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Abstract The recent development of compact and economic small Unmanned Aerial Vehi-
cles (UAVs) permits the development of new UAV swarm applications. In order to enhance
the area coverage of such UAV swarms, a novel mobility model has been presented in previ-
ous work, combining an Ant Colony algorithm with chaotic dynamics (CACOC). This work
is extending CACOC by a Collision Avoidance (CA) mechanism and testing its efficiency
in terms of area coverage by the UAV swarm. For this purpose, CACOC is used to com-
pute UAV target waypoints which are tracked by model predictively controlled UAVs. The
UAVs are represented by realistic motion models within the virtual robot experimentation
platform (V-Rep). This environment is used to evaluate the performance of the proposed
CACOC with CA algorithm in an area exploration scenario with 3 UAVs. Finally, its perfor-
mance is analyzed using metrics.

1 Introduction

Over the last decade, the usage of UAVs has been strictly increasing in areas like the con-
struction industry, agriculture, defense and security. The advantages of UAVs are their re-
mote sensing capabilities as well as their mobility and related extended operational space,
which are ideally suited for area exploration tasks. For instance, the response time in search
and rescue scenarios within large areas can be reduced significantly by using multiple au-
tonomously operating UAVs. However, the coverage of the surveyed area is dependent on
the coordination of the UAVs. A comprehensive overview on mechanisms to coordinate and
control such swarms are given in [12] and [3]. The detailed state of the art in multi-UAV area
exploration from a perspective of optimization and artificial intelligence is summarized in
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Fig. 1 Use case: Implementation of area exploration scenario. CACOC gives UAV waypoints to the MPC
which controls UAV models in order to simulate a realistic closed-loop system.

[20]. A typical approach which is covered in all of these contributions is a cooperative area
exploration control with potential fields over a receding horizon. The nature inspired inter-
pretation of this method has been first introduced in [11] as Ant Colony Optimization with
pheromones to coordinate a swarm of UAVs. This deterministic path planning is differing
from Dynamic Data Driven Application Systems (DDDAS, see [19] for an example applied
on a swarm of UAVs), where the UAVs coordinate according to the data they collected.

Kuiper and Nadjm-Tehrani [15] define an area exploration scenario with ten UAVs us-
ing a pheromone based approach for path planning. Their study compares a random mo-
bility model to a pheromone-based mobility model using metrics for coverage. Some recent
studies propose to replace the random part of such metaheuristics by chaotic dynamics to in-
crease their performance, e.g. for Particle Swarm [10,22] or Firefly Optimization [9]. Thus,
previous work [26] focused on the usage of chaotic dynamics to create a Chaotic Ant Colony
Optimization to Coverage (CACOC) mobility model in order to increase the area coverage
performance of a standard Ant Colony algorithm. However, the high-level simulations used
to evaluate CACOC do not take into account real quadrotor dynamics. For this reason in [27]
CACOC has been evaluated in an area exploration scenario using ten realistic UAV models,
which have been introduced in the authors previous work [7]. However, in [27] the UAVs
are operating on different altitudes in order to avoid collisions. In reality this is not always
feasible due to airspace and physical limitations and furthermore leads to inhomogeneous
sensor perception area sizes and ground resolutions.

The main contribution of this work is addressing this limitation by extending the CA-
COC mobility model by a CA (CACOC+CA) mechanism. In addition, the paper analyses
the performance of the proposed approach in a realistic use case exploration scenario with
three UAVs, as illustrated in Fig.1. The realistic UAV behavior is modelled by using an
identified model of real quadrotor dynamics in combination with a MPC position control,
as introduced in the authors previous publication [7]. Furthermore, the in [7] presented CA
technique for static obstacles is applied within this work to avoid collision between UAVs
(MPC+CA). The result are realistic closed-loop UAV dynamics which reflect the position
tracking with MPC of waypoints that are generated with the CACOC mobility model. Based
on this realistic UAV behavior, this work is evaluating the efficiency of the proposed CA-
COC+CA with MPC+CA approach by means of coverage and CA metrics. For this purpose,
new metrics are introduced to evaluate the CA capabilities of the utilized models in long-
term simulations. These simulation serve as preliminary analysis steps before the deploy-
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ment of real UAVs is possible. Additionally, this paper provides more details about chaotic
dynamics and the CACOC mobility model.

This article is organized as follows. In section 2 the description of the CACOC UAV
mobility model along with a CA mechanism is provided. This mobility model includes
chaotic dynamics to obtain unpredictable and structured trajectories. Furthermore, the re-
lated state of the art and implementation details are given. Section 3 describes the MPC of
UAVs including a CA mechanism as well as the underlying dynamic model of a UAV. The
experimental scenario combining CACOC and MPC is given in section 4. This includes an
evaluation of the proposed methods and a description of the metrics utilized for the statistical
analysis. Section 5 is concluding the presented work and outlines future research directions.

2 UAV mobility models

This section first provides a brief description of the CACOC mobility model used to generate
the target waypoints for the UAVs which lead to an optimal area exploration. This mobility
model has been introduced in [26,27]. Its algorithm and main properties are detailed within
this section. Subsequently, we associate a theoretical CA method to the CACOC mobility
model to enhance the capability of the swarm in order to allow the UAVs to fly at the same
altitude.

2.1 Chaotic Ant Colony Optimization to Coverage (CACOC)

Typical applications of UAV swarms are area surveillance, search and rescue, etc. The ad-
vantage of swarms in such scenarios is the distributed sensing capability, which is further
enhanced by the movements of each individual UAV. In order to fully exploit these advan-
tages, the UAV movement has to be coordinated. A traditional method to optimize the area
coverage is pheromone based Ant Colony Optimization (ACO). In order to improve the per-
formance of this approach, previous work [26] has combined ACO with the chaotic behavior
of a dynamical system resulting in the CACOC mobility model. More precisely, CACOC
replaces the random parts of the ant colony optimization algorithm [8] by a chaotic behavior
in such a way that the exploration capabilities of the UAV swarm is improved. The paper
presented a high level simulation process in which CACOC has been used to describe the
mobility of a swarm of ten UAVs. Its performance was compared to existing models using
random, chaos and classical ant colony optimization algorithms [26]. The results demon-
strate empirically that CACOC permits an increase in performance for several aspects of
coverage (overall coverage, recent coverage and fairness of the coverage). The CACOC per-
formance on the coverage problem was empirically demonstrated using metrics as described
in Sec. 4.

This section provides a brief description of this mobility model and its extension re-
garding CA. For more details the interested reader should refer to [26]. We will first present
a mobility model including chaotic dynamics (CROMM) before introducing CACOC that
combines both chaotic dynamics with an Ant Colony exploration algorithm. One approach
to generate chaotic dynamics is to use the Rössler system [28]. It is a well-known dynamical
system that can exhibit various chaotic mechanisms [25].

The UAVs are considered to have a constant speed and choose a movement direction
at each discrete time step : A for ahead, R for 45◦ right and L for 45◦ left. Then, the next
choice is given by the first return map (Fig. 2). This map underlines the dynamical signature
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of the Rössler system giving ρn+1 versus ρn. Thus, the next action depends on the previous
one:

– if ρn < 1/3 then direction is right (R);
– if 1/3 6 ρn < 2/3 then direction is left (L);
– else the direction is ahead (A).

0
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n+

1

ρn

period 1
period 2
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L

A

R

A

Fig. 2 Details of the CACOC mobility model with the first return maps from the Rössler system and the
pattern it generates when there is no pheromone to guide the UAVs. The next choice depends on the previous
one with: A for ahead, L for left and R for right. The period 1 orbits leads to symbols AAAAA. . . (strong
violet straight line). The period 2 leads to the pattern ARARA. . . (lime green large circle). The period 4
highlighted in gray leads to the serpentine pattern RALARALA. . . (lime green and strong violet lines).

Algorithm 1 CROMM mobility model
1: procedure CROMM
2: current state← “ahead”
3: loop:
4: ρ ← next value in the first return map Fig. 2
5: if ρ < 1

3 then current state← “right”
6: else if ρ < 2

3 then current state← “left”
7: else current state← “ahead”
8: move according to the current state

This basic mobility model is named CROMM and its pseudo-code is detailed in Alg. 1.
In that case, the good exploration performance of the UAVs is due to the periodic orbits of the
system that lead to patterns (Fig. 2). The periodic orbits with low periods are considered as
skeleton of the chaotic dynamics and are often visited during the simulation process using a
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Table 1 Pheromone action table for ACO UAV mobility model. le f t is the amount of pheromones sensed on
the left of the UAV, ahead is the amount of pheromones sensed in front of the UAV and right is the amount
of pheromones sensed on the right of the UAV; total = le f t +ahead + right.

Probability of action with pheromones
Left Ahead Right

pL = total−le f t
2×total pA = total−ahead

2×total pR = total−right
2×total

Runge-Kutta (4th order) algorithm. As illustrated Fig. 2, the period 1 orbits leads to symbols
AAAAA. . . (straight line); the period 2 leads to the pattern ARARA. . . (large circle) and
the period 4 leads to the serpentine pattern RALARALA. . .

For CACOC, we used an ant colony algorithm combined with chaotic dynamics. If there
is no virtual pheromone to guide the UAV (pheromones are deposited by each UAV to indi-
cate areas they already visited), CROMM is used. If there are pheromones, they have repul-
sive properties and the next choice of direction depends on the total amount of pheromones
sensed around the UAV. Such a repulsive effect prevents the UAVs to reach recently visited
areas since pheromones evaporate in time. We also used the first return map values (Fig. 2)
to choose the next direction with the pheromones’ perception instead of a random number.
Consider that pL, pA and pR are inversely proportional to the total amount of pheromones
sensed respectively to the left, ahead and right of the UAV and that pR+ pL+ pA = 1 (Tab. 1).
Thus, with ρn taken from the first return map (Fig. 2), the next direction is chosen according
to these rules:

– if ρn < pR next direction is right;
– if pR 6 ρn < pR + pL next direction is left;
– else the direction is ahead.

The pseudo-code of CACOC is detailed in Alg. 2.

Algorithm 2 CACOC mobility model
1: procedure CACOC
2: current state← “ahead”
3: loop:
4: ρ ← next value in the first return map Fig. 2
5: if no pheromone sensed in the neighborhood then
6: current state←CROMM(ρ) # see Alg. 1
7: else
8: if ρ < pR then current state← “right” # see Tab. 1 for pR
9: else if ρ < pR + pL then current state← “left” # see Tab. 1 for pR and pL

10: else current state← “ahead”
11: move according to the current state

2.2 CACOC and Collision Avoidance (CACOC+CA)

One of the drawbacks of the previously introduced CACOC mobility model is that it does not
prevent UAVs from colliding. This can be avoided by flying the UAVs at different altitudes,
which however might not be possible due to limited airspace and also leads to differing
sensor perception areas and ground resolutions. For these reasons, it is preferable that UAVs
are able to fly at the same altitude which requires CA mechanisms. Therefore, this work
aims to include CA in the CACOC mobility model (CACOC+CA).
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2.2.1 State of the Art

In the literature, several surveys detail the main methods used to implement CA for UAVs [1,
2,18]. One of this article provides a classification of the CA system (see Fig. 3 [1]). In [13],
authors used evolutionary algorithms to find an optimal solution for path planing including
CA constraints. However, this family of methods is not suitable for our problem because
we are aiming to obtain unpredictable trajectories (without repetition of the same path). The
same issue comes with methods proposing CA for static objects using a collision cone phi-
losophy to predict the collision (see [31] for instance). Most of the literature uses a safety
cone to detect the potential collision and initiate evasive maneuvers (see [17] for instance).
In 2012, Lalish & Morgansen [16] introduced the Distributed Reactive Collision Avoid-
ance (DRCA) algorithm which is a two-step process. It consists of an optimization-based
deconfliction maneuver, followed by the longer-term deconfliction maintenance phase. Its
reactive and force-field type approach has been recently extended for swarms of quadrotor
helicopters [17]. Authors of [14] use the proportional navigation (PN) guidance law to build
a CA system. This guidance law was originally designed for missile engagement scenarios
and require persistent trajectories.

All of these algorithms handle various situations including heterogeneity and priority
between UAVs in order to permit the UAVs to reach their destination close to the nominal
trajectory. However, the CACOC mobility model is typically using low waypoint and direc-
tion update intervals. Accordingly, the chosen direction of a UAV is not persistent wherefore
the cone evasion method or proportional navigation cannot be used efficiently. Furthermore,
the goal of the cooperating UAVs is maximum area coverage which is not considered in
the previously mentioned techniques. For example for several UAVs in close proximity, the
goal is to spread them out by using a repelling mechanism. To the best of our knowledge,
no current algorithm is available to suffice chaotic fast direction changes combined with the
coverage problem capable of avoiding collisions of UAVs.

2.2.2 Collision Avoidance for CACOC

As previously mentioned, the CACOC mobility model is based on CROMM (Alg. 1). The
latter one uses the properties of periodic orbits to obtain exploratory patterns: straight line,
right turn and serpentine movements (Fig. 2). In order to avoid collision with CACOC, a
collision evasion maneuver is chosen complementarily to these patterns: a large turn to the
left. The evasion maneuver is initiated when one or more UAVs appear in a UAV neighbor-
hood. This left turn is combined with the average direction of the neighbors (UAVs in the
neighborhood) and lasts until the other UAVs leave this neighborhood. We use the velocities:

– previous direction (p)
– velocity to the left (l)
– average velocity of the neighbors (0.8×n) computed from p of the other UAVs
⇒ net velocity (d = l+0.8×n)

As illustrated by Fig. 3, the net velocity gives the direction of the UAVs. Then this direction
vector is normalized to obtain the CA vector with the same norm as CACOC vectors:

ds = s
l+0.8×n
||l+0.8×n||

(1)

with s the UAVs speed as a parameter of our model. For the sake of clarity, the mobility
model is referred to as CACOC+CA in the remainder of this article. The algorithm of CA-
COC+CA is given by Alg. 3.
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Previous direction (p)

Velocity to the left (l)

Average velocity of the neighbors (0.8×n)

Net velocity (d = l+0.8×n)

UAV 2

UAV 1

UAV 2

UAV 3

UAV 1

Fig. 3 Velocities imposed to prevent collision: blue arrow represent the velocity to the left (l), the black arrow
represents the average direction resulting from the other UAVs (n) and the red arrow is the direction given
(net velocity d = l+0.8×n). This schema only represents the direction of the UAV to illustrate how CA is
handled. The norm is not proportional to the movement executed by the UAVs (see Fig. 4 for the trajectories
of the UAVs) and Eq.(1) for the normalization.

Algorithm 3 CACOC+CA: CACOC with Collision Avoidance mobility model
1: procedure CACOC
2: current state← “ahead”
3: loop:
4: if there is UAV in the neighbourhood then
5: current state← ds # See Fig. 3 and Eq. (1)
6: else
7: ρ ← next value in the first return map Fig. 2
8: current state←CACOC(ρ) # see Alg. 2
9: move according to the current state

Fig. 4 shows two consecutive maneuvers of CA during a CACOC+CA simulation. Ac-
cording to the classification of the CA system (see Fig. 3 [1]), Fig. 4 is showing the distinc-
tive evasive left turns. As a remark, large turns to the left can occur in CACOC (see Fig. 2).
Hence, the large turn to the left permits to include a mechanism of CA without introducing a
new complex pattern. In order to evaluate the proposed CACOC+CA approach statistically,
its performance is evaluated in long-time simulations. As the goal is to deploy the UAVs at
the same altitude, the CACOC+CA mobility model is expected to be slightly less efficient
than a CACOC mobility model, due to the inhibiting character of CA. In the long-time sim-
ulations the computed CACOC waypoints are serving as target points for MPC controlled
UAVs with CA inclusion which is subject of section 3. The consequence is a realistic eval-
uation scenario which allows to evaluate the performance of CACOC considering realistic
UAV dynamics, controllers and CA.

3 UAV control

In order to describe the dynamic behavior of a real quadrotor system, previous work [7]
presented an identified state space model of an AR.Drone 2.0 quadrotor. This state space
description has been used as prediction model within a model predictive controller which has
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Fig. 4 Trajectories of the three UAVs doing maneuver to avoid collision.

been applied to a real AR.Drone 2.0 system. The resulting control performance validated the
quality of the identified model. For this reason, the same model is utilized for the evaluation
of the presented CACOC+CA approach. The utilized UAV model is illustrated in Fig.5.

Fig. 5 AR.Drone 2.0 Quadrotor with utilized coordinate conventions.

The state of the i-th UAV can be described by vector

xi =
[
xi,yi,zi,Ψi,v f ,i,vs,i

]
. (2)

For means of visualization, the time dependency of states and controls (e.g., xi(t)) is not
explicitly shown here. The system state (2) consists of the quadrotor’s xi, yi, zi position
in Cartesian world coordinates (W ), its yaw angle Ψi and the forward v f ,i and side ward
velocities vs,i in the vehicle frame (V ). The UAV inputs are concatenated in its control
vector

ui =
[
u f ,i,us,i,uz,i,uΨ ,i

]
, (3)
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containing forward u f ,i, side ward us,i, upward uz,i and yaw uΨ ,i velocity. The identified
system model of [7] is given as

ẋi = fi (xi,ui) =


v f ,i cos(Ψi)− vs,i sin(Ψi)
v f ,i sin(Ψi)+ vs,i cos(Ψi)

uz,i
1.6uΨ ,i

−0.5092v f ,i +1.458u f ,i
−0.5092vs,i +1.458us,i

 . (4)

This model is based on a second order model for the x and y-channel and single integrator
systems for z and Ψ . This assumption of single integrator systems in z and Ψ implies that the
target velocity in this channel is reached instantaneously. This is a suboptimal estimation,
but does not influence the evaluation of CACOC as the UAVs are flying on the same altitude
and do not change their orientation. As further remark, the AR.Drone 2.0 quadrotor behavior
shows nonlinearities in the z-axis, due to unexpected behavior in the inherent sensing solu-
tion combining cameras and ultrasonic-sensors. However, except the nonlinear mapping of
the forward and sideward velocities to ẋ and ẏ no further nonlinearities are considered by
the model. Despite, the model is sufficiently precise to serve as prediction model for a real
AR.Drone 2.0. The scalar parameters in (4) have been identified from a real AR.Drone 2.0
system by means of a motion capture system.

As commercial drones are typically operated by velocity commands, a position con-
troller is required to reach a desired position. [7] is using a fast MPC for this purpose which
is based on the computation of optimal controls by solving an optimal control problem
(OCP). In [27], this approach has been applied to ten UAVs using OCP

min
ui

Ji =
∫ t f

t0
(x∗i −xi)

>Q(x∗i −xi)+u>i Rui dτ (5)

s.t.

ẋi = fi (xi,ui) (6)

c ≤
[
u f (t)

2−1 us (t)
2−1 uz (t)

2−1 u2
Ψ
−1
]>

(7)

xi (0) =
[
50,0, i,0,0,0

]
(8)

with

Q = D{
[
1.5,1.5,1.6,0.1,0,0

]
}, (9)

R = D{
[
1,1,1,1

]
}. (10)

The idea of MPC is to predict the UAVs behavior within a horizon τ = [t0, t f ] by means of the
system dynamics (6) which are equal to the model (4). Based on this prediction, the control
inputs ui are determined in order to minimize cost functional Ji while satisfying constraints
(7) and initial conditions (8). The position tracking in Ji is achieved by a quadratic penalty
(9) of the state error, while energy optimality is imposed by a quadratic penalty (10) of the
controls.

The advantage of MPC is its ability to directly consider constraints in the OCP (e.g The
AR.Drone 2.0 input limitations−1≤ u≤ 1 in (7)) and a scenario independent control policy.
In [7] this advantage has been used to avoid the collision of a UAV with a static obstacle by
imposing the constraint as additional cost term

lCA (xi,x j,dmin) =
a

1+ e−b
(

d2
min−(xi−x j)

>
(xi−x j)

) (11)
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in Ji. The idea is to impose costs of height a, if the Euclidean distance between the drone
positions xi and x j is smaller than distance dmin. For larger drone distances the costs vanish
to 0. This switching behavior is approximated by a sigmoid with the steepness parameter
b. The result is a repulsive cost-gradient around the violation distance. The disadvantage
of this constraint handling is its cost trade-off with the trajectory tracking and energy opti-
mality. Unfortunately, this cost gradient cannot be chosen arbitrarily steep, as it worsens the
OCP condition. Therefore, the cost trade-off is also a trade-off between repulsion from the
violation and solution feasibility, which does provide CA only for limited tracking errors
and system velocities. Within this work the CA distance is set chosen to dmin = 1.5m.

As lCA is considering the positions of two UAVs, the cost functions cannot be treated sep-
arately for each UAV as in (5)-(10). As shown in previous work [5] for distributed systems
and in [6] for UAVs, the CA constraints (11) are coupling the individual OCPs. Combining
UAV dynamics, MPC for coupled multi agent systems and CA cost functions for three UAVs
(i = 0,1,2) results in OCP

min
u0,u1,u2

J =
∫ t f

t0

2

∑
i=0

(x∗i −xi)
>Q(x∗i −xi)+u>i Rui

+lCA (x0,x1,1.5)+ lCA (x0,x2,1.5)+ lCA (x1,x2,1.5) dτ (12)

with lCA (xi,x j,dmin) =
1.0

1+ e−3.0
(

d2
min−(xi−x j)

>
(xi−x j)

) . (13)

s.t.

ẋi = fi (xi,ui) , i = 0,1,2 (14)

ci ≤
[
u f , i(t)

2−1 us, i(t)
2−1 uz, i(t)

2−1 u2
Ψ ,i−1

]>
, i = 0,1,2 (15)

x0 (0) =
[
0,0,1,0,0,0

]
(16)

x1 (0) =
[
0,15,1,0,0,0

]
(17)

x2 (0) =
[
15,0,1,0,0,0

]
(18)

Q = D{
[
1.5,1.5,1.6,0.1,0,0

]
}, (19)

R = D{
[
1,1,1,1

]
}. (20)

For means of visibility of the area coverage, the desired trajectory waypoints in the given
scenario are limited to changes in the xy-plane, while the initial zi = 1 and ψi = 0 are tracked.
The resulting closed loop behavior is referred to as MPC+CA within this work.

Analog to previous work [7], a Condensed Multiple Shooting Continuation Generalized
Minimal Residual (CMSCGMRES) [30] approach is used to solve the MPC with OCP (12)-
(20). The CMSCGMRES is parameterized with a maximum number of iterations kmax = 6,
horizon length TMPC = 1s, control update interval of ∆ tMPC = 0.1s, nhor = 10 steps within
the horizon, a forward difference step of h = 0.001s, solution tolerance of ε = 10−4, con-
tinuation factor ζ = 10 and the horizon expansion factor α = 2. More details about the
parameters are given in [21].

The resulting position tracking and CA is shown in Fig. 6. MPC+CA with inherent UAV
model serves as realistic UAV simulator for the CACOC+CA evaluation which is subject of
the next section 4.
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Fig. 6 MPC+CA: MPC position tracking for UAVs (AR.Drone 2.0) with CA. Target positions marked green,
UAV positions red. The sequence is showing two intersecting UAV targets and the resulting evasion maneuver
imposed by the MPC+CA.

4 Experiments

This section introduces the simulation framework and experimental setup, including all pa-
rameters. Subsequently, all metrics for the analysis of the experiment are detailed. Finally,
the statistical results of the analysis are given. For the experimental evaluation of CACOC,
respectively CACOC+CA, MPC+CA and three AR.Drone 2.0 UAVs V-REP [24] models
are implemented according to Fig. 7 using ROS [23] as communication interface.

Fig. 7 Implementation setup with ROS as communication interface between CACOC, MPC and V-REP

The CACOC waypoints are updated every second ∆ tCACOC = 1s, wherefore one CACOC
step equals to ∆ tsim = 1s of simulation. The UAV positions in V-REP are updated every
∆ tV REP = 0.1s using the dynamics (4). As the controller is synchronized with V-REP, the
control update interval is equally ∆ tMPC = 0.1s. The simulation environment is illustrated
in Fig. 81. The simulation is performed using the parameters shown in Tab. 2.

1A video illustrating the framework simulator is available at https://martinrosalie.gforge.
uni.lu/_downloads/jint.mp4
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Fig. 8 Three MPC controlled UAVs in the V-Rep simulation environment following waypoints provided by
CACOC.

Table 2 Main experimental parameters.

Parameter Name Parameter Value

Simulation area
Geographical Area 30 m × 30 m
Number of cells 30 × 30
Simulation Setup
Update interval of CACOC waypoints ∆ tCACOC = 1s
Update interval of UAV dynamics in V-Rep ∆ tV REP = 0.1s
Control update interval ∆ tMPC = 0.1s
Time duration Tsim = 4000s for 4000 steps
UAV Waypoint
UAVs speed 1 m/s
Possible UAV actions ahead, 45◦ left, 45◦ right
Initial UAVs position middle of the bottom of the map
Experiments
Mobility models CACOC with MPC+CA, CACOC+CA with MPC+CA
Number of UAVs 3
Simulation steps 4000
Independent runs 30

4.1 Metrics

For the evaluation of the experiment the same three area coverage metrics as introduced in
[27] are used. A short description is provided hereinafter. Fig. 9 underlines how the metrics
are calculated for one simulation. The three UAVs start in the bottom left corner with the
following coordinate on a grid: (0, 0), (0, 15) and (15, 0).

4.1.1 Coverage

The coverage metric is the percentage of cells of the total area visited during the whole
simulation. The environment is a 30 m by 30 m square area. The coverage value varies
during the whole simulation. To have a representative value of the coverage, we choose to
compare the coverage value after 4000 steps for each model. This indicates the efficiency of
the models to visit the total area. On the other hand, we want to evaluate the first steps of
each model to compare their initial behavior. For this purpose the first 500 steps are used to
extracted the slope of a linear regression a× x (Fig. 9).
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Fig. 9 Metrics measurements for one simulation. Two values are extracted for the coverage: the coverage
after 4000 steps and the slope of coverage for the 500 first steps. For the fairness the slope of fairness is
computed after the 500 first steps. The average value of the recent coverage is calculated after the 100 first
steps.

4.1.2 Fairness of the coverage

The fairness measures, if all cells are regularly and equally scanned. This is computed as the
standard deviation (STD) of their respective number of scans [29]. To evaluate the fairness
during the whole simulation, a linear regression a× x+ b is performed using the last 3500
steps (Fig. 9). This measure is complementary to the coverage initial slope that only evalu-
ates the initial UAV trajectories. Here, the slope value is considered as a measure to evaluate
the fairness of the models without this initialization part.

4.1.3 Recent coverage ratio

This metric introduced in [4] represents the percentage of coverage during the last 100 itera-
tions. These 100 steps correspond to the pheromones’ evaporation time. For the computation
of the recent coverage mean value (Fig. 9), the 100 first iterations are excluded from the sim-
ulation.

4.1.4 Distance between each couple of UAVs

The metrics used to quantify the efficiency of the CA mechanism are dedicated to run where
only one collision is scheduled on purpose [17]. However, here the goal is to cover a wide
area where multiple collisions can occur. As a consequence, new metrics are necessary to
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Fig. 10 For a given simulation, using CACOC+CA with MPC+CA, the distance between each couple of UAV
is shown in meters. An estimation of the distribution is given with the mean value as well as the minimum.

(a) CACOC with MPC + CA (b) CACOC + CA with MPC + CA

Fig. 11 For a given simulation, using CACOC+CA with MPC+CA, the distance between the desired position
and the controlled one is shown in meters. An estimation of the distribution is given with the mean value as
well as the minimum.

quantify the CA mechanism efficiency on a long-time simulation. An intuitive way of eval-
uating the CA mechanism is to measure the distance between each couple of UAVs during
the whole simulation. This includes the mean value and the minimal value of this metric to
make a comparison between CACOC+CA with MPC+CA and CACOC with MPC+CA. For
a given simulation, Fig. 10 represents the estimated distribution of the measured values.

4.1.5 Distance between the desired and the current position

In order to quantify few CA occurrences in a simulation, the authors of [17] use the excess
separation deviation from the path and the graph status (indicating if the UAV is doing
CA). We introduce a new metric by computing the distance between the waypoint of a
UAV and the position given by the MPC before receiving the new waypoint. During the
whole simulation it indicates how far the UAV is from the current waypoint. We collect the
minimum value and the mean value of this metric to quantify the CA.
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For the CACOC+CA with MPC+CA example simulation, Fig. 11(b) shows that only
few of the UAV2 values are far from the median value. This indicates that despite the CA
included in CACOC, the CA of the MPC is used. For the CACOC with MPC+CA example
simulation in Fig. 11(a), only the CA of the MPC is used resulting in several points far
from the median value for all UAVs. We collect both mean value and minimum values to
have an average value of the distance combined with the shorter distance reached during
the simulation. As a remark, the static offset in the tracking error is expected, due to the
constantly changing target position and missing integral part in the MPC control policy.

4.2 Experimental results

The previously described metrics are obtained with the same program to avoid bias. First,
they are computed from the waypoints and secondly using the synchronized positions of the
UAVs from the V-Rep simulation using ROS. As CACOC is a chaotic deterministic mobility
model, only the initial conditions of the dynamical system are varied to create a wide range
of simulations with the same mobility model without changing its parametrization as it has
already been done previously [26].

4.2.1 Comparison of the coverage metrics

Table 3 details the coverage metrics statistics to compare CACOC with MPC+CA and CA-
COC+CA with MPC+CA. Data for coverage after 4000 steps follow the same distribution
with 95% confidence according to a Wilcoxon test (p–value = 0.1357). This permits to con-
firm that for both, CACOC with MPC+CA and CACOC+CA with MPC+CA, we fulfill our
objective by covering almost the whole area: for both the median value is 1 meaning that
100% of the area has been covered in more than half of the simulations.

Table 3 Coverage metrics statistics. For each metric, the first line details CACOC with MPC+CA and the
second line details CACOC+CA with MPC+CA and the best mean values are highlighted.

Metrics CA mean min median max STD

Coverage after 4000 steps 0.99967 0.99778 1 1 0.00066
X 0.99944 0.99778 1 1 0.00070

Slope of coverage 0.00188 0.00179 0.00187 0.00196 3.8377e-05
X 0.00183 0.00173 0.00183 0.00195 4.2101e-05

Slope of the Fairness of the coverage 8.0783e-4 7.2143e-4 8.0077e-4 9.1150e-4 4.7068e-05
X 8.3092e-4 7.3900e-4 8.2478e-4 9.2471e-4 4.4969e-05

Recent coverage 0.26730 0.26606 0.26727 0.26894 9.0553e-4
X 0.26051 0.25781 0.26046 0.26315 1.3482e-3

Fig. 12 shows that the slope of coverage values of CACOC+CA with MPC+CA val-
ues are lower than the values of CACOC with MPC+CA. Data for slope of coverage fol-
low a different distribution with 95% confidence according to a Wilcoxon test (p–value =
0.0002189). This small difference is due to the introduction of the CA mechanism that pre-
vents a very good spreading of the UAVs at the beginning of the simulation compared to
the CACOC mobility model. However, this metric mainly quantifies the early steps of the
algorithm. Hence, the performance reduction is not significant as the starting points of the
UAVs are not in close proximity.
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Fig. 12 Slope of the coverage (see Fig.9 for details about the linear regression).

Fig. 13 Fairness slope of the coverage (see Fig.9 for details about the linear regression).

We remind that the lower the fairness, the better the performance. Data for fairness
follow different distributions with 95% confidence according to a Wilcoxon test (p–value =
0.04146). The p–value is close to the threshold value to accept the hypothesis, meaning
that the results are similar. Fig. 13 details how CACOC+CA with MPC+CA is slightly less
efficient than CACOC with MPC+CA. Although the two resulting distributions are not the
same, the difference between the mean values is only 3%. As this metric evaluates the global
performance of the algorithm, we can conclude that the usage of a CA mechanism does not
significantly impact the coverage of the area.

Data for recent coverage follow different distribution with 95% confidence according to
a Wilcoxon test (p–value < 2.2e−16) and Fig. 14 details the recent coverage values. In our
case, for 3 UAVs over a 30× 30 area with pheromones’ duration of 100 steps, the optimal
value is 3× 100/(30× 30) = 1

3 . The mean value of the recent coverage of CACOC+CA
with MPC+CA values is 0.22% of the optimal value and accordingly lower than the average
value of CACOC with MPC+CA. This marginal difference implies that even with a CA
mechanism, the mobility model is efficient.
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Fig. 14 Recent coverage (see Fig.9 for details about the average value).

Considering the overall coverage performance of the CACOC+CA with MPC+CA com-
pared to CACOC with MPC+CA, we can say that even if the values are not following the
same distribution, they are close to the value without CA. This small offset is reasonable
comparing to the added security by CA. In the next section, we will compare the CA met-
rics to see the difference between the two methods.

4.2.2 Comparison of the collision avoidance metrics

The Figs. 15–18 illustrate the value distribution for each metric dedicated to the CA. We thus
perform a pairwise non-parametric test (using the Wilcoxon signed-rank test): where we
observe that the data follows different distributions with 95% confidence. Tab. 4 synthesizes
the statistics for these CA metrics.

Table 4 CA metrics statistics. For each metric, the first line details CACOC with MPC+CA and the second
line details CACOC+CA with MPC+CA and the best mean values are highlighted.

Metrics CA mean min median max STD

Average distance between UAV and waypoint [m] 0.50657 0.45554 0.49252 0.71484 0.04770
X 0.50572 0.41288 0.47357 0.90022 0.09822

Minimal distance between UAV and waypoint [m] 0.05954 0.00334 0.05376 0.15001 0.02980
X 0.10562 0.01600 0.11084 0.18513 0.04506

Average distance between couple of UAVs [m] 15.327 14.112 15.339 16.395 0.49876
X 17.192 10.636 17.462 18.567 1.2416

Minimal distance between couple of UAVs [m] 0.82445 0.26817 0.79422 1.3867 0.24397
X 1.5546 0.06670 1.6684 2.8743 0.67708

For the average distance between the actual position of a UAV and its waypoint (Fig. 15),
the average values are similar, but the standard deviation (STD) is almost doubled for the
CACOC+CA with MPC+CA. This implies that CACOC+CA with MPC+CA with the lower
mean performs slightly better, but the variation of its tracking performance is higher. This
variation is explainable with a border lock phenomenon occurring when UAVs come close
to border and CA constraints. As the UAVs should stay in the the given search area they are



18 Jan Dentler et al.

Fig. 15 Average distance in meters between the UAV and its waypoint.

forced back into it. As a result, the UAV trajectories start to oscillate and stay consequently
close together for a while. We remind that the CA of the MPC is rarely used when there is
already a CA in the mobility model (see Fig. 11a where a significant amount of outliers is
visible).

Fig. 16 Minimum distance in meters between the UAV and its waypoint.

Considering the minimum distance between the UAV and its waypoint (Fig. 16) the
distributions are not the same but the range of values is similar. Taking into account the
mean values (0.06 for CACOC with MPC+CA and 0.11 for CACOC+CA with MPC+CA
in Tab. 4) we can consider that in average, the second method does not permit two UAVs to
get very close to waypoints. We explain this shift because of the CA mechanism in CACOC
with MPC + CA that can cause the UAVs to avoid each other and reach positions far or
close to the given waypoints. This happens less frequently in CACOC+CA with MPC+CA
because the second CA mechanism (MPC+CA) is typically not used.
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Fig. 17 Average distance in meters between each couple of UAVs.

The distribution of the average distance between each couple of UAVs (Fig. 17) is totally
different and shows outliers. These outliers are also a result of the border lock phenomenon,
inducing oscillations around the area border constraints. They can furthermore be found in
the minimum value plot of CACOC+CA with MPC+CA in Fig. 17. However, without this
specific behavior, the average distance is higher by 15%. This implies that the UAVs are
more often far from each other than width CACOC with MPC+CA.

Fig. 18 Minimal distance in meters between each couple of UAVs.

Finally, considering the minimum distance between each couple of UAVs (Fig. 18), the
average value of CACOC+CA with MPC is twice as high as for CACOC with MPC+CA
for CACOC+CA and reaches a mean value of more than 1.5m. Thus, CACOC+CA comple-
ments the CA implemented in MPC to reach the desired minimum distance of dmin = 1.5m.
The higher variance can be explained by the border lock phenomenon and is subject to
further research.
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5 Conclusion

To support the real deployment of UAVs for coverage purposes, we are aiming to design
robust and resilient systems. The paper is extending the Chaotic Ant Colony Optimization
to Coverage mobility model by a CA mechanism (CACOC+CA). Its coverage and CA per-
formance is compared to the mobility model without CA (CACOC) in physical simulations
within a dedicated robotic environment. The physical simulation includes a dynamic UAV
model controlled with MPC including a CA mechanism (MPC+CA). The empirical evalu-
ation of both “CACOC with MPC+CA” and “CACOC+CA with MPC+CA” was conducted
on an area coverage scenario with 3 UAVs. In this context, three area coverage metrics
and four CA metrics have been used to evaluate and compare the algorithm’s performance.
The obtained results show that CACOC+CA is able to accomplish covering tasks efficiently
while complementing the potential field CA mechanism of the MPC controller, reducing the
average tracking error of UAVs and increasing the mean minimal distance between UAVs
close to the chosen MPC CA distance d = 1.5m. The variance of the minimal distance is
assumed to be a result of the border-lock phenomenon and subject to further research. In
terms of coverage, the high similarity of the results between CACOC with MPC+CA and
CACOC+CA with MPC+CA demonstrates that it performs well in a real environment under
consideration of a fine-tuning of the MPC approach. Thus, the implementation of CA with
CACOC is advantageous to deal with collisions of UAVs, while the CA of MPC can be used
to deal with unknown obstacles (eg. birds).

In order to transfer the proposed approach to real UAVs in future, the CA bounds have
to be adjusted according to the localization precision. For scenarios with more UAVs, taking
into consideration a CA constraint for every UAV pair does not scale well. This issue can be
addressed by using a distributed MPC controller which only considers CA constraints to di-
rect neighbors. Further work on the UAV control part will treat the reduction of the position
tracking error, for instance, with the introduction of a disturbance model, the adaptation of
the MPC control law, or a target position controller as already presented in [7]. Furthermore,
more research work will be dedicated to address the border lock phenomenon. The presented
two-sided simulator will also permit to work on the CACOC parameters (pheromone evap-
oration time, covered area by step, etc.) to increase the performance of the mobility model
by comparing the theoretical and realistic results. Finally, we also planed to develop a time-
efficient software to handle the MPC+CA algorithm for a swarm of 10 and 20 UAVs.
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