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ABSTRACT

In this paper, the on-line hyperspectral image blind unmix-

ing is addressed. Inspired by the Incremental Non-negative

Matrix Factorization (INMF) method [2], we propose an

on-line NMF which is adapted to the acquisition scheme

of a pushbroom imager. Because of the non-uniqueness

of the NMF model, a minimum volume constraint on the

endmembers is added allowing to reduce the set of admis-

sible solutions. This results in a stable algorithm yielding

results similar to those of standard off-line NMF methods,

but drastically reducing the computation time. The algo-

rithm is applied to wood hyperspectral images showing that

such a technique is effective for the on-line prediction of

wood piece rendering after finishing.

Index Terms— Hyperspectral imaging, Pushbroom

imager, On-line Non-negative Matrix Factorization, Mini-

mum volume constraint.

1. INTRODUCTION

This paper aims at developing real-time hyperspectral im-

age blind unmixing methods, which are required in indus-

trial applications for controlling and sorting input materials.

One of the most employed technical solutions makes use of

a hyperspectral pushbroom imager installed on the produc-

tion line. The main feature of pushbroom imaging systems

is that the hyperspectral data cube is acquired slice by slice,

sequentially in time (which in fact is representing the so-

called along track spatial dimension OY ). Each slice is an

image of dimensions nx×nλ, where nx denotes the across-

track spatial dimension (one line of the scene) and nλ the

spectral dimension (wavelengths). The hyperspectral image

is created by moving the sensor in the spatial direction OY

(Fig.1) or by moving the objects directly on the conveyor

belt.

1.1. On-line NMF

A relevant method dedicated to this type of applications is

on-line Non-negative Matrix Factorization (NMF), which

This work was supported by the ANR-OPTIFIN (Agence Nationale

de la Recherche-OPTimisation des FINitions) grant ANR-15-CE10-0007.

time dimension k

spatia
l

dim
ensio

n (nx
)

sp
ec

tr
al

d
im

en
si

o
n

(n
λ

)

X

O Y

Fig. 1: The structure of the data acquired with a pushbroom im-

ager

is an adaptive version of the classical NMF [6]. For a non-

negative matrix X ∈ R
nλ×nx

+ , the NMF consists in finding

two non-negative matrices S ∈ R
nλ×r
+ and A ∈ R

r×nx

+

with r ≤ min(nλ, nx) such that [6]: X ≈ SA. In hyper-

spectral imagery, the nx columns of X represent the data

samples recorded at nλ wavelengths. S is a matrix contain-

ing the r normalized endmembers and A is a matrix con-

taining on its columns the mixing coefficients (the abun-

dances) for the recorded samples. The endmembers and the

abundances are the parameters of interest to estimate. In

general, the NMF method suffers from non-uniqueness of

the solution [10]. To regularize the factorization, additional

constraints must be used, such as sparsity [5], minimum

volume constraint [8, 13], minimum distance endmembers

constraint [16], etc.. To tackle large-scale and streaming

data, several on-line NMF algorithms have been proposed

aiming at updating both factor matrices S and A as the sam-

ple size of X increases. The work presented in [3] assumes

that the endmember matrices between two successive sam-

ples are related by a linear transformation, which facili-

tates the parameters update. The on-line Incremental NMF

(INMF) [2] considers that the endmember matrices evolve

slowly between two consecutive acquisitions, which allows

to alleviate the computational overhead. This is now the

most widely used assumption adopted in on-line NMF al-

gorithms. In [7], an on-line Itakura-Saito divergence-based

NMF is proposed. An on-line NMF with volume constraint



on the abundances is proposed in [17] and an on-line NMF

with sparse and smoothing constraints is discussed in [15].

Some on-line variants of the NMF, e.g. [4,14], use Stochas-

tic Gradient Descent (SGD) as a strategy to reduce com-

putational complexity. Instead of taking into account all

available samples until the considered time instant, SGD-

based methods randomly generate a small batch of samples

from the subspace spanned by the previous samples, at each

iteration.

1.2. Contributions

In this paper, we propose an on-line blind unmixing al-

gorithm for a pushbroom imager, inspired from INMF [2]

which presents several interesting features: it supports large

datasets, it is easy to implement and computationally effi-

cient. The proposed approach is specifically devised for the

acquisition scheme of the pushbroom hyperspectral imag-

ing system: a new data sample is a matrix (represented by

a dotted line on Fig.1). This is different from most on-line

NMF algorithms that process each new sample in a vector

form. In order to reduce the set of admissible solutions, we

integrate a minimum volume simplex (MVS) constraint, re-

sulting in the proposed on-line MVS-NMF. Unlike [17] that

imposes it on the abundances A, in our application it makes

sense to impose this constraint on the endmember matrix S,

since this will result in abundances having a maximum dis-

similarity. Applying the MVS constraint on S is not trivial

because S is generally a non-square matrix and therefore

it does not have a determinant. In this paper, we propose

a solution to tackle this problem and provide a mathemat-

ical interpretation of it. The remainder of the paper is or-

ganized as follows: section 2 is devoted to the derivation

of the proposed algorithm. Experiments conducted on nu-

merical simulations as well as on real data are reported in

section 3. Conclusions are drawn in section 4.

2. AN ON-LINE NMF ALGORITHM FOR

PUSHBROOM HYPERSPECTRAL DATA

2.1. Notations

The principle of the proposed on-line NMF is to alterna-

tively update the endmember and abundance matrices when

a new sample arrives at time instant (k + 1). One way to

handle the problem is to unfold the hyperspectral image as

shown in Fig.2. X̃
(1)

= X(1) is the first slice of the hyper-

spectral image and X̃
(k)

, the kth slice. The entire data set at

time instant (k + 1), i.e., X(k+1), can be represented as the

concatenation of the first k samples with the new incoming

sample i.e., X(k+1) =
[

X(k) X̃
(k+1)

]

. Similarly, we define

S(k+1) =
[

S(k) S̃
(k+1)

]

and A(k+1) =
[

A(k) Ã
(k+1)

]

.

X̃
(1) ...

X̃
(k)

X̃
(k+1)nλ

knx

nx nx nx

X(k)

Fig. 2: Unfolded pushbroom hyperspectral image

2.2. Cost function

Let J (k) denotes the cost function corresponding to the first
k samples:

J (k)
(

S
(k)

,A
(k)

)

=
k

∑

ℓ=1

∥

∥

∥
X̃

(ℓ)
− S̃

(ℓ)
Ã

(ℓ)
∥

∥

∥

2

.

When the (k+1)th sample, X̃
(k+1)

arrives, the correspond-
ing cost function can be decomposed as follows:

J (k+1)
(

S
(k+1)

,A
(k+1)

)

=
k

∑

ℓ=1

∥

∥

∥
X̃

(ℓ)
− S̃

(ℓ)
Ã

(ℓ)
∥

∥

∥

2

F

+
∥

∥

∥X̃
(k+1)

− S̃
(k+1)

Ã
(k+1)

∥

∥

∥

2

F
. (1)

We assume that the endmembers vary only slightly be-

tween consecutive samples i.e., S̃
(k+1)

≈ S̃
(ℓ)

∀ℓ ≤ k.

Thus, at time instant (k + 1), only Ã
(k+1)

needs to be
adapted. Thus, the cost function (1) can be expressed as:

J (k+1)
(

S̃
(k+1)

, Ã
(k+1)

|A(k)
)

= J (k)
(

S̃
(k+1)

|A(k)
)

+ J̃ (k+1)
(

S̃
(k+1)

, Ã
(k+1)

)

with

J (k)
(

S̃
(k+1)

|A(k)
)

=
k
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In order to add some tracking capacity to the algorithm, the
weighting coefficient α (0 ≤ α ≤ 1) is included to the cost
function as formulated by equation (2):

J (k+1)
(

S̃
(k+1)

, Ã
(k+1)

)

= αJ (k) + (1− α)J̃ (k+1)
. (2)

In general, the solution of (2) is not unique. To reduce
the set of admissible solution, we regularize the problem
by minimizing the volume of the simplex spanned by the

endmembers S̃
(k+1)

. As S̃
(k+1)

is not a square matrix,

we propose to replace det
(

S̃
(k+1)

)

(which is the classical

simplex volume measure) by det
(

S̃
(k+1)T

S̃
(k+1)

)

. This

is mathematically sound because det
(

S̃
(k+1)T

S̃
(k+1)

)

can



be interpreted as the squared volume of S̃
(k+1)

[11, Theo-
rem 7]. Thus, cost function (2) is replaced by:

J (k+1)
(

S̃
(k+1)

, Ã
(k+1)

)

= αJ (k) + (1− α)J̃ (k+1)

+ µ ln det
(

S̃
(k+1)T

S̃
(k+1)

)

. (3)

where µ > 0 is the regularization parameter controlling

the strength of the MVS constraint. The choice of the log-

arithm of the determinant rather than the determinant itself

is mainly motivated by algorithmic reasons, since it dras-

tically simplify the derivation of the multiplicative update

rule. Also, imposing the MVS constraint on the endmem-

bers will result in endmembers having a minimum dissimi-

larity. By duality [9], the Ã
(k+1)

will correspond to a maxi-

mum volume simplex, i.e., abundances having maximal dis-

similarity (contrast).

2.3. On-line MVS-NMF

The estimation of parameter matrices S̃
(k+1)

and Ã
(k+1)

is
acheived by minimizing the cost function (3) using a gradi-
ent descent technique, where the step size is chosen in order
to obtain multiplicative update rules (similarly to the clas-

sical NMF [6]). The update rule for Ã
(k+1)

rj can be written
as:

Ã
(k+1)
rj ← Ã

(k+1)
rj

(

S̃
(k+1)T

X̃
(k+1)

)

rj
(

S̃
(k+1)T

S̃
(k+1)

Ã
(k+1)

)

rj

.

The update of S̃
(k+1)

is more complex. According to [12],

∂ ln det
(

S̃
(k+1)T

S̃
(k+1)

)

∂S̃
(k+1)

= 2×
(

S̃
(k+1)†

)T

where † stands for the pseudo-inverse of a matrix. The
scalar constant 2 above can be absorbed in the regulariza-
tion parameter. However, the use of the pseudo-inverse of

S̃
(k+1)

no longer guarantees the non-negativity of S̃
(k+1)

and precludes the derivation of a multiplicative update rule.
In order to avoid this problem, we follow [17] which pro-

poses to use the natural gradient [1] in S̃
(k+1)

update. After

some algebraic manipulations, the updating of S̃
(k+1)

re-
sults in:

S̃
(k+1)
ir ← S̃

(k+1)
ir

(

N(k+1)S̃
(k+1)T

S̃
(k+1)

)

ir
(

S̃
(k+1)

M(k+1)S̃
(k+1)T

S̃
(k+1)

)

ir
+ µS̃

(k+1)
ir

where N(k+1) = αN(k) + (1 − α)X̃
(k+1)

Ã
(k+1)T

and

M(k+1) = αM(k) + (1 − α)Ã
(k+1)

Ã
(k+1)T

. The quan-

tity S̃
(k+1)T

S̃
(k+1)

refers to the natural gradient. The Algo-

rithm 1 summarizes the proposed on-line MVS-NMF algo-

rithm (for simplification, the indices (k + 1) are omitted).

It includes two main loops: the outer loop produces esti-

mates of Ã and S̃ at each time instant. These estimates are

iteratively refined in the inner loop using a fixed number of

iterations Niter.

Algorithm 1 On-line MVS-NMF

Input : X̃
(1)

, r, α, µ, Niter = number of iterations
Initialization:

N = zeros(nλ, r), M = zeros(r, r),
Ã = rand(r, nx), S̃ = rand(nλ, r)
A = [ ] S = [ ].
Output : A and S

while New sample available do

iter = 1
while iter < Niter do

Ãrj ← Ãrj

(

S̃
T

X̃
)

rj
(

S̃
T

S̃Ã
)

rj

N← αN + (1 − α)X̃Ã
T

M← αM + (1− α)ÃÃ
T

S̃ir ← S̃ir

(

NS̃
T

S̃
)

ir
(

S̃MS̃
T

S̃
)

ir

+ µS̃ir

iter ← iter + 1
end while

A← [A, Ã]
S← [S, S̃]

end while

3. EXPERIMENTAL RESULTS

3.1. Synthetic data

In this section, a number of experiments are conducted on

simulated hyperspectral data. The goal is to assess the in-

fluence of parameters Niter and α on the convergence of

the on-line MVS-NMF and to compare the results provided

by the on-line MVS-NMF to those obtained by an off-line

MVS-NMF using the same MVS penalty function. We sim-

ulated a hyperspectral image of size 119× 40× 190, com-

posed of three endmembers which do not vary over time.

Here 119 corresponds to the number of wavelengths and

40 × 190 to the (spatial × time) dimensions. Each new

time sample is a 119 × 40 slice of the hyperspectral im-

age. Noise was added up to an SNR = 20 dB. To as-

sess the convergence speed of MVC-NMF, the residual er-

ror vs. the sample number (from 1 to 190) was evaluated

for three different values of the parameter Niter (see Al-

gorithm 1). The values of the different parameters were set

to r = 3, α = 0.99, µ = 10−5. The regularization pa-

rameter µ was fixed after successive trials. The results are

shown on Fig.3.a. As Niter increases, fewer samples are

required to converge to the correct solution and if Niter is

large enough (about 800 in our example), the convergence

is almost instantaneous. At the same time, the asymptotic

error decreases as Niter increases. Fig.3.b shows the con-

vergence curves for α = 0.8, 0.9, 0.99 while the other

parameters are set to r = 3, Niter = 10, µ = 10−5. As α

decreases, the asymptotic error decreases while the conver-

gence speed does not seem to be much affected. Actually,

the two parameters are strongly coupled. Fig.3.c shows the



convergence curves for different couples (Niter, α), cho-

sen such that αNiter stays constant. For all couples, the

asymptotic error is the same while the convergence speed

increases as Niter increases. However, the computation

time increases linearly with Niter. In a last experiment,

we compared the behavior of the on-line MVS-NMF to that

of the off-line MVS-NMF vs. the SNR. To evaluate the

unmixing performance of these methods, we calculate the

root mean square error (RMSE) of the endmember matrix

S. The off-line MVS-NMF was applied to the unfolded ver-

sion of the image, of size 119 × 7600, and the parameters

were set to r = 3, µ = 0.05 and Niter = 6000. They were

chosen to yield similar results as those obtained by the on-

line version at SNR = 50 dB. The parameters of the on-

line algorithm were set to r = 3, α = 0.99, µ = 10−5

and Niter = 800. The results are shown on Fig.3.d. Both

methods give very similar results. Meanwhile, the process-

ing time (for the considered scenario) is almost double for

the off-line NMF as compared to the on-line version. This

difference becomes much more important as the size of the

data increases.
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3.2. Real data

This section presents the results obtained by the on-line

MVS-NMF on real hyperspectral image provided by a Near

Infra Red pushbroom imager working in the spectral range

900-2500 nm. The imaged object is a piece of wood and

the hyperspectral image size is 258 × 384 × 1200, where

258 represents the number of wavelengths and 384× 1200
the (spatial × time) dimensions. The chosen piece of wood

has a singularity of sapwood type, in the bottom right cor-

ner. This defect is hardly discernible to the naked eye.

Fig.4 represents the abundances maps, the variation inter-

val (green area) and the average of endmembers signatures

estimated by the on-line MVS-NMF. The parameters were
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Fig. 4: Results on a real hyperspectral image

set to r = 3, α = 0.99, µ = 0.001 and Niter = 100. We

can see that the variation interval of the estimated endmem-

bers signatures is small; we can clearly distinguish in the

bottom right corner of the Fig.4.c, an area more contrasted

than the rest of the image which represents the sapwood

singularity. This defect is almost impossible to detect on a

visible range color image. On a Macbook Pro with 4-core

processor running at 2.7 GHz and having 16GB of RAM,

our algorithm took 60 seconds to process the entire image.

The processing time can be considerably reduced, for ex-

ample by avoiding random initializations or by modifying

the α-Niter pair. The off-line NMF, meanwhile, took al-

most half an hour to process the same image, with similar

results.

4. CONCLUSION AND FUTURE WORK

We proposed an on-line NMF algorithm specifically de-

vised for the processing of pushbroom imager data of pieces

of wood. We showed that by adding a minimum volume

constraint on the endmembers, the stability of the solution

is guaranteed. We also showed that the results generated by

our method are similar to off-line NMF, for a much smaller

computation time. The tests on real data confirmed that our

method is well-suited for wood defect detection on indus-

trial production lines. Future work will study the influence

of the regularization parameter µ on the estimation perfor-

mance, and develop an efficient method to estimate it.



5. REFERENCES

[1] S.-I. Amari. Natural gradient works efficiently in

learning. Neural computation, 10(2):251–276, 1998.

[2] S. S. Bucak and B. Gunsel. Incremental subspace

learning via Non-negative Matrix Factorization. Pat-

tern recognition, 42(5):788–797, 2009.

[3] B. Cao, D. Shen, J.-T. Sun, X. Wang, Q. Yang, and

Z. Chen. Detect and track latent factors with On-line

Non-negative Matrix Factorization. In International

Joint Conferences on Artificial Intelligence, volume 7,

pages 2689–2694, 2007.

[4] N. Guan, D. Tao, Z. Luo, and B. Yuan. On-line Non-

negative Matrix Factorization with robust stochastic

approximation. IEEE Transactions on Neural Net-

works and Learning Systems, 23(7):1087–1099, 2012.

[5] P. O. Hoyer. Non-negative Matrix Factorization with

sparseness constraints. Journal of machine learning

research, 5(Nov):1457–1469, 2004.

[6] D. D. Lee and H. S. Seung. Algorithms for Non-

negative Matrix Factorization. In Advances in neu-

ral information processing systems, pages 556–562,

2001.
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