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3Gosaef, Faculté des Sciences de Tunis, 2092 Manar II-Tunis, Tunisia.

Abstract: For several decades, the no-arbitrage (NA) condition and
the martingale measures have played a major role in the financial asset’s
pricing theory. Here, we propose a new approach based on convex duality
instead of martingale measures duality : our prices will be expressed
using Fenchel conjugate and bi-conjugate. This is lead naturally to a
weak condition of absence of arbitrage opportunity, called Absence of
Immediate Profit (AIP), which asserts that the price of the zero claim
should be zero. We study the link between (AIP), (NA) and the no-
free lunch condition. We show in a one step model that, under (AIP),
the super-hedging cost is just the payoff’s concave envelop and that
(AIP) is equivalent to the non-negativity of the super-hedging prices of
some call option. In the multiple-period case, for a particular, but still
general setup, we propose a recursive scheme for the computation of a
the super-hedging cost of a convex option. We also give some numerical
illustrations.
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No-arbitrage condition, Conditional support, Essential supremum.
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1. Introduction

The problem of giving a price to a financial asset G is central in the economic
and financial theory. A selling price should be an amount which is enough to
initiate a hedging strategy for G, i.e. a strategy whose value at maturity is
always above G. It seems also natural to ask for the infimum of such amount.
This is the so called super-replication price and it has been introduced in the
binomial setup for transaction costs by [4]. Characterising and computing
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the super-replication price has become one of the central issue in mathemat-
ical finance theory. Until now it was intimately related to the No-Arbitrage
(NA) condition. This condition asserts that starting from a zero wealth it is
not possible to reach a positive one (non negative almost surely and strictly
positive with strictly positive probability measure). Characterizing the (NA)
condition or, more generally, the No Free Lunch condition leads to the Fun-
damental Theorem of Asset Pricing (FTAP in short). This theorem proves
the equivalence between those absence of arbitrage conditions and the exis-
tence of risk-neutral probability measures (also called martingale measures
or pricing measures) which are equivalent probability measures under which
the (discounted) asset price process is a martingale. This was initially for-
malised in [11], [12] and [16] while in [8] the FTAP is formulated in a general
discrete-time setting under the (NA) condition. The literature on the subject
is huge and we refer to [9] and [14] for a general overview. Under the (NA)
condition, the super-replication price of G is equal to the supremum of the
(discounted) expectation of G computed under the risk-neutral probability
measures. This is the so called dual formulation of the super-replication price
or Superhedging Theorem. We refer to [10] and the references therein.

In this paper a super-hedging or super-replicating price is the initial value
of some super-hedging strategy. We propose an innovating approach: we anal-
yse from scratch the set of super-replicating prices and its infimum value,
which will be called the infimum super-replication cost. Note that this cost
is is not automatically a super-replicating price. Under mild assumptions,
we show that the one-step set of super-replication prices can be expressed
using Fenchel-Legendre conjugate and the infimum super-replication cost is
obtained by the Fenchel-Legendre biconjugate. So we use here the convex
duality instead of the usual financial duality based on martingale measures
under the (NA) condition. We then introduce the condition of Absence of
Immediate Profit (AIP). An Immediate Profit is the possibility of super-
hedging 0 at a negative cost. We prove that (AIP) is equivalent to the fact
that the stock value at the beginning of the period belongs to the convex
envelop of the conditional (with respect to the information of the beginning
of the period) support of the stock value at the end of the period. Using
the notion of conditional essential supremum, it is equivalent to say that the
initial stock price is between the conditional essential infimum and supre-
mum of the stock value at the end of the period. Under (AIP) condition we
show that the one-step infimum super-replication cost is the concave envelop
of the payoff relatively to the convex envelop of the conditional support. We
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also show that (AIP) is equivalent to the non-negativity of the super-hedging
prices of any fixed call option. We then study the multiple-period framework.
We show that the global (AIP) condition and the local ones are equivalent.
We then focus on a particular, but still general setup, where we propose a
recursive scheme for the computation of the super-hedging prices of a convex
option. We obtain the same computative scheme as in [5] and [6] but here it
is obtained by only assuming (AIP) instead of the stronger (NA) condition.
We also give some numerical illustrations; we calibrate historical data of the
french index CAC 40 to our model and implement the super-hedging strategy
for a call option.

Finally, we study the link between (AIP), (NA) and the weak no-free lunch
(WNFL) conditions. We show that the (AIP) condition is the weakest-one
and we also provide conditions for the equivalence between the (AIP) and
the (WNFL) conditions.

The paper is organized as follows. In Section 2, we study the one-period
framework while in Section 3 we study the multi-period one. Section 4 is
devoted to the comparison between (AIP), (NA) and (WNFL) conditions.
Section 5 contains the numerical experiments. Finally, Section 6 collects the
results on conditional support and conditional essential supremum.

In the remaining of this introduction we introduce our framework and
recall some results that will be used without further references in the se-
quel. Let (Ω, (Ft)t∈{0,...,T},FT , P ) be a filtered probability space where T
is the time horizon. We consider a (Ft)t∈{0,...,T}-adapted, real-valued, non-
negative process S := {St, t ∈ {0, . . . , T}}, where for t ∈ {0, . . . , T}, St
represents the price of some risky asset in the financial market in con-
sideration. Trading strategies are given by (Ft)t∈{0,...,T}-adapted processes
θ := {θt, t ∈ {0, . . . , T − 1}} where for all t ∈ {0, . . . , T − 1}, θt represents
the investor’s holding in the risky asset between time t and time t+ 1.
We assume that trading is self-financing and that the riskless asset’s price is
constant equal to 1. The value at time t of a portfolio θ starting from initial
capital x ∈ R is given by

V x,θ
t = x+

t∑
u=1

θu−1∆Su.

For any σ-algebra H and any k ≥ 1, we denote by L0(Rk,H) the set of
H-measurable and Rk-valued random variables. Let h : Ω × Rk → R. The
effective domain of h(ω, ·) is domh(ω, ·) = {x ∈ Rk, h(ω, x) < ∞} and
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h(ω, ·) is proper if domh(ω, ·) 6= ∅ and h(ω, x) > −∞ for all x ∈ Rk. Then
h is H-normal integrand (see Definition 14.27 in [21]) if and only if h is
H ⊗ B(Rk)-measurable and is lower semi-continuous (l.s.c. in the sequel) in
x, see [21, Corollary 14.34]. Let Z ∈ L0(Rk,H), we will use the notation
h(Z) : ω → h(Z(ω)) = h(ω, Z(ω)) and if h is H⊗B(Rk)-measurable, h(Z) ∈
L0(Rk,H). Let K be a H-measurable (see Definition 14.1 of [21]) and closed-
valued random set of Rk then K admits a Castaing representation (ηn)n∈N
(see Theorem 14.5 in [21]) : K(ω) = cl{ηn(ω), n ∈ N} for all ω ∈ domK =
{ω ∈ Ω, K(ω) ∩ Rk 6= ∅}, where the closure is taken in Rk.

2. The one-period framework

For ease of notation, we consider two complete sub-σ-algebras of FT : H ⊆ F
and two random variables y ∈ L0(R+,H) and Y ∈ L0(R+,F). The setting
will be applied in Section 3 with the choices H = Ft, F = Ft+1, Y = St+1,
y = St.
Section’s objective is to obtain a characterisation of the one-step set of super-
hedging or super-replicating prices of g(Y ) under suitable assumptions on
g : Ω× R→ R.
In the following, the notion of conditionnal support (suppHY ), conditional
essential infinimum (ess infH) or supremum (ess supH) will be in force, see
Section 6.

Definition 2.1. The set P(g) of super-hedging prices of the contingent claim
g(Y ) consists in the initial values of super-hegging strategies θ:

P(g) = {x ∈ L0(R,H),∃ θ ∈ L0(R,H), x+ θ(Y − y) ≥ g(Y ) a.s.}.

The infinimum super-hedging cost of g(Y ) is defined as p(g) := ess infHP(g).

Notice that the infinimum super-hedging cost is not a priori a price, i.e.
an element of P(g), as the later may be an open interval.

Remark 2.2. As P (Y ∈ suppHY ) = 1 (see [1, definition of support on page
441, Theorems 12.7 and 12.14]), we have that suppHY is a.s. non-empty.
Moreover since 0 ≤ Y < ∞, Dom supp HY = Ω. We could easily include
the case P (0 ≤ Y < ∞) = 1 by replacing Y by 0 on the complementary of
{0 ≤ Y <∞}.
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Lemma 2.3.

P(g) =
{

ess supH (g(Y )− θY ) + θy, θ ∈ L0(R,H)
}

+ L0(R+,H). (2.1)

Suppose that g is a H-normal integrand. Then

ess supH (g(Y )− θY ) = sup
z∈suppHY

(g(z)− θz) = f ∗(−θ), (2.2)

where f ∗ is the Fenchel-Legendre conjugate of f i.e.

f ∗(ω, x) = sup
z∈R

(xz − f(ω, z)) ,

f(ω, z) = −g(ω, z) + δsuppHY (ω, z), (2.3)

where δC(ω, z) = 0 if z ∈ C(ω) and +∞ else. Both f ∗(ω, ·) and x →
f ∗(ω,−x) are a.s. proper, convex, l.s.c., f ∗ is H ⊗ B(R)-measurable and f ∗

is a H-normal integrand. Moreover, we have that

p(g) = −f ∗∗(y),

where f ∗∗ is the Fenchel-Legendre biconjugate of f i.e.

f ∗∗(ω, x) = sup
z∈R

(xz − f ∗(ω, z)) .

Proof. As x ∈ P(g) if and only if there exists θ ∈ L0(R,H) such that
x − θy ≥ g(Y ) − θY a.s., we get by definition of the conditional essential
supremum (see Definition 6.3) that (2.1) holds true. Then (2.2) follows from
Lemma 6.8 (see. Remark 2.2). Since the graph of suppHY belongs toH⊗B(R)
(see Lemma 6.2), we easily deduce that δsuppHY is H⊗B(R)-measurable and
it is clear that it is also l.s.c. As dom f = suppHY is a.s. non-empty (see again
Remark 2.2) f ∗(ω, ·) is convex and l.s.c. as the supremum of affine functions.
Hence x → f ∗(ω,−x) is also a.s. l.s.c. and convex. Moreover, using Lemma
6.6 (and Remark 2.2), f ∗ is H⊗ B(R)-measurable.

p(g) = ess infH{f ∗(−θ) + θy, θ ∈ L0(R,H)}
= −ess supH{θy − f ∗(θ), θ ∈ L0(R,H)}
= − sup

z∈R
(zy − f ∗(z)) = −f ∗∗(y).

The first equality is a direct consequence of (2.1), the second one is trivial.
In order to obtain the third one, we want to apply Lemma 6.9. First re-
mark that ess supH{θy − f ∗(θ), θ ∈ L0(R,H)} = ess supH{θy − f ∗(θ), θ ∈
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L0(R,H) ∩ Dom f ∗}. Now since f ∗ is H ⊗ B(R)-measurable, we deduce
that graph dom f ∗ = {(ω, x) ∈ Ω × R, f ∗(ω, x) < ∞} is a H ⊗ B(R)-
measurable set and dom f ∗ is also H-measurable (see [21, Theorem 14.8]).
Since (ω, z) → zy(ω) − f ∗(ω, z) is a H ⊗ B(R)-measurable function and
f ∗(ω, ·) is convex and thus u.s.c. on dom f ∗(ω), we can apply Lemma 6.9 and
we obtain that

ess supH{θy − f ∗(θ), θ ∈ L0(R,H) ∩Dom f ∗} = sup
z∈Dom(f∗)

(zy − f ∗(z))

= sup
z∈R

(zy − f ∗(z)) .

2

Let conv h be the convex envelop of h i.e. the greatest convex function dom-
inated by h

conv h(x) = sup{u(x), u convex and u ≤ h}.

The concave envelop is defined symmetrically and denoted by conc h. We
also define the (lower) closure h of h as the greatest l.s.c. function which
is dominated by h i.e. h = lim infy→x h(y). The upper closure is defined
symmetrically: h = lim supy→x h(y). It is easy to see that

conv f(y) = sup {αy + β, α, β ∈ R, f(x) ≥ αx+ β, ∀x ∈ R}.

It is well-known (see for example [21, Theorem 11.1]) that

f ∗ = (conv f)∗ = (f)∗ = (conv f)∗. (2.4)

Moreover, if conv f is proper, f ∗∗ is also proper, convex and l.s.c. and

f ∗∗ = conv f. (2.5)

So in order to compute p(g), we need to compute conv f and conv f . To do
so, we introduce the notion of relative concave envelop of g with respect to
suppHY :

conc(g, suppHY )(x) = inf{v(x), v is concave and v(z) ≥ g(z), ∀z ∈ suppHY }.

In the following, we use the convention 0× (±∞) = 0 and (+∞)× 0 = 0.
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Lemma 2.4. Suppose that g is a H-normal integrand. Then, we have:

conv f(x) = +∞ 1R\convsuppHY
(x)− 1convsuppHY (x)× conc(g, suppHY )(x)

conv f(x) = +∞ 1R\convsuppHY
(x)− 1convsuppHY (x)× conc(g, suppHY )(x)

= +∞ 1R\convsuppHY
(x)− 1convsuppHY (x)×

inf {αx+ β, α, β ∈ R, αz + β ≥ g(z), ∀z ∈ suppHY },

where convsuppHY is the convex envelopp of suppHY , i.e. the smallest con-
vex set that contains suppHY .

Remark 2.5. Note that conv f is proper if and only if conc(g, suppHY )(x) <
+∞ for all x ∈ convsuppHY , since convsuppHY is non-empty (see Remark
2.2). So conv f is proper if there exists some concave function ϕ such that g ≤
ϕ on suppHY and ϕ <∞ on convsuppHY (by definition, conc(g, suppHY ) ≤
ϕ). 1 As for all x ∈ convsuppHY , conc(g, suppHY )(x) ≥ g(x) > −∞, we
get that conc(g, suppHY )(x) ∈ R and also conc(g, suppHY )(x) ∈ R, one may
write that

conv f = −conc(g, suppHY ) + δconvsuppHY .

conv f = −conc(g, suppHY ) + δconvsuppHY .

Proof. One can rewrite the convex envelop of f as follows (see [21, Propo-
sition 2.31]):

conv f(x) = inf

{
n∑
i=1

λif(xi), n ≥ 1, (λi)i∈{1,...,n} ∈ Rn+, (xi)i∈{1,...,n} ∈ Rn,

x =
n∑
i=1

λixi,
n∑
i=1

λi = 1

}
.

The convex envelop of suppHY is given by (see [21, Proposition 2.27, The-
orem 2.29]).

convsuppHY =

{
n∑
i=1

λixi, n ≥ 1, (λi)i∈{1,...,n} ∈ Rn+,
n∑
i=1

λi = 1, xi ∈ suppHY

}
.

Assume that x /∈ convsuppHY . Then if x =
∑n

i=1 λixi for some n ≥
1, (λi)i∈{1,...,n} ∈ Rn

+, (xi)i∈{1,...,n} ∈ Rn such that
∑n

i=1 λi = 1, at least one

1This is equivalent to assume that there exists α, β ∈ R, such that g(x) ≤ αx + β for
all x ∈ suppHY ).
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xi /∈ suppHY and f(xi) =∞ and also conv f(x) =∞ = +∞ 1R\convsuppHY (x)−
1convsuppHY (x)× conc(g, suppHY )(x).
If x ∈ convsuppHY , conv f(x) = −conc(g, suppHY )(x). One can also remark
that if x ∈ convsuppHY ,

conv f(x) = − inf {αx+ β, α, β ∈ R, g(z) ≤ αz + β, ∀z ∈ suppHY }.

2

So we have the following representation of the infimum super-hedging cost:

Proposition 2.6. Suppose that g is a H-normal integrand and that there
exists some concave function ϕ such that g ≤ ϕ on suppHY and ϕ < ∞ on
convsuppHY . Then,

p(g) = −conv(f)(y) = conc(g, suppHY )(y)− δconvsuppHY (y).

We see that the fact that y belongs to convsuppHY or not is important.
In particular, in some cases, the infinimum price of a European claim may
be −∞. This is related to the notion of absence of immediate profit that we
present now. We say that there is an immediate profit when it is possible to
super-replicate the contingent claim 0 at a negative price p. This implies that
we may immediately make the positive profit −p and then start a portfolio
process ending up with a non negative wealth. On the contrary case, we say
that the Absence of Immediate Profit (AIP) condition holds. We will see that
(AIP) is strictly weaker than (NA).

Definition 2.7. There is an immediate profit (IP) if there exists a non null
element of P(0)∩L0(R−,H) or equivalently if p(0) ≤ 0 with P (p(0) < 0) > 0.

Notice that the (AIP) condition may be seen as a particular case of the
utility based No Good Deal condition introduced by Cherny, see [7, Definition
3]. In the definition above, let us explain why p(0) ≤ 0 with P (p(0) < 0) > 0
implies the existence of an immediate profit (IP).To see it, recall that P(0)
is directed downward so that p(0) = limn ↓ pn where pn ∈ P(0). Since
P (p(0) < 0) > 0, we deduce that there exists n such that P (pn < 0) > 0.
Let us define p̃ = pn1pn<0. Then, p̃ ∈ P(0) ∩ L0(R−,H) and p̃ 6= 0, i.e. p̃
generates an immediate profit.

Proposition 2.8. (AIP) holds if and only if y ∈ convsuppHY a.s.

Notice that, from Lemma 6.10, we get that

convsuppHY = [ess infHY, ess supHY ] ∩ R.
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Proof. The assumptions of Proposition 2.6 are satisfied for g = 0 and we get
that p(0) = −δconvsuppHY (y). Hence, there is no immediate profit if and only
if y ∈ convsuppHY a.s. 2

Corollary 2.9. The (AIP) condition holds true if and only if p(g) ≥ 0
a.s. for some non-negative H-normal integrand g such that there exists some
concave function ϕ verifying that g ≤ ϕ <∞.

So in particular the (AIP) condition holds true if and only the infimum
super-hedging cost of a european call option is non-negative.

Proof. Assume that (AIP) condition holds true. Then from Definition 2.7,
we get that p(0) = 0 a.s. As g ≥ 0, it is clear that p(g) ≥ p(0) = 0 a.s.
Conversally, assume that there exists some (IP). From Proposition 2.6, we
get that

p(g) = conc(g, suppHY )(y)− δconvsuppHY (y).

From Proposition 2.8, we get that P (y ∈ convsuppHY ) < 1 and as conc(g, suppHY )(y) ≤
ϕ <∞, P (p(g) = −∞) > 0 and the converse is proved. 2

Remark 2.10. Assume that the H-measurable set Γ = {ess supHY < y} has
a non null probability. Then, on this set, from the zero initial capital, taking
the physical position (y,−1) while keeping the zero position otherwise, one
get at time 1 the terminal wealth y − Y ≥ y − ess supHY > 0 on Γ and zero
otherwise, i.e. an arbitrage opportunity. Thus if y /∈ convsuppHY a.s., one
gets an Arbitrage Opportunity and (AIP) is weaker than (NA).

We provide some examples where (AIP) holds true and is strictly weaker
than (NA). This is the case if there exists Q1, Q2 � P such that S is a Q1-
super martingale (resp. Q2-sub martingale), see Remark 6.4. This is of course
true if ess infHY = 0 and ess supHY =∞. Finally, this is also the case for a
model of the form Y = yZ where Z > 0 is such that suppHZ = [0, 1] a.s. or
suppHZ = [1,∞) a.s. and y > 0. Indeed (recall Lemma 6.10), if suppHZ =
[0, 1], ess infHY = y ess infHZ = 0 ≤ y and ess supHY = y ess supHZ =
y ≥ y. The same holds if suppHZ = [1,∞) a.s. Nevertheless, this kind
of model does not admit a risk-neutral probability measure. Indeed, in the
contrary case, there exists a density process i.e. a positive martingale (ρt)t=0,1

with ρ0 = 1 such that ρS is a P-martingale: EP(ρ1Y |H) = ρ0y. We get
that EP(ρ1Z|H) = ρ0. Since we also have ρ0 = EP(ρ1|H), we deduce that



/ 10

EP(ρ1(1 − Z)|H) = 0. Since Z ≤ 1 a.s. or Z ≥ 1 a.s., this implies that
ρ1(1− Z) = 0 hence Z = 1 which yields a contradiction.

Corollary 2.11. Suppose that (AIP) holds true. Let g be a H-normal inte-
grand, such that there exists some concave function ϕ verifying that g ≤ ϕ
on suppHY and ϕ <∞ on convsuppHY . Then,

p(g) = conc(g, suppHY )(y)

= inf {αy + β, α, β ∈ R, αx+ β ≥ g(x), ∀x ∈ suppHY }. (2.6)

So in the case where g is concave and u.s.c., we get under (AIP) that
p(g) = g(y).
If g is convex and limx→∞ x

−1g(x) = M ∈ R, the relative concave envelop of
g with respect to suppHY is the affine function that coincides with g on the
extreme points of the interval convsuppHY i.e.

p(g) = θ∗y + β∗ = g(ess infHY ) + θ∗ (y − ess infHY ) , (2.7)

θ∗ =
g(ess supHY )− g(ess infHY )

ess supHY − ess infHY
, (2.8)

where we use the conventions θ∗ = 0
0

= 0 in the case ess supHY = ess infHY

and θ∗ = g(∞)
∞ = M if ess infHY < ess supHY = +∞. Moreover, using (2.6),

we get that θ∗Y + β∗ ≥ g(Y ) a.s. (recall that Y ∈ suppHY a.s., see Remark
2.2) and this implies using (2.7) that

p(g) + θ∗(Y − y) ≥ g a.s. (2.9)

and p(g) ∈ P(g).

3. The multi-period framework

3.1. Multi-period super-hedging prices

For every t ∈ {0, . . . , T} the set RT
t of all claims that can be super-replicated

from the zero initial endowment at time t is defined by

RT
t :=

{
T∑

u=t+1

θu−1∆Su − ε+T , θu−1 ∈ L0(R,Fu−1), ε+T ∈ L
0(R+,FT )

}
. (3.10)
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The set of (multi-period) super-hedging prices and the (multi-period) infi-
mum super-hedging cost of some contingent claim g ∈ L0(R,FT ) at t are
given by

ΠT,T (g) := {g}
πT,T (g) := g

Πt,T (g) := {xt ∈ L0(R,Ft), ∃R ∈ RT
t , xt +R = g a.s.}, t ∈ {0, . . . , T − 1}

πt,T (g) := ess infFtΠt,T (g). (3.11)

As in the one-period case, it is clear that the infimum super-hedging cost is
not necessarily a price in the sense that πt,T (g) /∈ Πt,T (g) when Πt,T (g) is not
closed. Alternatively, we may define sequentially

PT,T (g) = {g}
Pt,T (g) = {xt ∈ L0(R,Ft), ∃θt ∈ L0(R,Ft), ∃pt+1 ∈ Pt+1,T (g), xt + θt∆St+1 ≥ pt+1 a.s.}.

The set Pt,T (g) contains all prices at time t super-replicating some price
pt+1 ∈ Pt+1,T (g) at time t+ 1. First we show that for all t ∈ {0, . . . , T}

Πt,T (g) = Pt,T (g). (3.12)

It is clear at time T . Let xt ∈ Πt,T . Then there exists for all u ∈ {t, . . . , T−1},
θu ∈ L0(R,Fu) such that xt +

∑T−1
u=t+1 θu−1∆Su + θT−1∆ST ≥ g a.s. As

g ∈ PT,T (g), xt+
∑T−1

u=t+1 θu−1∆Su ∈ PT−1,T (g) a.s. As xt+
∑T−2

u=t+1 θu−1∆Su+

θT−2∆ST−1 = xt +
∑T−1

u=t+1 θu−1∆Su, it follows that xt +
∑T−2

u=t+1 θu−1∆Su ∈
PT−2,T (g) and recursively xt ∈ Pt,T . Conversely, let xt ∈ Pt,T , then there
exists θt ∈ L0(R,Ft) and pt+1 ∈ Pt+1,T (g), such that xt + θt∆St+1 ≥ pt+1 a.s.
Then as pt+1 ∈ Pt+1,T (g), there exists θt+1 ∈ L0(R,Ft+1) and pt+2 ∈ Pt+2,T (g),
such that pt+1 + θt+1∆St+2 ≥ pt+2 a.s. and going forward until T since
PT,T (g) = {g}, pT−1 +θT−1∆ST ≥ g a.s., we get that xt+

∑T
u=t+1 θu−1∆Su ≥

g a.s. and xt ∈ Πt,T follows.
We now define a local version of super-hedging prices. Let gt+1 ∈ L0(R,Ft+1),
then the set of one-step super-hedging prices of gt+1 and it associated infimum
super-hedging cost are given by

Pt,t+1(gt+1) =
{
xt ∈ L0(R,Ft), ∃ θt ∈ L0(R,Ft), xt + θt∆St+1 ≥ gt+1 a.s.

}
πt,t+1(gt+1) = ess infFtPt,t+1(gt+1).

The following lemma makes the link between local and global super-hedging
under the assumption that the infimum (global) super-replication cost is a
price. It provides a dynamic programming principle.
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Lemma 3.1. Let g ∈ L0(R,FT ) and t ∈ {0, . . . , T − 1}. Then Pt,T (g) ⊂
Pt,t+1(πt+1,T (g)) and πt,T (g) ≥ πt,t+1(πt+1,T (g)). Moreover if πt+1,T (g) ∈
Πt+1,T (g), then Pt,T (g) = Pt,t+1(πt+1,T (g)) and πt,T (g) = πt,t+1(πt+1,T (g)).

Remark 3.2. So under (AIP), if at each step, πt+1,T (g) ∈ Πt+1,T (g) and if
πt+1,T (g) = gt+1(St+1) for some Ft-normal integrand gt+1, we will get from
Corollary 2.6 that πt,T (g) = conc(gt+1, suppFt

St+1)(St). We will propose in
Section 3.3 a quite general setting where this holds true.

Proof. Let xt ∈ Pt,T (g), then there exists θt ∈ L0(R,Ft) and pt+1 ∈
Pt+1,T (g) such that (recall (3.12))

xt + θt∆St+1 ≥ pt+1 ≥ ess infFtΠt+1,T (g) = πt+1,T (g) a.s.

and the first statement follows. The second one follows from πt+1,T (g) ∈
Pt+1,T (g). 2

3.2. Multi-period (AIP)

We now define the notion of global and local immediate profit at time t. The
first one says that it is possible to super-replicate at a negative cost from
time t the claim 0 payed at time T and the local one the claim 0 payed at
time t+ 1. We will see that they are equivalent.

Definition 3.3. Fix some t ∈ {0, . . . , T}. A global immediate profit (IP) at
time t is a non null element of Pt,T (0) ∩ L0(R−,Ft).
A local immediate profit at time t is a a non null element of Pt,t+1(0) ∩
L0(R−,Ft).
We say that the (AIP) condition holds if there is no global IP at any instant
t, i.e. if Pt,T (0) ∩ L0(R−,Ft) = {0} for all t ∈ {0, . . . , T}.

Using Proposition 2.8, we get the equivalence between the absence of local
IP at time t and the fact that St ∈ convsuppFt

St+1 a.s. So Theorem 3.4 below
will show that there is an equivalence between the absence of global IP and
the absence of local one.

Theorem 3.4. (AIP) holds if and only if one of the the following assertions
holds:
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1) St ∈ convsuppFt
St+1 a.s., for all t ∈ {0, . . . , T − 1}.

2) ess infFtSt+1 ≤ St ≤ ess supFt
St+1 a.s., for all t ∈ {0, . . . , T − 1}.

3) ess infFtSu ≤ St ≤ ess supFt
Su a.s. for all u ∈ {t, . . . , T}.

4) πt,T (0) = 0 a.s. for all t ≤ T − 1.

Proof. Let AT = Ω and for all t ∈ {0, . . . , T − 1}

At := {ess supFt
∆St+1 ≥ 0} ∩ {ess infFt∆St+1 ≤ 0}.

We show by induction that 0 ∈ Pt,T (0) and that under (AIP) at time t+ 1

πt,T (0) = 0 a.s.⇔ P (At) = 1⇔ (AIP) holds at time t.

The third assertion follows from Lemma 6.5.
We proceed by backward recursion. At time T , PT,T (0) = {0}, thus (AIP)

holds at T and πT,T (0) = 0. Fix some t ∈ {0, . . . , T − 1}, assume that the
induction hypothesis holds true at t+1 and that (AIP) holds at time t+1. As
πt+1,T (0) = 0 ∈ Pt+1,T (0), we can apply Lemma 3.1 and Pt,T (0) = Pt,t+1(0).
So we can apply Lemma 2.3 and

Pt,T (0) = Pt,t+1(0) =

{
sup

z∈suppFtSt+1

(−θz) + θSt, θ ∈ L0(R,Ft)

}
+ L0(R+,Ft)

=
{
−θ
(
ess supFt

∆St+11θ<0 + ess infFt∆St+11θ≥0

)
, θ ∈ L0(R,Ft)

}
+ L0(R+,Ft).

Note that 0 ∈ Pt,T (0). Moreover, (AIP) holds at time t if and only if P (At) =
1 (this also a direct consequence of Proposition 2.8). We also obtain that
πt,T (0) = ess infHPt,T (0) = (0)1At +(−∞)1Ω\At and equivalently (AIP) holds
at time t if and only if πt,T (0) = 0 a.s. In particular, under (AIP) at time t, the
infimum super-hedging cost at time t is a price for 0: πt,T (0) = 0 ∈ Pt,T (0).
2

Remark 3.5. Fix some t ≤ T − 1. If ess supFt−1
∆St < 0 on a non null

measure set, then as in Remark 2.10 there is an arbitrage opportunity at
time t.

3.3. Explicit pricing of a convex payoff under (AIP)

The aim of this section is to obtain some results in a particular model
where ess infFt−1St = kdt−1,tSt−1 and ess supFt−1

St = kut−1,tSt−1 for every
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t ∈ {1, · · · , T} where (kdt−1,t)t∈{1,··· ,T}, (kut−1,t)t∈{1,··· ,T} and S0 are determin-
istic non-negative numbers. We obtain the same computative scheme (see
(3.13)) as in [6] but it is obtained here assuming only (AIP) and not (NA).

Theorem 3.6. Suppose that the model is defined by ess infFt−1St = kdt−1,tSt−1

and ess supFt−1
St = kut−1,tSt−1 where (kdt−1,t)t∈{1,··· ,T}, (kut−1,t)t∈{1,··· ,T} and S0

are deterministic non-negative numbers.

• The (AIP) condition holds at every instant t if and only if the super-
hedging prices of some European call option are non-negative or equiv-
alently if kdt−1,t ∈ [0, 1] and kut−1,t ∈ [1,+∞] for all t ∈ {1, · · · , T}.
• Suppose that the (AIP) condition holds. If h : R → R is a convex

function with Dom h = R, h(z) ≥ 0 for all z ≥ 0 and limz→+∞
h(z)
z
∈

[0,∞), the infimum super-hedging cost of the European contingent claim
h(ST ) is a price given by πt,T (h) = h(t, St) ∈ Pt,T (h) where

h(T, x) = h(x)

h(t− 1, x) = λt−1,th
(
t, kdt−1,tx

)
+ (1− λt−1,t)h

(
t, kut−1,tx

)
,

(3.13)

where λt−1,t =
kut−1,t−1

kut−1,t−kdt−1,t
∈ [0, 1] and 1 − λt−1,t =

1−kdt−1,t

kut−1,t−kdt−1,t
∈ [0, 1],

with the following conventions. When kdt−1,t = kut−1,t = 1 or St−1 = 0,

λt−1,t = 0
0

= 0 and 1− λt−1,t = 1 and when kdt−1,t < kut−1,t =∞,

λt−1,t =
∞
∞

= 1

(1− λt−1,t)h(t, (+∞)x) =(1− kdt−1,t)x
h(t, (+∞x))

(+∞x)

=(1− kdt−1,t)x lim
z→+∞

h(z)

z
.

(3.14)

Moreover, for every t, limz→+∞
h(z)
z

= limz→+∞
h(t,z)
z

and h(·, x) is non-
increasing for all x ≥ 0.

In the proof, the strategy associated to the minimal price is given and, in
section 5, this result is illustrated through a numerical experiment.

Proof. The conditions kdt−1,t ∈ [0, 1] and kut−1,t ∈ [1,+∞] are equiva-

lent to the (AIP) conditions by Theorem 3.4. We denote M = h(∞)
∞ and

Mt = limz→+∞
h(t,z)
z

. We prove the second statement. Assume that (AIP)
holds true. We establish the recursive formulation πt,T (h) = h(t, St) given
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by (3.13), that h(t, ·) ≥ h(t + 1, ·) and that Mt = Mt+1. The case t = T is
immediate. As h : R→ R is a convex function with Dom h = R, h is clearly
a FT−1-normal integrand, we can apply Proposition 2.6 and its consequence
for convex functions (see (2.7) and (2.8)) and we get that

πT−1,T (h) = h(kdT−1,TST−1) + θ∗T−1

(
ST−1 − kdT−1,TST−1

)
,

θ∗T−1 =
h(kuT−1,TST−1)− h(kdT−1,TST−1)

kuT−1,TST−1 − kdT−1,TST−1

,
(3.15)

where we use the conventions θ∗T−1 = 0
0

= 0 if either ST−1 = 0 or kuT−1,T =

kdT−1,T = 1 and θ∗T−1 = h(∞)
∞ = M if kdT−1,T < kuT−1,T = +∞. Moreover, using

(2.9), we obtain that πT−1,T (h) + θ∗T−1∆ST ≥ h a.s. i.e. πT−1,T (h) ∈ P(h).
So, using Lemma 3.1, we get that PT−2,T (h) = PT−2,T−1(πT−1,T (h)) and
πT−2,T (h) = πT−2,T−1(πT−1,T (h)) and we may continue the recursion as soon
as πT−1,T (h) = h(T − 1, ST−1) where h(T − 1, ·) satisfies (3.13), is convex
with domain equal to R, is such that h(T − 1, z) ≥ 0 for all z ≥ 0 and
MT−1 = M ∈ [0,∞). To see that we distinguish three cases. If either ST−1 = 0
or kuT−1,T = kdT−1,T = 1, πT−1,T (h) = h(ST−1) and h(T−1, z) = h(z) = h(T, z)
satisfies all the required conditions. If kdT−1,T < kuT−1,T = +∞, πT−1,T (h) =

h(kdT−1,TST−1) +M
(
ST−1 − kdT−1,TST−1

)
= h(T − 1, ST−1) with

h(T − 1, z) = h(kdT−1,T z) +Mz
(
1− kdT−1,T

)
= lim

ku→+∞

(
ku − 1

ku − kdT−1,T

h(kdT−1,T z) +
1− kdT−1,T

ku − kdT−1,T

h(kuz)

)
,

using (3.14). The term in the r.h.s. above is larger than h(z) = h(T, z) by

convexity since ku−1
ku−kdT−1,T

kdT−1,T z +
1−kdT−1,T

ku−kdT−1,T
kuz = z. As kdT−1,T ∈ [0, 1] and

M ∈ [0,∞), h(T − 1, z) ≥ 0 for all z ≥ 0, we get that h(T − 1, ·) is convex
function with domain equal to R since h is so. The function h(T − 1, ·)
also satisfies (3.13) (see (3.14)). Finally MT−1 = limz→+∞ k

d
T−1,T

h(kdT−1,T z)

kdT−1,T z
+

M
(
1− kdT−1,T

)
= M .

The last case is when ST−1 6= 0 and kuT−1,T 6= kdT−1,T and kuT−1,T < +∞. It

is clear that (3.15) implies (3.13). Moreover as kdT−1,T ∈ [0, 1] and kuT−1,T ∈
[1,+∞), λT−1,T =

kuT−1,T−1

kuT−1,T−k
d
T−1,T

∈ [0, 1] and 1−λT−1,T =
1−kdT−1,T

kuT−1,T−k
d
T−1,T

∈ [0, 1]

and (3.13) implies that h(T − 1, z) ≥ 0 for all z ≥ 0, h(T − 1, ·) is convex
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with domain equal to R since h is so. Moreover,

MT−1 = λT−1,Tk
d
T−1,T lim

z→+∞

h(kdT−1,T z)

kdT−1,T z
+(1−λT−1,T )kuT−1,T lim

z→+∞

h(kuT−1,T z)

kuT−1,T z
= M,

since
λT−1,Tk

d
T−1,T + (1− λT−1,T )kuT−1,T = 1.

If h(x) = (x − K)+, for some K ∈ R, h(ST ) is a European contingent
claim and h : R → R a convex function with Dom h = R, h ≥ 0 and
limz→+∞

h(z)
z

= 1 ∈ [0,∞). We have just seen that under (AIP) the infimum
super-hedging cost of h(ST ) is a price πt,T (h) ≥ 0. Reversely if (AIP) does
not hold true, Proposition 2.6 implies

πT−1,T (h) = inf {αST−1 + β, α, β ∈ R, (z −K)+ ≤ αz + β, ∀z ∈ suppFT−1,T
ST}

−δ[kdT−1,TST−1,k
u
T−1,TST−1]∩R(ST−1).

As (AIP) does not hold true, either kdT−1,T > 1 or kuT−1,T < 1 and in
both cases, ST−1 /∈ [kdT−1,TST−1, k

u
T−1,TST−1] ∩ R and πT−1,T (h) = −∞ since

inf {αST−1 + β, α, β ∈ R, (z −K)+ ≤ αz + β, ∀z ∈ suppFT−1,T
ST} ≤ ST−1.

Thus the convex subset PT−1,T (h) is equal to L0(R,FT−1). Similarly πt,T (h) =
−∞ for all t ∈ {0, . . . , T − 3}. This allows to conclude about the first
statement.2

Remark 3.7. The infinimum price of the European contingent claim h(ST )
in our model is a price, precisely the same than the price we get in a binomial
model St ∈ {kdt−1,tSt−1, k

u
t−1,tSt−1} a.s., t = 1, · · · , T .

4. Comparison between the (AIP) condition and classical
no-arbitrage conditions

Examples have already show that (AIP) condition can be weaker than the
classical absence of arbitrage opportunity (NA) characterized by the funda-
mental theorem of asset pricing (FTAP), see the Dalang-Morton-Willinger
theorem in [8]. The goal of this section is compare the (AIP) condition with
a weaker form of the classical No Free Lunch condition.

Recall that the set of all prices for the zero claim at time t is given by
Pt,T (0) = (−RT

t ) ∩ L0(R,Ft) (see (3.10), (3.11) and (3.12)). It follows that
(AIP) reads as RT

t ∩ L0(R+,Ft) = {0}. Recall that the (NA) condition is
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RT
t ∩L0(R+,FT ) = {0}. We also study a stronger condition than (AIP), i.e.

RT
t ∩L0(R+,Ft) = {0} for all t ∈ {0, . . . , T}, where the closure ofRT

t is taken
with respect to the convergence in probability. Note that this condition is a
weak form of the classical No Free Lunch conditionRT

t ∩L0(R+,FT ) = {0} for
all t ∈ {0, . . . , T}; we call it (WNFL) for Weak No Free Lunch. The following
result implies that (WNFL) may be equivalent to (AIP) condition under
an extra closedness condition. It also provides a characterization through
(absolutely continuous) martingale measures.

Theorem 4.1. The following statements are equivalent:

• (WNFL) holds.
• For every t ∈ {0, . . . , T}, there exists Q � P with E(dQ/dP |Ft) = 1

such that (Su)u∈{t,...,T} is a Q-martingale.

• (AIP) holds and RT
t ∩ L0(R,Ft) = RT

t ∩ L0(R,Ft) for every t ∈
{0, . . . , T}.

Proof. Suppose that (WNFL) holds and fix some t ∈ {0, . . . , T}. We may
suppose without loss of generality that the process S is integrable under P .
Under (WNFL), we then have RT

t ∩ L1(R+,Ft) = {0} where the closure is
taken in L1. Therefore, for every nonzero x ∈ L1(R+,Ft), there exists by the
Hahn-Banach theorem a non-zero Zx ∈ L∞(R+,FT ) such that (recall thatRT

t

is a cone) EZxx > 0 and EZxξ ≤ 0 for every ξ ∈ RT
t . Since −L1(R+,FT ) ⊆

RT
t , we deduce that Zx ≥ 0 and we way renormalise Zx so that ‖Zx‖∞ = 1.

Let us consider the family G = {E(Zx|Ft) > 0}, x ∈ L1(R+,Ft) \ {0}}.
Consider any non null set Γ ∈ Ft. Taking x = 1Γ ∈ L1(R+,Ft) \ {0}, since
E(Zx1Γ) > 0, we deduce that Γ has a non null intersection with {E(Zx|Ft) >
0}. By [14, Lemma 2.1.3], we deduce an at most countable subfamily (xi)i≥1

such that the union
⋃
i{E(Zxi |Ft) > 0} is of full measure. Therefore, Z =∑∞

i=1 2−iZxi ≥ 0 is such that E(Z|Ft) > 0 and we define Q � P such that

dQ = (Z/E(Z|Ft))dP . As the subset {
∑T

u=t+1 θu−1∆Su, θu−1 ∈ L(R,Fu−1)}
is a linear vector space contained in RT

t , we deduce that (Su)u∈{t,...,T} is a
Q-martingale.

Suppose that for every t ∈ {0, . . . , T}, there exists Q � P such that
(Su)u∈{t,...,T} is a Q-martingale with E(dQ/dP |Ft) = 1. Let us define for
u ∈ {t, . . . , T}, ρu = EP(dQ/dP|Fu) then ρu ≥ 0 and ρt = 1. Consider
γt ∈ RT

t ∩ L0(R+,Ft), i.e. γt is Ft-measurable and is of the form γt =∑T−1
u=t θu∆Su+1 − ε+T . Since θu is Fu-measurable, θu∆Su+1 admits a gener-

alized conditional expectation under Q knowing Fu and, by assumption, we



/ 18

have EQ(θu∆Su+1|Fu) = 0. We deduce by the tower law that

γt = EQ(γt|Ft) =
T−1∑
u=t

EQ(EQ(θu∆Su+1|Fu)|Ft)− EQ(ε+T |Ft) = −EQ(ε+T |Ft).

Hence γt = 0, i.e. (AIP) holds. It remains to show that RT
t ∩ L0(R,Ft) ⊆

RT
t ∩ L0(R,Ft).
Consider first a one step model, where (Su)u∈{T−1,T} is a Q-martingale with

ρT ≥ 0 and ρT−1 = 1. Suppose that γn = θnT−1∆ST − εn+
T ∈ L0(R,FT−1) con-

verges in probability to γ∞ ∈ L0(R,FT−1). We need to show that γ∞ ∈
RT
T−1. On the FT−1-measurable set ΛT−1 := {lim infn |θnT−1| < ∞}, by

[14, Lemma 2.1.2], we may assume w.l.o.g. that θnT−1 is convergent to some
θ∞T−1 hence εn+

T is also convergent and we can conclude. Otherwise, on Ω \
ΛT−1, we use the normalized sequences θ̃nT−1 := θnT−1/(|θnT−1| + 1), ε̃n+

T :=

εn+
T /(|θnT−1| + 1). By [14, Lemma 2.1.2], we may assume that θ̃nT−1 → θ̃∞T−1,

ε̃n+
T → ε̃∞+

T and θ̃∞T−1∆ST − ε̃∞+
T = 0. As |θ̃∞T−1| = 1 a.s., first consider the

subset Λ2
T−1 := {θ̃∞T−1 = 1} ∈ FT−1. We then have ∆ST ≥ 0 on Λ2

T−1.
Since EQ(∆ST1Λ2

T−1
|FT−1) = 0, we get that ρT∆ST1Λ2

T−1
= 0 a.s. Hence

ρTγ
n1Λ2

T−1
= −ρT εn+

T 1Λ2
T−1
≤ 0. Taking the limit, we get that ρTγ

∞1Λ2
T−1
≤ 0

and, since γ∞ ∈ L0(R,FT−1), we deduce that ρT−1γ
∞1Λ2

T−1
≤ 0 . Recall

that ρT−1 = 1 hence γ∞1Λ2
T−1
≤ 0 and γ∞1Λ2

T−1
∈ RT

T−1. On the subset

{θ̃∞T−1 = −1} we may argue similarly and the conclusion follows in the one
step model.

Fix some s ∈ {t, . . . , T − 1}. We show that RT

s+1 ∩ L0(R,Fs+1) ⊆ RT
s+1 ∩

L0(R,Fs+1) implies the same property for s instead of s+ 1. By assumption
(Su)u∈{s,...,T} is a Q-martingale with ρu ≥ 0 for u ∈ {s, . . . , T} and ρs = 1.

Suppose that γn =
∑T−1

u=s θ
n
u∆Su+1 − εn+

T ∈ L0(R,Fs) converges to γ∞ ∈
L0(R,Fs). If γ∞ = 0 there is nothing to prove. On the Fs-measurable set
Λs := {lim infn |θns | <∞}, by [14, Lemma 2.1.2], we may assume w.l.o.g. that
θns converges to θ∞s . Therefore, by the induction hypothesis,

∑T−1
u=s+1 θ

n
u∆Su+1−

εn+
T is also convergent to an element of RT

s+1 ∩ L0(R,Fs+1) and we conclude
that γ∞ ∈ RT

s . On Ω \ Λs−1, we use the normalisation procedure, and de-
duce the equality

∑T−1
u=s θ̃

∞
u ∆Su+1 − ε̃∞+

T = 0 for some θ̃∞u ∈ L0(R,Fu),
u ∈ {s, . . . , T − 1} and ε̃∞+

T ≥ 0 such that |θ̃∞s | = 1 a.s. We then argue as in
the one step model on Λ2

s := {θ̃∞s = 1} ∈ Fs and Λ3
s := {θ̃∞s = −1} ∈ Fs re-

spectively. When θ̃∞s = 1, we deduce that ∆Ss+1 +
∑T−1

u=s+1 θ̃
∞
u ∆Su+1− ε̃∞+

T =
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0, i.e. ∆Ss+1 ∈ Ps+1,T (0) hence ∆Ss+1 ≥ 0 under (AIP), see Theorem
3.4. Since EQ(∆Ss+11Λ2

s
|Fs) = 0, ρs+1∆Ss+11Λ2

s
= 0 a.s. So, ρs+1γ

n1Λ2
s
∈

RT
s+1 ∩ L0(R,Fs+1) hence ρs+1γ

∞1Λ2
s
∈ RT

s+1 ∩ L0(R,Fs+1) by induction. As
ρs+1γ

∞1Λ2
s

admits a generalized conditional expectation knowing Fs, we de-
duce from (AIP) that EQ(ρs+1γ

∞1Λ2
s
|Fs) ≤ 0 hence ρsγ

∞1Λ2
s
≤ 0. Recall that

ρs = 1 hence γ∞1Λ2
s
≤ 0 so that γ∞1Λ2

s
∈ RT

s ∩ L0(R,Fs).
Finally, notice that the (AIP) condition implies (WNFL) as soon as the

equalityRT
t ∩L0(R+,Ft) = RT

t ∩L0(R+,Ft) holds for every t ∈ {0 . . . , T−1}.
2

Proposition 4.2. Suppose that P (ess infFtSt+1 = St) = P (ess supFt
St+1 =

St) = 0 for all t ∈ {0 . . . , T − 1}. Then, (WNFL) is equivalent to (AIP)
and, under these equivalent conditions, RT

t is closed in probability for every
t ∈ {0 . . . , T − 1}.

Proof. It suffices to show that RT
t is closed in probability for every t ∈

{0 . . . , T − 1} under (AIP). Consider first the one step model, i.e. sup-
pose that γn = θnT−1∆ST − εn+

T ∈ RT
T−1 is a convergent sequence to γ∞ ∈

L0(R,FT ). It is then sufficient to show that the FT−1-measurable set ΛT−1 :=
{lim infn |θnT−1| < ∞} satisfies P(ΛT−1) = 1. Following the normalization

procedure of proof of Theorem 4.1 on Ω \ΛT−1, we get that θ̃∞T−1∆ST where

|θ̃∞T−1| = 1 a.s. First consider the subset Λ2
T−1 := {θ̃∞T−1 = 1} ∈ FT−1. We have

∆ST ≥ 0 and hence ess infFT−1
ST ≥ ST−1 on Λ2

T−1. By (AIP) (see Theorem
3.4), we deduce that ess infFT−1

ST = ST−1 on Λ2
T−1. The assumption implies

that P (Λ2
T−1) = 0. On the remaining subset Λ3

T−1 := {θ̃∞T−1 = −1} ∈ FT−1,
we obtain similarly that ess supFT−1

ST = ST−1 and thus that P (Λ3
T−1) = 0.

By induction, assume thatRT
t+1 is closed in probability and let us show that

RT
t is also closed in probability. To do so, suppose that γn =

∑T
u=t+1 θ

n
u−1∆Su−

εn+
T ∈ RT

t converges to γ∞ ∈ L0(R,FT ). On the Ft-measurable set Λt :=
{lim infn |θnt | <∞}, by [14, Lemma 2.1.2], we may assume w.l.o.g. that θnt is
convergent to θ∞t . Therefore, by the induction hypothesis,∑T

u=t+2 θ
n
u−1∆Su − εn+

T is also convergent to an element of RT
t+1 and we con-

clude that γ∞ ∈ RT
t . On Ω \ Λt−1, we use the normalization procedure, and

deduce an equality
∑T

u=t+1 θ̃
∞
u−1∆Su − ε̃∞+

T = 0 where θ̃∞u−1 ∈ L(R,Fu−1),

u ∈ {t, . . . , T − 1} and ε̃∞+
T ≥ 0 such that |θ̃∞t | = 1 a.s. We then argue on

Λ2
t := {θ̃∞t = 1} ∈ Ft and Λ3

t := {θ̃∞t = −1} ∈ Ft respectively. On Λ2
t ,

we obtain that ∆St+1 ∈ Pt+1,T (0) hence under (AIP), with Theorem 3.4,
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we obtain that ∆St+1 ≥ 0 and ess infFtSt+1 = St on Λ2
t . This implies that

P (Λ2
t ) = 0 and similarly P (Λ3

t ) = 0. The conclusion follows. 2

Remark 4.3. Under the assumption of Proposition 4.2, the infinimum super-
hedging cost is a price.

Lemma 4.4. The (AIP) condition is not necessarily equivalent to (WNFL).

Proof. Let us consider a positive process (S̃t)t∈{0,...,T} which is a P -martingale.

We suppose that ess infF0S̃1 < S̃1 a.s., which holds in particular if S̃ a ge-
ometric Brownian motion as ess infF0S̃1 = 0 a.s. Let us define St := S̃t
for t ∈ {1, . . . , T} and S0 := ess infF0S1. We have ess infF0S1 ≤ S0 and
ess supF0

S1 ≥ S1 ≥ ess infF0S1 = S0 hence (AIP) holds at time 0 (see Theo-
rem 3.4). Moreover, by the martingale property, (AIP) also holds at any time
t ∈ {1, . . . , T} (see Remark 6.4). Let us suppose that (WNFL) holds. Then,
there exists ρT ≥ 0 with E(ρT ) = 1 such that S is a Q-martingale where
dQ = ρTdP . Therefore, E(ρT∆S1) = 0. Since ∆S1 > 0 by assumption, we
deduce that ρT = 0 hence a contradiction. 2

5. Numerical experiments

5.1. Calibration

In this section, we suppose that the discrete dates are given by tni = iT
n

,

i ∈ {0, · · · , n} where n ≥ 1. We assume that kutni−1
= 1 + σtni−1

√
∆tni and

kdtni−1
= 1 − σtni−1

√
∆tni ≥ 0 where t 7→ σt is a positive Lipschitz-continous

function on [0, T ]. This model implies that ess infFtn
j−1
Stni = kdtnj−1,t

n
i
Stnj−1

and

ess supFtn
j−1

Stni = kutnj−1,t
n
i
Stnj−1

, where for all j ≤ i,

kutnj−1,t
n
i

= Πi
r=jk

u
tnr−1

, kdtnj−1,t
n
i

= Πi
r=jk

d
tnr−1

.

By Theorem 3.6, we deduce that the (minimal) price of the European
Call option (ST −K)+ is given by hn(t, St) defined by (3.13) with terminal
condition hn(T, x) = h(x) := (x−K)+. We extend the function hn on [0, T ] in
such a way that hn is constant on each interval [tni , t

n
i+1[, i ∈ {0, · · · , n}. Such

a scheme is proposed by Milstein [19] where a convergence theorem is proven
when the terminal condition, i.e. the payoff function, is smooth. Precisely,
the sequence of functions hn converges uniformly to h(t, x), solution to the
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diffusion equation:

∂th(t, x) + σ2
t

x2

2
∂xxh(t, x) = 0, h(T, x) = h(x).

In [19], it is supposed that the successive derivatives of the P.D.E.’s solution h
are uniformly bounded. This is not the case for the Call payoff function g(x) =
(x−K)+. On the contrary the successive derivatives of the P.D.E.’s solution
explode at the horizon date, see [18]. In [2], it is proven that the uniform
convergence still holds when the payoff function is not smooth provided that
the successive derivatives of the P.D.E. solution do not explode too much.

Supposing that ∆tni is closed to 0, we identify the observed prices of the
call option with the limit theoretical prices h(t, St) at any instant t to de-
duce an evaluation of the the deterministic function t 7→ σt. Note that the
assumptions on the multipliers kutni−1

and kdtni−1
mean that∣∣∣∣Stni+1

Snti
− 1

∣∣∣∣ ≤ σti
√

∆tni , a.s. (5.16)

We propose to verify (5.16) on real data. The data set is composed of his-
torical values of the french index CAC 40 and European call option prices
of maturity 3 months from the 23rd of October 2017 to the 19th of January
2018. For several strikes, matching the observed prices to the theoretical ones
derived from the Black an Scholes formula with time-dependent volatility, we
deduce the associated implied volatility t 7→ σt and we compute the propor-
tion of observations satisfying (5.16):

Fig 1. Ratio of observations satisfying (5.16) as a function of the strike.
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Strike 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000
Ratio 96,7% 95,1% 95,1% 88,5% 86,9% 80,3% 70,5% 78,7% 75,4% 77,0% 73,8% 75,4% 72,1%

5.2. Super-hedging

We test the infinimum super-hedging cost deduced for Theorem 3.6 on some
data set composed of historical daily closing values of the french index CAC
40 from the 5th of January 2015 to the 12th of March 2018. The interval
[0, T ] we choose corresponds to one week composed of 5 days so that the
number of discrete dates is n = 5. We first evaluate σ2

ti
, i = 0, · · · , 3, as

σti = max

(∣∣∣∣Sti+1

Sti
− 1

∣∣∣∣ /√∆tni+1,

)
i = 0, · · · , 3,

where max is the empirical maximum taken over a one year sliding sample
window of 52 weeks. We then implement the super-hedging strategy on each
of the 112 weeks following the sliding samples, i.e. every week from the 11th
of January 2016 to the 5th of March 2018. We observe the empirical average
E(St0) = 4044. The payoff function is h(x) = (x−K)+.

5.2.1. Case where K = 4700.

We implement the strategy associated to the super-hedging cost given by
Theorem 3.6. We deduce the distribution of the super-hedging error εT :=
VT − (ST −K)+, see Figure 4:

Fig 2. Distribution of the super-hedging error εT = VT − (ST −K)+.
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The empirical average of the error εT is 12.63 and its standard devia-
tion is 21.65. This result is rather satisfactory in comparison to the large
value E(St0) = 4044. This empirically confirms the efficiency of our suggested
method.

Fig 3. Distribution of the ratio Vt0/St0 .

The empirical average of Vt0/St0 is 5.63% and its standard deviation is
5.14%. Notice that, in the discrete case with kd = 0 and ku = ∞, in partic-
ular when the dynamics of S is modeled by a (discrete) geometric Brownian
motion, then the theoretical minimal initial price is Vt0 = St0 .

5.2.2. Case where K = St0.

Fig 4. Distribution of the super-hedging error εT .
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The empirical average of εT = VT−(ST−K)+ is 8.1 and its standard deviation
is 30.78. Once again, this is rather satisfactory despite the possible loss of
170 which represents 4.2% of E(St0) = 4044.

Fig 5. Distribution of the ratio Vt0/St0 .

The empirical average of V0/S0 is 2.51% and its standard deviation is
0.53%.

6. Appendix

6.1. Conditional support of a vector-valued random variable

We consider a random variable X defined on a complete probability space
(Ω,F ,P) with values in Rd, d ≥ 1, endowed with the Borel σ-algebra. The
goal of this section is to define the conditional support of X with respect
to a sub σ-algebra H ⊆ F . This notion is very well known in the case
where H is the trivial sigma-algebra. Precisely, this is the usual support of
X, i.e. the intersection of all closed deterministic subsets F of Rd such that
P(X ∈ F ) = 1.

Definition 6.1. Let (Ω,F , P ) be a probability space and H be a sub-σ-algebra
of F . Let µ be a H-stochastic kernel (i.e. for all ω ∈ Ω, µ(·, ω) is a probability
on B(Rd) and µ(A, ·) is H-measurable, for all A ∈ B(Rd)). We define the
random set Dµ : Ω � Rd :

Dµ(ω) :=
⋂{

A ⊂ Rd, closed, µ(A, ω) = 1
}
. (6.17)
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For ω ∈ Ω, Dµ(ω) ⊂ Rd is called the support of µ(·, ω). We will also call
suppHX the set defined in (6.17) when µ(A, ω) = P (X ∈ A|H)(ω) is the
regular version of the conditional law of X knowing H and call it the condi-
tional support of X with respect to H.

Using Theorems 12.7 and 12.14 of [1], we have that µ(·, ω) admits a unique
support Dµ(ω) ⊂ Rd and that µ(Dµ(ω), ω) = 1 (see also the definition of
support in [1] on page 441).

Lemma 6.2. Dµ is non-empty, closed-valued,H-measurable and graph-measurable
random set (i.e. Graph(Dµ) ∈ H ⊗ B(Rd)).

Proof. It is clear from the definition (6.17) that for all ω ∈ Ω, Dµ(ω) is a
non-empty and closed subset of Rd. We now show that Dµ is H-measurable.
Let O be a fixed open set in Rd and µO : ω ∈ Ω → µO(ω) := µ(O,ω). As
µ is a stochastic kernel, µO is H-measurable. By definition of Dµ(ω) we get
that {ω ∈ Ω, Dµ(ω) ∩ O 6= ∅} = {ω ∈ Ω, µO(ω) > 0} ∈ H, and Dµ is
H-measurable. Now using Theorem 14.8 of [21], Graph(Dµ) ∈ H ⊗ B(Rd)
(recall that Dµ is closed-valued) and Dµ is H-graph-measurable. 2

6.2. Conditional essential supremum

A very general concept of conditional essential supremum of a family of
vector-valued random variables is defined in [15] with respect to a random
partial order. In the real case, a generalization of the definition of essential
supremum (see [14, Section 5.3.1] for the definition and the proof of existence
of the classical essential supremum and Definition 3.1 and Lemma 3.9 in [15]
for its conditional generalization as well as the existence, see also [3] where
the conditional supremum is defined in the case where I is a singleton) is
given by the following result:

Proposition 6.3. Let H ⊆ F be two σ-algebras on a probability space. Let
Γ = (γi)i∈I be a family of real-valued F-measurable random variables. There
exists a unique H-measurable random variable γH ∈ L0(R∪{∞},H) denoted
ess supHΓ which satisfies the following properties:

1. For every i ∈ I, γH ≥ γi a.s.
2. If ζ ∈ L0(R ∪ {∞},H) satisfies ζ ≥ γi a.s. ∀i ∈ I, then ζ ≥ γH a.s.

Proof. The proof is given for sake of completeness and pedagogical purpose.
The authors thanks T. Jeulin who suggested this (elegant) proof. Considering
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the homeomorphism arctan we can restrict ourself to γi taking values in [0, 1].
We denote by Pγi|H a regular version of the conditional law of γi knowing H.
Let ζ ∈ L0(R ∪ {∞},H) such that ζ ≥ γi a.s. ∀i ∈ I. We have that

ζ ≥ γi a.s. ⇔ E(P (ζ < γi|H)) = 0⇔ P (ζ < γi|H) = 0 a.s.

⇔ P (ζ ≥ γi|H) = Pγi|H(]−∞, x])|x=ζ = 1 a.s.

From Definition 6.1, suppHγi ⊂]−∞, ζ] a.s. Let Λγi|H = sup{x ∈ [0, 1], x ∈
suppHγi} then Λγi|H ≤ ζ a.s. For any c ∈ R, {Λγi|H ≤ c} = {Pγi|H(]−∞, c]) =
1} ∈ H since we have chosen for Pγi|H a regular version of the conditional law
of γi knowingH. It follows that Λγi|H isH-measurable. So taking the classical
essential supremum, we get that ess supiΛγi|H ≤ ζ a.s. and that ess supiΛγi|H
is H-measurable. We conclude that γH = ess supiΛγi|H a.s. since for every
i ∈ I, P (γi ∈ suppHγi|H) = 1 and thus ess supiΛγi|H ≥ γi a.s. 2

Remark 6.4. Let Q be an absolutely continuous probability measure with
respect to P . Let Z = dQ/dP and EQ be the expectation under Q. As for
every i ∈ I, ess supHΓ ≥ γi a.s. and ess supHΓ is H-measurable,

ess supHΓ ≥ E(Zγi|H)

E(Z|H)
= EQ(γi|H).

Inspired by Theorem 2.8 in [3], we may easily show the following tower
property:

Lemma 6.5. Let H1 ⊆ H2 ⊆ F be σ-algebras on a probability space and let
Γ = (γi)i∈I be a family of real-valued F-measurable random variables. Then,

ess supH1

(
ess supH2

Γ
)

= ess supH1
Γ.

6.3. Link between two notions

Our goal is to extend the the fact that (see the proof of Proposition 6.3)

ess supHX = sup
x∈suppHX

x a.s.

First we show two useful lemmata on the measurability of the supremum and
infimum.
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Lemma 6.6. Let K : Ω � Rd be a H-measurable and closed random set such
that dom K = {ω ∈ Ω, K(ω) ∩Rd 6= ∅} = Ω and let h : Ω×Rk ×Rd → R be
a H⊗B(Rk)⊗B(Rd)-measurable function, such that h(ω, x, ·) is either l.s.c.
or u.s.c., for all (ω, x) ∈ Ω× Rk. Let for all (ω, x) ∈ Ω× Rk

s(ω, x) = sup
z∈K(ω)

h(ω, x, z) and i(ω, x) = inf
z∈K(ω)

h(ω, x, z).

Then i and s are H⊗ B(Rk)-measurable.

Proof. Let (ηn)n∈N be a Castaing representation ofK :K(ω) = cl{ηn(ω), n ∈
N} where the closure is taken in Rd and ηn(ω) ∈ K(ω) for all n. Note that
ηn is defined in the whole space Ω since dom K = Ω. Fix some c ∈ R. Then,
we get that

{(ω, x) ∈ Ω× Rd, s(ω, x) ≤ c} =
⋂
n

{(ω, x) ∈ Ω× Rd, h(ω, x, ηn(ω)) ≤ c}.

Indeed the first inclusion follows from the fact that ηn(ω) ∈ K(ω) for all n and
all ω. For the reverse inclusion, fix some (ω, x) ∈

⋂
n{(ω, x), h(ω, x, ηn(ω)) ≤

c}. For any z ∈ K(ω) one gets that z = limn ηn(ω). Then from h(ω, x, ηn(ω)) ≤
c we get that h(ω, x, z) = lim inf h(ω, x, ηn(ω)) ≤ c in the case where h(ω, x, ·)
is l.s.c. and h(ω, x, z) = lim suph(ω, x, ηn(ω)) ≤ c in the case where h(ω, x, ·)
is u.s.c. Now recalling that h is H⊗B(Rk)⊗ B(Rd)-measurable and that ηn
is H-measurable, (ω, x)→ h(ω, x, ηn(ω)) is H⊗ B(Rk)-measurable,
{(ω, x), h(ω, x, ηn(ω)) ≤ c} ∈ H⊗B(Rk) and we deduce that s is H⊗B(Rk)-
measurable. Then we apply the same arguments for i replacing ≤ c by ≥ c.
2

Lemma 6.7. Let K : Ω � Rd be a H-measurable and closed random set such
that dom K = Ω and h : Ω× Rd → R be is l.s.c. in x. Then,

sup
x∈K

h(x) = sup
n
h(ηn), (6.18)

where (ηn)n be a Castaing representation of K.

Proof. As (ηn)n ⊂ K, h(ηn) ≤ supx∈K h(x) and thus supn h(ηn) ≤ supx∈K h(x).
Let x ∈ K and ηn → x. By lower semicontinuity of h, h(x) = lim infn h(ηn) ≤
supn h(ηn) and supx∈K h(x) ≤ supn h(ηn) and (6.18) is proved. 2
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Lemma 6.8. Let X ∈ L0(Rd,F) such that dom suppHX = Ω and h :
Ω× Rd → R be a H-normal integrand. Then,

ess supHh(X) = sup
x∈suppHX

h(x) = sup
n
h(γn) a.s., (6.19)

where (γn)n∈N is a Castaing representation of suppHX.

Proof. As P (X ∈ suppHX|H) = 1 we have that supx∈suppHX
h(x) ≥

h(X) a.s. and by definition of ess supHh(X), we get that supx∈suppHX
h(x) ≥

ess supHh(X) since supx∈suppHX
h(x) is H-measurable by Lemma 6.6 (recall

that suppHX is H-measurable and closed, see lemma 6.2).
By definition of the essential supremum we also get that ess supHh(X) ≥

h(X) a.s. Let (γn)n the Castaing representation of suppHX(ω), Lemma 6.7
implies that supx∈suppHX

h(x) = supn h(γn) a.s.. Fix some ε > 0 and set
Zε = 1B(γn,ε)(X), where B(γn, ε) is the closed ball of center γn and radius
ε.. Note that E(Zε|H) = P (X ∈ B(γn, ε)|H) > 0. Indeed if it does not hold
true P (X ∈ Rd \ B(γn, ε)|H) = 1 on some H ∈ H such that P (H) > 0
and by definition 6.1, suppHX ⊂ Rd \ B(γn, ε) on H, which contradicts
γn ∈ suppHX a.s. As ess supHh(X) is H-measurable we get that

ess supHh(X) ≥ E(Zεh(X)|H)

E(Zε|H)
=

∫
1B(γn,ε)(x)h(x)PX|H(dx)

E(Zε|H)

≥
∫ (

infy∈B(γn,ε) h(y)1B(γn,ε)(x)
)
PX|H(dx)

E(Zε|H)

≥ inf
y∈B(γn,ε)

h(y),

since infy∈B(γn,ε) h(y) is H-measurable (see Lemma 6.6). Since h is l.s.c., we
have that limε→0 infx∈B(γn,ε) h(x) = lim infx→γn h(x) = h(γn) and it follows
that ess supHh(X) ≥ h(γn). Taking the supremum over all n, we get that
ess supHh(X) ≥ supn h(γn) = supx∈suppHX

h(x).
2

We have the easy extension

Lemma 6.9. Let X ⊂ L0(Rd,F) such that dom suppHX = Ω for all X ∈ X
and ∪X∈X suppHX is H-measurable and closed valued. Let h : Ω × Rd → R
be a H-normal integrand Then,

ess supH{h(X), X ∈ X} = sup
x∈∪X∈X suppHX

h(x), a.s. (6.20)
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Note that if X is countable, ∪X∈X suppHX is clearly H-measurable. If
X = L0(Rd,F), then ∪X∈X suppHX = Rd, which is clearly H-measurable
and closed valued.
Proof. For allX ∈ X , ess supH{h(X), X ∈ X} ≥ h(X) and ess supH{h(X), X ∈
X} is H-measurable, so we get that by definition of ess supHh(X) that
ess supH{h(X), X ∈ X} ≥ ess supHh(X) and also ess supH{h(X), X ∈
X} ≥ supX∈X ess supHh(X). Conversely, for allX ∈ X , supX∈X ess supHh(X) ≥
ess supHh(X) ≥ h(X) and if supX∈X ess supHh(X) is H-measurable, we ob-
tain by definition of ess supH{h(X), X ∈ X} that supX∈X ess supHh(X) ≥
ess supH{h(X), X ∈ X}. Using Lemma 6.8, we get hat

sup
X∈X

ess supHh(X) = sup
X∈X

sup
x∈suppHX

h(x) = sup
x∈∪X∈X suppHX

h(x)

Since ∪X∈X suppHX is H-measurable and closed valued, Lemma 6.6 implies
that supx∈∪X∈X suppHX

h(x) is H-measurable and the proof is complete. 2

Lemma 6.10. Consider X ∈ L0(R+,F). Then, we have a.s. that

ess infHX = inf suppHX, ess supHX = sup suppHX,

ess infHX ∈ suppHX, on the set {ess infHX > −∞},
ess supHX ∈ suppHX, on the set {ess supHX <∞}.

Proof. The two first statements are deduced from the construction of
ess supHX in Proposition 6.3. Suppose that ess infHX /∈ suppHX on some
non null measure subset Λ ∈ H of {ess infHX > −∞}. By a measurable se-
lection argument, we deduce the existence of r ∈ L0(R+,H) such that r > 0
and [ess infHX − r, ess infHX + r] ⊆ R \ suppHX on Λ. As X ∈ suppHX
a.s. and X ≥ ess infHX a.s., we deduce that X ≥ ess infHX + r on Λ, which
contradicts the definition of ess infHX. The last statement is similarly shown.
2
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