oo, Dom supp Y = 2. We could easily include
the case P(0 <Y < oo) = 1 by replacing Y by 0 on the complementary of
{0 <Y < o0}



Lemma 2.3.
Plg) = {esssupy, (g(Y) — V) + by, 6 € LOR, M)} + LOR,,H). (21)
Suppose that g is a H-normal integrand. Then

esssupy (g(Y) —0Y) = sup (g(z) —0z) = f*(—0), (2.2)

z€suppy Y

where f* is the Fenchel-Legendre conjugate of f i.e.
[wx) = Sup (zz = f(w,2)),
ze

f(wv Z) = _g(w> Z) + 5suppHY(w> Z)7 (23)

where dc(w,z) = 0 if z € C(w) and +oo else. Both f*(w,:) and v —
f*(w,—x) are a.s. proper, convex, l.s.c., f* is H ® B(R)-measurable and f*
15 a H-normal integrand. Moreover, we have that

plg) = =),
where f** is the Fenchel-Legendre biconjugate of f i.e.

f**(w,a:) = sup (JJZ - f*<w7 Z)) :
zeR

Proof. As x € P(g) if and only if there exists § € L°(R,H) such that
x—0y > g(Y)— 0Y as., we get by definition of the conditional essential
supremum (see Definition 6.3) that (2.1) holds true. Then (2.2) follows from
Lemma 6.8 (see. Remark 2.2). Since the graph of supp,, Y belongs to H@B(R)
(see Lemma 6.2), we easily deduce that dsypp,,v is H ® B(R)-measurable and
it is clear that it is also l.s.c. As dom f = supp, Y is a.s. non-empty (see again
Remark 2.2) f*(w,-) is convex and l.s.c. as the supremum of affine functions.
Hence x — f*(w, —x) is also a.s. L.s.c. and convex. Moreover, using Lemma

6.6 (and Remark 2.2), f* is H ® B(R)-measurable.
p(g) = essinfy{f*(—0) +0y, 6 € L°(R,H)}
= —esssupy {0y — f*(0), 0 € L°(R,H)}
= —sw(ey = f1(2) = = 7).
The first equality is a direct consequence of (2.1), the second one is trivial.

In order to obtain the third one, we want to apply Lemma 6.9. First re-
mark that esssupy {0y — f*(0), 0 € L°(R,H)} = esssup, {0y — f*(0), 0 €
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L°(R,H) N Dom f*}. Now since f* is H ® B(R)-measurable, we deduce
that graphdom f* = {(w,z) € Q@ x R, f*(w,z) < oo} is a H ® B(R)-
measurable set and dom f* is also H-measurable (see [21, Theorem 14.8]).
Since (w,z) — zy(w) — f*(w,2) is a H ® B(R)-measurable function and
f*(w, -) is convex and thus u.s.c. on dom f*(w), we can apply Lemma 6.9 and
we obtain that

esssupy {0y — f*(0), 0 € L°(R,H)NDom f*} =  sup (2y— f*(2))
z€Dom(f*)
= sup (zy — f*(2)) .
z€R
a

Let conv h be the convex envelop of h i.e. the greatest convex function dom-
inated by h

conv h(z) = sup{u(z), u convex and u < h}.

The concave envelop is defined symmetrically and denoted by conc h. We
also define the (lower) closure h of h as the greatest l.s.c. function which
is dominated by h i.e. h = liminf, ,, h(y). The upper closure is defined
symmetrically: A = lim sup, . h(y). It is easy to see that

conv f(y) =sup{ay + 5, a, B € R, f(x) > ax+ 5, Vo € R}.
It is well-known (see for example [21, Theorem 11.1]) that
F* = (conv f)* = (£)" = (cony f)". (24)
Moreover, if conv f is proper, f** is also proper, convex and l.s.c. and
[ = conv f. (2.5)

So in order to compute p(g), we need to compute conv f and conv f. To do
so, we introduce the notion of relative concave envelop of g with respect to

suppy Y :
conc(g, suppyY)(z) = inf{v(z), v isconcaveand v(z) > g(z), Vz € suppyY'}.

In the following, we use the convention 0 x (£oc0) = 0 and (+00) x 0 = 0.
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Lemma 2.4. Suppose that g is a H-normal integrand. Then, we have:

conv f(x) = +00 Ir\convsupp,, ¥ () — Leonvsupp,,v () X conc(g, suppyY)(x)
+00 1R\ convsuppy, ¥ (%) — Leonvsupp,, v (¥) X €one(g, suppyY)(z)
= +00 I\ convsupp,,v (7) — 1 () x
inf{azx + 3, a, B R, az+ > g(z), Vz € suppy Y},

conv f(x)

convsuppy Y

where convsuppy, Y is the convex envelopp of suppy Y, i.e. the smallest con-
vex set that contains suppyY .

Remark 2.5. Note that conv f is proper if and only if conc(g, supp,Y)(z) <
+o00 for all © € convsupp, Y, since convsuppy Y is non-empty (see Remark
2.2). So conv f is proper if there exists some concave function ¢ such that g <
@ on suppy Y and ¢ < oo on convsuppy, Y (by definition, conc(g, suppyY) <
¢). ' As for all z € convsupp, Y, conc(g,suppyY)(z) > g(z) > —oo, we
get that conc(g, suppyY)(z) € R and also conc(g, suppyY)(x) € R, one may
write that

conv f = —conc(g,suppyY’) + Sconvsuppy, Y -

Mf = —COHC(g, Supp?—[Y> + (5convsuppHY-

Proof. One can rewrite the convex envelop of f as follows (see [21, Propo-
sition 2.31]):

conv f(z) = inf {Z Aif(zi), n > 1, (Ni)ieqr,..ny € RY, (Ti)iequ,....ny € R™,

=1
T = Zn:&wz‘, Zn:)\i = 1}'
=1 =1

The convex envelop of supp, Y is given by (see [21, Proposition 2.27, The-
orem 2.29]).

n n
convsuppy Y = {Z At n > 1, (Mieqt,omy ERE, Y Ni=1, 25 € suppHY} .
i=1 =1

Assume that = ¢ convsuppyY. Then if z = > "  A\z; for some n >
L, (M)ieg1,..ny € R, (24)ieq1,..ny € R™ such that Y | A\; = 1, at least one

!This is equivalent to assume that there exists a, 3 € R, such that g(x) < ax + 3 for
all € suppyY).
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7; & suppy Y and f(z;) = oo and also conv f(2) = 00 = 400 1r\convsuppy, v (7) —
Leomanppey () X cone(g, suppyY)(z).

If x € convsuppy, Y, conv f(z) = —conc(g, suppyY)(z). One can also remark
that if x € convsuppy Y,

conv f(x) = —inf{ax + 5, a, B € R, g(2) < az+ [, Vz € suppy Y}
O

So we have the following representation of the infimum super-hedging cost:

Proposition 2.6. Suppose that g is a H-normal integrand and that there
exists some concave function ¢ such that g < ¢ on suppyY and ¢ < oo on
convsuppy Y . Then,

p(g) = —conv(f)(y) = cone(g, suppy Y )(¥) — dconvsuppyy (¥)-

We see that the fact that y belongs to convsupp, Y or not is important.
In particular, in some cases, the infinimum price of a European claim may
be —oo. This is related to the notion of absence of immediate profit that we
present now. We say that there is an immediate profit when it is possible to
super-replicate the contingent claim 0 at a negative price p. This implies that
we may immediately make the positive profit —p and then start a portfolio
process ending up with a non negative wealth. On the contrary case, we say
that the Absence of Immediate Profit (AIP) condition holds. We will see that
(AIP) is strictly weaker than (NA).

Definition 2.7. There is an immediate profit (IP) if there exists a non null
element of P(0)NLY(R_,H) or equivalently if p(0) < 0 with P(p(0) < 0) > 0.

Notice that the (AIP) condition may be seen as a particular case of the
utility based No Good Deal condition introduced by Cherny, see [7, Definition
3]. In the definition above, let us explain why p(0) < 0 with P(p(0) < 0) > 0
implies the existence of an immediate profit (IP).To see it, recall that P(0)
is directed downward so that p(0) = lim, | p, where p, € P(0). Since
P(p(0) < 0) > 0, we deduce that there exists n such that P(p, < 0) > 0.
Let us define p = p,1,,<o. Then, p € P(0) N L°(R_,H) and p # 0, i.e. p
generates an immediate profit.

Proposition 2.8. (AIP) holds if and only if y € convsuppy Y a.s.
Notice that, from Lemma 6.10, we get that

convsuppy Y = [essinfy Y, esssupy, Y| N R.



/ 9

Proof. The assumptions of Proposition 2.6 are satisfied for g = 0 and we get
that p(0) = —dconvsupp, v (¥). Hence, there is no immediate profit if and only
if y € convsuppy Y a.s. O

Corollary 2.9. The (AIP) condition holds true if and only if p(g) > 0
a.s. for some non-negative H-normal integrand g such that there exists some
concave function ¢ verifying that g < ¢ < co.

So in particular the (AIP) condition holds true if and only the infimum
super-hedging cost of a european call option is non-negative.

Proof. Assume that (AIP) condition holds true. Then from Definition 2.7,
we get that p(0) = 0 a.s. As g > 0, it is clear that p(g) > p(0) = 0 a.s.
Conversally, assume that there exists some (IP). From Proposition 2.6, we
get that

p(g) = cone(g, suppyY)(y) — deonvsupps, v (¥)-

From Proposition 2.8, we get that P(y € convsupp,Y) < 1 and as conc(g, suppyY)(y) <
© < 00, P(p(g) = —o0) > 0 and the converse is proved. O

Remark 2.10. Assume that the H-measurable set I' = {esssupy Y < y} has
a non null probability. Then, on this set, from the zero initial capital, taking
the physical position (y,—1) while keeping the zero position otherwise, one
get at time 1 the terminal wealth y —Y >y —esssup,Y > 0 on I' and zero
otherwise, i.e. an arbitrage opportunity. Thus if y ¢ convsupp, Y a.s., one
gets an Arbitrage Opportunity and (AIP) is weaker than (NA).

We provide some examples where (AIP) holds true and is strictly weaker
than (NA). This is the case if there exists ()1, Q2 < P such that S is a Q-
super martingale (resp. QQo-sub martingale), see Remark 6.4. This is of course
true if essinfyY = 0 and esssup, Y = oo. Finally, this is also the case for a
model of the form Y = yZ where Z > 0 is such that supp,, Z = [0, 1] a.s. or
suppyZ = [1,00) a.s. and y > 0. Indeed (recall Lemma 6.10), if suppy Z =
0,1], essinfyY = yessinfyZ = 0 < y and esssupyY = yesssupyZ =
y > y. The same holds if supp,Z = [1,00) a.s. Nevertheless, this kind
of model does not admit a risk-neutral probability measure. Indeed, in the
contrary case, there exists a density process i.e. a positive martingale (p;)i—o 1
with pg = 1 such that pS is a P-martingale: Ep(p1Y|H) = poy. We get
that Ep(p1 Z|H) = po. Since we also have pg = Ep(p;|H), we deduce that



/ 10

Ep(p1(1 — Z)|H) = 0. Since Z < 1 ass. or Z > 1 ass., this implies that
p1(1 —Z) =0 hence Z = 1 which yields a contradiction.

Corollary 2.11. Suppose that (AIP) holds true. Let g be a H-normal inte-
grand, such that there exists some concave function ¢ verifying that g < ¢
on suppyY and ¢ < oo on convsuppy Y. Then,

p(g) = conc(g,suppyY)(y)
= inf{ay+ 05, a, BeR, ar+ > g(x), Vo € suppyY}. (2.6)

So in the case where ¢ is concave and u.s.c., we get under (AIP) that
p(g) = 9(y).
If g is convex and lim, ,., x 'g(x) = M € R, the relative concave envelop of
g with respect to suppy Y is the affine function that coincides with g on the
extreme points of the interval convsupp,Y i.e.

plg) = 0'y+ 5" =g(essinfyY) + 6" (y — essinfy V), (2.7)
g — g(esssupyY) — g(eés ianY)’ (2.8)
esssupy Y — essinfyY

0 _
0

and 0* = @ = M if essinfy Y < esssupyY = +oo. Moreover, using (2.6),
we get that 8*Y + 8* > ¢(Y) a.s. (recall that Y € suppy Y a.s., see Remark
2.2) and this implies using (2.7) that

where we use the conventions 0* = 0 in the case esssupyY = essinfy Y

p(g) +0°(Y —y) > g as. (2.9)

and p(g) € P(g)-

3. The multi-period framework
3.1. Multi-period super-hedging prices

For every t € {0,...,T} the set RI of all claims that can be super-replicated
from the zero initial endowment at time ¢ is defined by

T
RZ = { Z Hu_lASu - 6;, eu—l S LO(R, fu_1>, 6; c LO(R+,.FT)} . (3].0)

u=t+1
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The set of (multi-period) super-hedging prices and the (multi-period) infi-
mum super-hedging cost of some contingent claim g € L°(R,Fr) at t are
given by

lrr(g) = {g}

Trr(g) = g

Mr(g) = {2, € (R, F), IRe Rl &, + R=gas}, te{0,...,.T—1}
mr(g9) = essinfx Il r(g). (3.11)

As in the one-period case, it is clear that the infimum super-hedging cost is
not necessarily a price in the sense that m,r(g) ¢ II; 7(¢g) when I, 7(g) is not
closed. Alternatively, we may define sequentially

Prr(9) = {9}
P@T(Q) = {ili't € LO(R,E), EIHt c LO(R,E), Elthrl c PtJrl,T(g)’ Ty + 9,5AS,5+1 Z DPt1 a.s.}.

The set Prr(g) contains all prices at time ¢ super-replicating some price
Per1 € Pryir(g) at time ¢ + 1. First we show that for all ¢ € {0,...,T}

r(9) = Pir(g). (3.12)

It is clear at time T'. Let o, € IL; 7. Then there exists forallu € {¢,...,T—1},
0, € L°(R,F,) such that x; + Zu pi1 Ou1AS, + Op_ 1AST > g a.s. As
gEPTT( ) il?t—i-zu t+1 0,— 1AS € Pr_ lT( )as ASJ?,H—ZU t+1 0,1 AS,+
Or_oAST_1 = 2, + Eu 11 Ou—1AS,, it follows that 2, + Zu i1 Ou1AS,, €
Pr_or(g) and recursively x; € Pyr. Conversely, let z; € P, then there
exists 0; € LY(R, F;) and piq € Pir17(g), such that x; +0;AS; 1 > pryy as.
Then as py1 € Pry1,7(9), there exists 0, € L° (R, Fiq1) and pryo € Pryar(9),
such that p;q1 + 0;01ASi 2 > prio a.s. and going forward until 7' since
Prr(g) = {9}, pr—1+0r_1ASy > g a.s., we get that xt+25:t+1 0,_1AS, >
g a.s. and x; € I, p follows.

We now define a local version of super-hedging prices. Let ;.1 € LY(R, Fiy1),
then the set of one-step super-hedging prices of g; 1 and it associated infimum
super-hedging cost are given by

Pt,t+1(9t+1) = {ft € LO(R,}—t)? 30, € LO(R> «Ft), Ty + 0 AS 1 > g a.s.}
T t+1 (gt+1) = €8S iflf]—‘t ,Pt7t+1 (gt+1)~

The following lemma makes the link between local and global super-hedging
under the assumption that the infimum (global) super-replication cost is a
price. It provides a dynamic programming principle.
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Lemma 3.1. Let g € LR, Fr) and t € {0,...,T — 1}. Then P,7(g) C
Prir1(mg1r(g) and mr(g9) > T (mipar(g)). Moreover if m17(g) €
ir1,7(9), then Pur(9) = Privi(mi1,r(9) and mr(g) = T i1 (mir1,0(9))-

Remark 3.2. So under (AIP), if at each step, m41,7(9) € iy17(9) and if
Ter17(9) = Gr+1(Si1) for some Fi-normal integrand g;1q1, we will get from
Corollary 2.6 that 7, 1(g) = €ONC(g41,SUpPPx,Sit1)(S:). We will propose in
Section 3.3 a quite general setting where this holds true.

Proof. Let z; € Pyr(g), then there exists 6, € LO(R,F;) and pq €
Pii17(g) such that (recall (3.12))

zy + 0, A 41 > pryr > essinfr Il r(9) = mga0(9) as.

and the first statement follows. The second one follows from m 1 7(g) €
Prirr(g). O

3.2. Multi-period (AIP)

We now define the notion of global and local immediate profit at time ¢. The
first one says that it is possible to super-replicate at a negative cost from
time ¢ the claim 0 payed at time 7" and the local one the claim 0 payed at
time t 4+ 1. We will see that they are equivalent.

Definition 3.3. Fiz some t € {0,...,T}. A global immediate profit (IP) at
time t is a non null element of P, 7(0) N LO(R_, F).

A local immediate profit at time t is a a non null element of Pi++1(0) N
IR, F,).

We say that the (AIP) condition holds if there is no global IP at any instant
t, i.e. if Por(0) N LYR_, F) = {0} for allt € {0,...,T}.

Using Proposition 2.8, we get the equivalence between the absence of local
IP at time ¢ and the fact that S; € convsuppg,S;11 a.s. So Theorem 3.4 below
will show that there is an equivalence between the absence of global IP and
the absence of local one.

Theorem 3.4. (AIP) holds if and only if one of the the following assertions
holds:
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1) S, € convsuppg,Sip1 a.s., for allt € {0,...,T —1}.

2) essinfr, S < Sp < esssupg,Siyias., forallt € {0,..., T —1}.
3) essinfz, S, < Sy < esssupz,Sy a.s. for allu e {t,...,T}.

4) mr(0) =0 as. forallt <T —1.

Proof. Let Ar = Q and for all t € {0,...,T — 1}

Ay = {esssupz, AS; 41 > 0} N {essinfrAS;1 < 0}.
We show by induction that 0 € P, (0) and that under (AIP) at time ¢ + 1
mr(0) =0as. < P(A;) =1 < (AIP) holds at time ¢.

The third assertion follows from Lemma 6.5.

We proceed by backward recursion. At time 7', Pr.r(0) = {0}, thus (AIP)
holds at 7" and 77.7(0) = 0. Fix some t € {0,...,7 — 1}, assume that the
induction hypothesis holds true at 41 and that (AIP) holds at time ¢+ 1. As
Ter1.7(0) = 0 € Pry1r(0), we can apply Lemma 3.1 and Py 7(0) = Pir11(0).
So we can apply Lemma 2.3 and

’Pt’T(O) = Pt,t+1(0) = { sup (—02) + GSt, 0 c LO(R,ft)} + LO(R+,ft)

zZ€supp r, St+1

= {—0 (esssupy,AS;y1lg<o + essinfr, AS;111p50), 0 € LOR, F)} + LO(Ry, o).

Note that 0 € P;7(0). Moreover, (AIP) holds at time ¢ if and only if P(A;) =
1 (this also a direct consequence of Proposition 2.8). We also obtain that
m7(0) = essinfy Py p(0) = (0)14, + (—00)10\ 4, and equivalently (AIP) holds
at time ¢ if and only if 7, 7(0) = 0 a.s. In particular, under (AIP) at time ¢, the
infimum super-hedging cost at time ¢ is a price for 0: 7, 7(0) = 0 € P, (0).
O

Remark 3.5. Fix some ¢t < T — 1. If ess supft_lASt < 0 on a non null
measure set, then as in Remark 2.10 there is an arbitrage opportunity at
time .

3.3. Explicit pricing of a convex payoff under (AIP)

The aim of this section is to obtain some results in a particular model
where essinfr, | S; = ki, and esssupy, S, = ki, ,S;1 for every
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te{1,---, T} where (k| )ieq1, 1}, (ki1 ,)eeqr, my and Sy are determin-
istic non-negative numbers. We obtain the same computative scheme (see
(3.13)) as in [6] but it is obtained here assuming only (AIP) and not (NA).

Theorem 3.6. Suppose that the model is defined by essinfr, |.S; = k;td_l,tSt_l
and esssupz, | Sy = k' ; ;S; 1 where (kf_u)te{L---,T}, (ki1 ¢ )teqr, .y and So
are deterministic non-negative numbers.

e The (AIP) condition holds at every instant t if and only if the super-
hedging prices of some European call option are non-negative or equiv-
alently if ki, € [0,1] and k', , € [1,+0c] for allt € {1,--- ,T}.

e Suppose that the (AIP) condition holds. If h : R — R is a convex
function with Domh = R, h(z) > 0 for all z > 0 and lim,_, h(;) €
[0, 00), the infimum super-hedging cost of the European contingent claim
h(St) is a price given by myr(h) = h(t,S:) € Pir(h) where

h(T,z) = h(z)
J " (3.13)
h(t — 1, l') = /\t—l,th (t, k‘t_l,tl’) + (1 — At—Lt)h (t, kt—l,tx) s
where A1 = S R [0,1] and 1 — N1y = 1k € [0,1],

k$71,t_k2171,t k?—l,t_k:g—l,t
- ; - d  _pu  _ —
with the following conventions. When ki, = ki 1, =1 or 51 = 0,
_ 0 _ _ d u —
A1 =5 =0and 1 —XN_1;, =1 and when ki, , < ki’ 4, = o0,

00
Ai—1p = — =1
00

h(t, (+o001))
(+o0z)

h
=(1- kfﬁl’t)a: lim (Z)

zZ—+oo 2

(1= A1)t (+00)2) =(1 — ki )a (3.14)

= lilrr12_>+00M and h(-,x) is non-

Moreover, for every t, lim,_, -

increasing for all x > 0.

h(z)

In the proof, the strategy associated to the minimal price is given and, in
section 5, this result is illustrated through a numerical experiment.

Proof. The conditions k{,, € [0,1] and ki, € [1,+0c] are equiva-

lent to the (AIP) conditions by Theorem 3.4. We denote M = @ and

M; = lim, @ We prove the second statement. Assume that (AIP)

holds true. We establish the recursive formulation 7, r(h) = h(t,S;) given
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by (3.13), that h(t,-) > h(t + 1,-) and that M; = M;y,. The case t = T is
immediate. As h : R — R is a convex function with Domh = R, h is clearly
a Fr_j;-normal integrand, we can apply Proposition 2.6 and its consequence
for convex functions (see (2.7) and (2.8)) and we get that

mr_1r(h) = h(k§_y 2Sr—1) + 05y (Sr—1 — k§_y pS1-1)
h(kf_y pSr-1) — h(k§_ 7S7-1) (3.15)

Y

05_, =
T-1 u d
kT—l,TST—l - kT—l,TST—l

where we use the conventions 0} _; = % = 0 if either S7_1 = 0 or k:‘ﬁ_LT =
kG _yp=1and 0 | = M) — it k., < k¥_, p = 400. Moreover, using
(2.9), we obtain that mp_y r(h) + 05_ASr > h as. i.e. mp_17(h) € P(h).
So, using Lemma 3.1, we get that Pr_or(h) = Pr_or_1(mr_1r(h)) and
mr—ar(h) = mr_or_1(mr_17(h)) and we may continue the recursion as soon
as mr—17(h) = h(T — 1,Sr_1) where h(T — 1,-) satisfies (3.13), is convex
with domain equal to R, is such that h(T — 1,z) > 0 for all z > 0 and
My = M € ]0,00). To see that we distinguish three cases. If either Sp_; = 0
orkf_yp =kt =1, mr_170(h) = h(Sr—1) and h(T—1,z) = h(z) = h(T, z)
satisfies all the required conditions. If k_, ; < k¥_; ; = +00, mp_1r(h) =
h(k(ji“—l,TST—1> + M (ST—I - k(Y{—l,TST—l) = h(T - ]_, ST—I) with

h(T —1,2) = h(k;é,l,Tz) + Mz (1- k%,LT)

kv —1 1—kf_

_ Ld u __ J.d
k¥ —r+oo kT—l,T k kT—l,T

using (3.14). The term in the r.h.s. above is larger than h(z) = h(T, z) by

u_ 1—kd_ “
kufk—%fmk‘%_lﬁpz + ﬁk‘ z =2z Askf_ ;€ [0,1] and
M € [0,00), h(T'—1,2) > 0 for all z > 0, we get that h(T — 1,-) is convex
function with domain equal to R since h is so. The function h(T — 1,-)
i z
also satisfies (3.13) (see (3.14)). Finally My_; = lim, k%_l’T%
The last case is when Sr_y # 0 and kf_, 1 # k$_, ;- and k§_, < 4o0. It

is clear that (3.15) implies (3.13). Moreover as kf_, ; € [0,1] and kf_, €
u _ _1.d
[1, —|—OO), )\T*LT = M - [0, 1] and 1_)\T71,T = W;M € [0, 1]

u _1.d U _1.d
kT—l,T kT—l,T kT—l,T kT—l,T

and (3.13) implies that h(T — 1,2z) > 0 for all z > 0, h(T — 1,-) is convex

convexity since

—1,7%
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with domain equal to R since h is so. Moreover,

h(k2 z h(k¥ z
Mroy = Apoy gk o tim PP e gy PR
’ 7 z—4o00 k%—l 77 ’ " z—Ho0 kf%—l 77

since
Aok g+ (1= Aok p =1

If h(z) = (z — K)*, for some K € R, h(Sr) is a European contingent
claim and A : R — R a convex function with Domh = R, A > 0 and
im0 22 = 1 € [0, 00). We have just seen that under (AIP) the infimum
super-hedging cost of h(Sr) is a price m;r(h) > 0. Reversely if (AIP) does
not hold true, Proposition 2.6 implies

mrar(h) = inf{aSr1+8,a, BER, (z—K)" <az+p8,Vze€ SUppz, , 57}

_5[’9%—1,TST—1’k%—l,TST—l}mR(ST_l)'

As (AIP) does not hold true, either kf_,, > 1 or kf_;; < 1 and in
both cases, Sp_1 & [k4_, »S7—1,k}_; pS7—1]) NR and mr_y 7(h) = —oco since
inf{aSr 1+ 06, a, fER, (z—K)" <az+p,Vze€ Suppr,_, .St} < Sr-1.
Thus the convex subset Pr_; r(h) is equal to LY(R, Fr_;). Similarly m; 7(h) =
—oo for all t € {0,...,7 — 3}. This allows to conclude about the first
statement.U

Remark 3.7. The infinimum price of the European contingent claim h(St)
i our model is a price, precisely the same than the price we get in a binomial
model Sy € {k{', ;Si—1, ki1 Si1} as, t=1,--- | T.

4. Comparison between the (AIP) condition and classical
no-arbitrage conditions

Examples have already show that (AIP) condition can be weaker than the
classical absence of arbitrage opportunity (NA) characterized by the funda-
mental theorem of asset pricing (FTAP), see the Dalang-Morton-Willinger
theorem in [8]. The goal of this section is compare the (AIP) condition with
a weaker form of the classical No Free Lunch condition.

Recall that the set of all prices for the zero claim at time ¢ is given by
Pir(0) = (=RT) N LY(R, F;) (see (3.10), (3.11) and (3.12)). It follows that
(AIP) reads as RI N L°(R,,F;) = {0}. Recall that the (NA) condition is



/ 17

RIENLY(R,, Fr) = {0}. We also study a stronger condition than (AIP), i.e.
RINLO(R,, F;) = {0} forall t € {0,...,T}, where the closure of R is taken
with respect to the convergence in probability. Note that this condition is a
weak form of the classical No Free Lunch condition RTNLY (R, Fr) = {0} for
allt € {0,...,T}; we call it (WNFL) for Weak No Free Lunch. The following
result implies that (WNFL) may be equivalent to (AIP) condition under
an extra closedness condition. It also provides a characterization through
(absolutely continuous) martingale measures.

Theorem 4.1. The following statements are equivalent:

e (WNFL) holds.
o For every t € {0,...,T}, there exists Q < P with E(dQ/dP|F;) =1

1111

e (AIP) holds and RT N LR, F) = R N LR, F;) for every t €
{0,...,T}.

Proof. Suppose that (WNFL) holds and fix some ¢t € {0,...,7}. We may
suppose without loss of generality that the process S is integrable under P.
Under (WNFL), we then have RT N L'(R,,F;) = {0} where the closure is
taken in L'. Therefore, for every nonzero x € L'(R, F;), there exists by the
Hahn-Banach theorem a non-zero Z, € L™ (R, , Fr) such that (recall that R}
is a cone) EZ,z > 0 and EZ,£ < 0 for every £ € RY. Since —L'(R,, Fr) C
RI, we deduce that Z, > 0 and we way renormalise Z, so that ||Z,]| = 1.
Let us consider the family G = {E(Z,|F;) > 0}, = € LY(R,,F) \ {0}}.
Consider any non null set I' € F;. Taking = = 1p € LY(R,, F,) \ {0}, since
E(Z,1r) > 0, we deduce that I" has a non null intersection with {E(Z,|F;) >
0}. By [14, Lemma 2.1.3], we deduce an at most countable subfamily (z;);>1
such that the union |J,{E(Z,,|F;) > 0} is of full measure. Therefore, Z =
o2 27 Z,, > 0 is such that E(Z|F;) > 0 and we define @ < P such that
dQ = (Z/E(Z|F,))dP. As the subset {30, ., 0,_1AS,, 0,1 € L(R, F,_1)}
(-martingale.

Suppose that for every ¢t € {0,...,T}, there exists < P such that
u € {t,....,T}, pu = Ep(dQ/dP|F,) then p, > 0 and p; = 1. Consider
v € REN LYR,, F), ie. 7; is Fe-measurable and is of the form v; =
Zf;tl 0,AS,+1 — ef. Since 0, is F,-measurable, ,AS,,; admits a gener-
alized conditional expectation under () knowing F, and, by assumption, we
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have Eq(0,AS,11]|F.) = 0. We deduce by the tower law that

T-1

Y =Bl F) =) Eq(E(0uASuii|F)|F) — Eqlef| Fr) = —Eq(ef] F).

u=t

Hence 7; = 0, i.e. (AIP) holds. It remains to show that RI N L°(R,F;) C
RINLO(R, F).

Consider first a one step model, where (Su)ue{T_l,T} is a ()-martingale with
pr > 0 and pr_; = 1. Suppose that v = 0% _ | AS — E?F € L°(R, Fr_y) con-
verges in probability to v° € L%(R,Fr_;). We need to show that 7> €

RE_,. On the Fr_j-measurable set Ar_; := {liminf,|0% ,| < oo}, by
[14, Lemma 2.1.2], we may assume w.l.o.g. that 0} _; is convergent to some
65° , hence e}t is also convergent and we can conclude. Otherwise, on '\
Ar_1, we use the normalized sequences 0%_, = 67, /(|02_,| + 1), & =
et /(|62 ,| 4+ 1). By [14, Lemma 2.1.2], we may assume that 62, | — 6
&t — &% and 0 (ASp — &7 = 0. As |05 || = 1 a.s., first consider the

subset A2, := {6, = 1} € Fr_;. We then have ASy > 0 on AZ_,.
Since Eg(AStlyz  |Fr-1) = 0, we get that prASrlyz = 0 a.s. Hence
pry"laz | = —prep 1yz < 0. Taking the limit, we get that pry>1yz <0
and, since 7> € L°(R, Fr_1), we deduce that pr-17°1az_ < 0. Recall
that pr_; = 1 hence Y¥lyz <0 and Y1z € REL .. On the subset

{632, = —1} we may argue similarly and the conclusion follows in the one
step model.

Fix some s € {t,...,T — 1}. We show that ﬁjﬂ N LR, Ferq) CRE, N
L°(R, F,,1) implies the same property for s instead of s + 1. By assumption

-----

Suppose that v* = S _'0"AS,,, — €iF € LO(R,F,) converges to v €

u=s u

LY(R, Fy). If v = 0 there is nothing to prove. On the F,-measurable set
A := {liminf, [0?| < oo}, by [14, Lemma 2.1.2], we may assume w.l.o.g. that
07 converges to 6°. Therefore, by the induction hypothesis, ZZ;SI L O AS, 11—
er is also convergent to an element of RL, ; N LY(R, Fyy1) and we conclude
that v € RT. On Q \ A,_;, we use the normalisation procedure, and de-
duce the equality S0 _'°AS, ., — &7 = 0 for some 0° € LR, F,),
we{s,...,T—1} and &+ > 0 such that |#>°| = 1 a.s. We then argue as in
the one step model on A2 := {#> = 1} € F, and A? := {6 = —1} € F, re-
spectively. When 62 = 1, we deduce that AS, 1 +> 0! 0°AS, 4 —edt =

u=s+1"u
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0, i.e. ASg41 € Psi1r(0) hence ASs;; > 0 under (AIP), see Theorem
3.4. Since Eq(ASs111a2|Fs) = 0, ps1ASsi1laz = 0 as. So, pe17"1az €
RL L N LR, Fyy1) hence pyy17™®1az € RL, N LY(R, Fyyq) by induction. As
ps+17>°1a2 admits a generalized conditional expectation knowing F, we de-
duce from (AIP) that Eqg(ps17*1a2|Fs) < 0 hence psy>*°152 < 0. Recall that
ps = 1 hence 71,2 < 0 so that 71,2 € RI N LO(R, F).

Finally, notice that the (AIP) condition implies (WNFL) as soon as the
equality RTNLO(R,, F,) = RTNLO(R,, F,) holds for every t € {0...,T—1}.
O

Proposition 4.2. Suppose that P(essinfz,S; 11 = S;) = P(esssupgz,Siy1 =
Sy) =0 forallt € {0...,T — 1}. Then, (WNFL) is equivalent to (AIP)
and, under these equivalent conditions, R is closed in probability for every
tef{0...,T—1}.

Proof. Tt suffices to show that RI is closed in probability for every t €
{0...,7 — 1} under (AIP). Consider first the one step model, i.e. sup-
pose that 4" = 62, ASy — €5t € RE_| is a convergent sequence to v €
L°(R, Fr). It is then sufficient to show that the Fr_;-measurable set Ay :=
{liminf, |#}_,| < oo} satisfies P(Ar_;) = 1. Following the normalization
procedure of proof of Theorem 4.1 on Q\ Ar_;, we get that 65° | ASy where
052 || = 1 a.s. First consider the subset A2_, := {0 | = 1} € Fr_;. We have
ASr > 0 and hence essinfz, Sy > Sr_; on A%_,. By (AIP) (see Theorem
3.4), we deduce that essinfr, Sy = Sp_; on A2_,. The assumption implies
that P(A2_,) = 0. On the remaining subset A3, := {6 , = —1} € Fr_y,
we obtain similarly that esssupz,_ Sr = Sr_ and thus that P(A}_;) = 0.

By induction, assume that R, , is closed in probability and let us show that
RYI is also closed in probability. To do so, suppose that 4™ = Zfzt 1 0n 1 AS—
et € R converges to v € L°(R,Fr). On the F;-measurable set A; :=
{liminf, |0}'| < oo}, by [14, Lemma 2.1.2], we may assume w.l.o.g. that 6} is
convergent to 6;°. Therefore, by the induction hypothesis,

T

T n n+
Y u—rio O 1 AS, — €ep" is also convergent to an element of Ry, and we con-

clude that v € RI. On Q\ A;_;, we use the normalization procedure, and

deduce an equality Zzztﬂ 02 | AS, — et = 0 where 6, € L(R, Fyu_y),
we {t,...,T —1} and €7 > 0 such that 10°| = 1 a.s. We then argue on
A? = {0 =1} € F, and A} = {6° = —1} € F; respectively. On AZ

we obtain that AS;.; € Piyq7(0) hence under (AIP), with Theorem 3.4,
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we obtain that AS;;; > 0 and essinfzS;;; = S; on A% This implies that
P(A?) = 0 and similarly P(A?) = 0. The conclusion follows. O

Remark 4.3. Under the assumption of Proposition 4.2, the infinimum super-
hedging cost is a price.

Lemma 4.4. The (AIP) condition is not necessarily equivalent to (WNFL).

Proof. Let us consider a positive process (S't)te{07,_,,;p} which is a P-martingale.
We suppose that essinf }‘Ogl < S; a.s., which holds in particular if S a ge-
ometric Brownian motion as essinf ;05’1 = 0 a.s. Let us define S, := 5}
for t € {1,...,T} and Sy := essinfxS;. We have essinfr S; < Sy and
esssupz, Sy > 51 > essinfr Sy = Sy hence (AIP) holds at time 0 (see Theo-
rem 3.4). Moreover, by the martingale property, (AIP) also holds at any time
t € {l,...,T} (see Remark 6.4). Let us suppose that (WNFL) holds. Then,
there exists pr > 0 with E(pr) = 1 such that S is a @)-martingale where
dQ = prdP. Therefore, E(prAS;) = 0. Since AS; > 0 by assumption, we
deduce that pr = 0 hence a contradiction. O

5. Numerical experiments

5.1. Calibration

In this section, we suppose that the discrete dates are given by tI' = %,

i € {0,--- ,n} where n > 1. We assume that kin =1+ o0p /At and

k'%il =1 —om +/Al} > 0 where t — 0 is a positive Lipschitz-continous

function on [0, 7. This model implies that essinfz, Sy = kih LS and
j—1 2 j—10% —

— u Y y
essSSUpg,, 1St? = kt;?_l,t?St?_ﬁ where for all j <7,
7

K

_TT¢ U d
nap = hoikin o ki

1T d
n = hojkin -

1

By Theorem 3.6, we deduce that the (minimal) price of the European
Call option (Sp — K)* is given by h"(t,S;) defined by (3.13) with terminal
condition h"(T, xz) = h(z) := (z— K)". We extend the function A" on [0, 7] in
such a way that A" is constant on each interval [¢', 7" [, i € {0,--- ,n}. Such
a scheme is proposed by Milstein [19] where a convergence theorem is proven
when the terminal condition, i.e. the payoff function, is smooth. Precisely,
the sequence of functions h™ converges uniformly to h(t, z), solution to the



diffusion equation:
2
Oih(t, z) + af%ﬁmh(t, 2) =0, h(T,z)=h(z).

In [19], it is supposed that the successive derivatives of the P.D.E.’s solution h
are uniformly bounded. This is not the case for the Call payoff function g(z) =
(x — K)*. On the contrary the successive derivatives of the P.D.E.’s solution
explode at the horizon date, see [18]. In [2], it is proven that the uniform
convergence still holds when the payoff function is not smooth provided that
the successive derivatives of the P.D.E. solution do not explode too much.

Supposing that Atl is closed to 0, we identify the observed prices of the
call option with the limit theoretical prices h(t,S;) at any instant ¢ to de-
duce an evaluation of the the deterministic function ¢ — o,. Note that the
assumptions on the multipliers kg’b and k%i | mean that

St

% . 1‘ < 0y, /AT, s, (5.16)
t;

We propose to verify (5.16) on real data. The data set is composed of his-
torical values of the french index CAC 40 and European call option prices
of maturity 3 months from the 23rd of October 2017 to the 19th of January
2018. For several strikes, matching the observed prices to the theoretical ones
derived from the Black an Scholes formula with time-dependent volatility, we
deduce the associated implied volatility ¢ — o; and we compute the propor-
tion of observations satisfying (5.16):

100,0%
95,0%
90,0%
85,0%
80,0%
75,0%
70,0%
85,0%
50,0%
55,0%
50,0%
4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 S900 6000
Strike

F1c 1. Ratio of observations satisfying (5.16) as a function of the strike.
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[ Strike | 4800 | 4900 | 5000 | 5100 | 5200 | 5300 | 5400 | 5500 | 5600 | 5700 | 5800 | 5900 | 6000 |
[ Ratio | 96,7% [ 95,1% | 95,1% [ 88,5% | 86,9% | 80,3% | 70,6% [ 78,7% | 75,4% | 77,0% | 73,8% | 75,4% | 72,1% |

5.2. Super-hedging

We test the infinimum super-hedging cost deduced for Theorem 3.6 on some
data set composed of historical daily closing values of the french index CAC
40 from the 5th of January 2015 to the 12th of March 2018. The interval
[0, 7] we choose corresponds to one week composed of 5 days so that the
number of discrete dates is n = 5. We first evaluate afz_ ,1=20,---,3, as

Sy,
Ot; :ma’x<‘%_1‘/VAt?—i—l7) i:07"'737
ti

where max is the empirical maximum taken over a one year sliding sample
window of 52 weeks. We then implement the super-hedging strategy on each
of the 112 weeks following the sliding samples, i.e. every week from the 11th
of January 2016 to the 5th of March 2018. We observe the empirical average
E(S;,) = 4044. The payoff function is h(z) = (z — K)™.

5.2.1. Case where K = 4700.

We implement the strategy associated to the super-hedging cost given by
Theorem 3.6. We deduce the distribution of the super-hedging error ey :=
Vr — (St — K)*, see Figure 4:

| -
21

- ||| IIIIlII
I

. il
CREFARHRYEY e R R L2F8

G0 m
65

[ |
=1
=

Fi1G 2. Distribution of the super-hedging error ey = Vp — (St — K)™.
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The empirical average of the error ep is 12.63 and its standard devia-
tion is 21.65. This result is rather satisfactory in comparison to the large
value E(S;,) = 4044. This empirically confirms the efficiency of our suggested
method.
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Ml |||||||||||||||||| uln
6,00%  800% 1

0,00% 12,00% 1400% 16,00%

il
200% 4

0,00% 4,00%

F1G 3. Distribution of the ratio Vi, /St,-

The empirical average of V;, /Sy, is 5.63% and its standard deviation is
5.14%. Notice that, in the discrete case with k% = 0 and k* = oo, in partic-
ular when the dynamics of S is modeled by a (discrete) geometric Brownian
motion, then the theoretical minimal initial price is V;, = S,.

5.2.2. Case where K = Sy.
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Fia 4. Distribution of the super-hedging error ep.
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The empirical average of e = Vp—(Sp—K)* is 8.1 and its standard deviation
is 30.78. Once again, this is rather satisfactory despite the possible loss of
170 which represents 4.2% of E(S;,) = 4044.

- ‘ “
1,00% 2,0

uuuuuu

F1G 5. Distribution of the ratio Vi, /Sy, -

The empirical average of V;/Sy is 2.51% and its standard deviation is
0.53%.

6. Appendix
6.1. Conditional support of a vector-valued random variable

We consider a random variable X defined on a complete probability space
(9, F,P) with values in R%, d > 1, endowed with the Borel o-algebra. The
goal of this section is to define the conditional support of X with respect
to a sub o-algebra H C F. This notion is very well known in the case
where H is the trivial sigma-algebra. Precisely, this is the usual support of
X, i.e. the intersection of all closed deterministic subsets F' of R? such that
P(XeF)=1.

Definition 6.1. Let (2, F, P) be a probability space and H be a sub-o-algebra
of F. Let pu be a H-stochastic kernel (i.e. for allw € Q, u(-,w) is a probability
on B(RY) and u(A,-) is H-measurable, for all A € B(RY)). We define the

random set D, : 2 — R? -

Dy(w) = {ACRY, closed, p(A,w)=1}. (6.17)
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For w € Q, D,(w) C R? is called the support of u(-,w). We will also call
supp X the set defined in (6.17) when u(A,w) = P(X € A|H)(w) is the
reqular version of the conditional law of X knowing H and call it the condi-
tional support of X with respect to H.

Using Theorems 12.7 and 12.14 of [1], we have that u(-,w) admits a unique
support D, (w) C R? and that u(D,(w),w) = 1 (see also the definition of
support in [1] on page 441).

Lemma 6.2. D, is non-empty, closed-valued, H-measurable and graph-measurable
random set (i.e. Graph(D,) € H ® B(R?)).

Proof. Tt is clear from the definition (6.17) that for all w € Q, D,(w) is a
non-empty and closed subset of R?. We now show that D,, is H-measurable.
Let O be a fixed open set in R? and o : w € © — po(w) == u(O,w). As
p is a stochastic kernel, pio is H-measurable. By definition of D, (w) we get
that {w € Q, D,(w)NO # 0} ={w € Q, po(w) > 0} € H, and D, is
H-measurable. Now using Theorem 14.8 of [21], Graph(D,) € H @ B(R?)
(recall that D, is closed-valued) and D, is H-graph-measurable. O

6.2. Conditional essential supremum

A very general concept of conditional essential supremum of a family of
vector-valued random variables is defined in [15] with respect to a random
partial order. In the real case, a generalization of the definition of essential
supremum (see [14, Section 5.3.1] for the definition and the proof of existence
of the classical essential supremum and Definition 3.1 and Lemma 3.9 in [15]
for its conditional generalization as well as the existence, see also [3] where
the conditional supremum is defined in the case where [ is a singleton) is
given by the following result:

Proposition 6.3. Let H C F be two o-algebras on a probability space. Let
['= (7i)ier be a family of real-valued F-measurable random variables. There
exists a unique H-measurable random variable v € LY (RU{oo}, H) denoted
esssupy ' which satisfies the following properties:

1. For everyti €I, vy > v, a.s.
2. If ¢ € L°(RU {oo}, H) satisfies ( > ~; a.s. Vi € I, then { > 3 a.s.

Proof. The proof is given for sake of completeness and pedagogical purpose.
The authors thanks T. Jeulin who suggested this (elegant) proof. Considering
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the homeomorphism arctan we can restrict ourself to 7; taking values in [0, 1].
We denote by P, a regular version of the conditional law of ; knowing H.
Let ¢ € L°(R U {oo},H) such that ¢ > v; a.s. Vi € I. We have that

(>vias. & EP{C<vH)=0s P <yH)=0as.
& P(CZ7H) = Pyl — 00, 2])[e=¢ = 1 as.

From Definition 6.1, supp 5V C] — 00, (] a.s. Let A, = sup{z € [0,1], v €
supp 47y then A3y < Cas. Forany c € R, {A, 1 < ¢} = {Py,u(]—00,¢]) =
1} € H since we have chosen for P,, 3 a regular version of the conditional law
of 7; knowing H. It follows that A, 3 is H-measurable. So taking the classical
essential supremum, we get that esssup;,A,,;» < ¢ a.s. and that esssup; A, »
is H-measurable. We conclude that vy = esssup;A,, 5 a.s. since for every
i €I, P(v; €suppyvi|H) =1 and thus esssup;A, ;3 > 7; a.s. O

Remark 6.4. Let () be an absolutely continuous probability measure with
respect to P. Let Z = dQ)/dP and Eg be the expectation under (). As for
every ¢ € I, esssupyl’ > 7; a.s. and esssupyl' is H-measurable,

E(Zvi|H)

€SS SuprF Z m

= EQ(%‘W)-

Inspired by Theorem 2.8 in [3], we may easily show the following tower
property:

Lemma 6.5. Let H; C Hy C F be o-algebras on a probability space and let
' = ()ier be a family of real-valued F-measurable random variables. Then,

esssupy,, (esssupy,l’) = esssupy, T

6.3. Link between two notions
Our goal is to extend the the fact that (see the proof of Proposition 6.3)

esssupyX = sup x as.
zEsupp X

First we show two useful lemmata on the measurability of the supremum and
infimum.



/ 27

Lemma 6.6. Let K : Q — R? be a H-measurable and closed random set such
that dom K = {w € Q, K(w)NR? £ 0} =Q and let h: Q x R¥ x R — R be
a H ® B(RF) @ B(R?)-measurable function, such that h(w,z,-) is either Ls.c.
or u.s.c., for all (w,x) € @ x R*. Let for all (w,z) € Q x RF

s(w,x) = sup h(w,z,z) and i(w,z) = inf h(w,z,=z).
2K (w) zeK(w)

Then i and s are H @ B(RF)-measurable.

Proof. Let (n,)nen be a Castaing representation of K : K(w) = cl{n,(w), n €
N} where the closure is taken in R¢ and 7, (w) € K(w) for all n. Note that
My, is defined in the whole space €2 since dom K = ). Fix some ¢ € R. Then,
we get that

{(w,2) € QxR s(w,z) <c} = m{(w,x) € QO x RY, hw, z,m,(w)) < c}.

Indeed the first inclusion follows from the fact that 7, (w) € K(w) for all n and
all w. For the reverse inclusion, fix some (w,z) € (), {(w, x), h(w, z,n,(w)) <
c}. For any z € K(w) one gets that z = lim,, 1, (w). Then from h(w, z,n,(w)) <
c we get that h(w, z, z) = liminf h(w, z, 7, (w)) < ¢ in the case where h(w, z, )
is l.s.c. and h(w, z, z) = limsup h(w, x,n,(w)) < ¢ in the case where h(w, z, )
is u.s.c. Now recalling that h is H ® B(R*) ® B(R?)-measurable and that 7,
is H-measurable, (w,z) — h(w, ,m,(w)) is H @ B(RF)-measurable,

{(w,z), hw,z,n,(w)) < c} € HRB(R®) and we deduce that s is H @ B(RF)-
measurable. Then we apply the same arguments for ¢ replacing < ¢ by > c.
O

Lemma 6.7. Let K : Q — R be a H-measurable and closed random set such
that dom K =Q and h : Q x R* = R be is l.s.c. in x. Then,

sup h(x) = sup h(nn), (6.18)

zell

where (n,)n be a Castaing representation of K.

Proof. As (n,)n C KC, h(ny,) < sup,ex h(x) and thus sup,, h(n,) < sup,cx h(z).
Let x € K and n,, — . By lower semicontinuity of h, h(z) = liminf, h(n,) <
sup,, h(n,) and sup,cx h(x) < sup,, h(n,) and (6.18) is proved. O
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Lemma 6.8. Let X € L°(R% F) such that dom supp X = Q and h :
QO x R — R be a H-normal integrand. Then,

esssupyh(X) = sup h(x) =suph(y,)as., (6.19)

xEsupp X

where (Vn)nen s a Castaing representation of supp 4, X .

Proof. As P(X € suppyX|H) = 1 we have that sup,cqpp, x 2() >
h(X) a.s. and by definition of ess sup;h(X), we get that sup,equpp,, x M(2) >
ess supy (X)) since sup,coupp, x (%) is H-measurable by Lemma 6.6 (recall
that supp X is H-measurable and closed, see lemma 6.2).

By definition of the essential supremum we also get that esssup,h(X) >
h(X) a.s. Let (7,), the Castaing representation of supp 5 X (w), Lemma 6.7
implies that sup,egupp,, x A(x) = sup, h(7,)a.s.. Fix some € > 0 and set
Ze = 1p(y,,6)(X), where B(vy,¢) is the closed ball of center v, and radius
e.. Note that E(Z.|H) = P(X € B(Vn,€)|H) > 0. Indeed if it does not hold
true P(X € R4\ B(yp,e)|H) = 1 on some H € H such that P(H) > 0
and by definition 6.1, supp ;X C R?\ B(v,,) on H, which contradicts
Y € supp X a.s. As esssupyh(X) is H-measurable we get that

E(ZA(X)H) _ [ 1pgne (@)h() Pxjp(de)

esssupy h(X) > E(Z|H) E(Z.|H)
f (infyeB('yn,s) h( )1B('yn €) (17)) PX|’H(dm)
= E(Z:|H)
> inf  h(y),
- yeg(lvma) )

since infyep(y, ) M(y) is H-measurable (see Lemma 6.6). Since h is Ls.c., we
have that lim._,¢inf,cp(y, ) h(z) = liminf, . h(z) = h(7,) and it follows
that esssupyh(X) > h(v,). Taking the supremum over all n, we get that

ess supy h(X) > sup, h(7n) = SUP,equpp,, x A(T)-
a

We have the easy extension

Lemma 6.9. Let X C L°(R? F) such that dom supp X = Q for all X € X
and Uxexsupp 4 X is H-measurable and closed valued. Let h: Q x RT — R
be a H-normal integrand Then,

esssupy{h(X), X € X} = sup h(x), a.s. (6.20)

zEUxcxsupp X
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Note that if X is countable, Uxcxsupp 4 X is clearly H-measurable. If
X = L°(R% F), then Uxexsupp X = RY which is clearly H-measurable
and closed valued.

Proof. For all X € X, esssupy{h(X), X € X} > h(X) and esssupy{h(X), X €
X'} is H-measurable, so we get that by definition of esssupyh(X) that
esssupy{h(X), X € X} > esssupyh(X) and also esssupy{h(X), X €
X'} > sup ey esssupy h(X). Conversely, for all X' € X, sup vy esssupyh(X) >
esssupy h(X) > h(X) and if supycy esssupyh(X) is H-measurable, we ob-
tain by definition of esssup,{h(X), X € X'} that supycy esssupyh(X) >
esssupy {h(X), X € X}. Using Lemma 6.8, we get hat

sup esssupyh(X) = sup sup h(z)= sup h(z)
Xex X€EX xesupp 4y X r€EUxcasupp 4 X

Since Uxesupp X is H-measurable and closed valued, Lemma 6.6 implies
that sup,eyy ysupp,, X h(z) is H-measurable and the proof is complete. O

Lemma 6.10. Consider X € L°(R,,F). Then, we have a.s. that

essinfy X = infsuppyX, esssupyX = supsuppyX,
essinfy X € suppyX, on the set {essinfy X > —oo},
esssupy X € suppyX, on the set {esssupy X < oo}.

Proof. The two first statements are deduced from the construction of
esssupy X in Proposition 6.3. Suppose that essinfy X ¢ supp,X on some
non null measure subset A € H of {essinfy; X > —oc}. By a measurable se-
lection argument, we deduce the existence of r € L°(R,,H) such that r > 0
and [essinfy X — 7 essinfy X + 7] € R\ suppyX on A. As X € suppy X
a.s. and X > essinfy X a.s., we deduce that X > essinfy, X + r on A, which
contradicts the definition of essinfy X. The last statement is similarly shown.
O
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