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Abstract

We propose a fast and scalable algorithm to project a given density on a set of structured measures defined over
a compact 2D domain. The measures can be discrete or supported on curves for instance. The proposed principle
and algorithm are a natural generalization of previous results revolving around the generation of blue-noise point
distributions, such as Lloyd’s algorithm or more advanced techniques based on power diagrams. We analyze
the convergence properties and propose new approaches to accelerate the generation of point distributions. We
also design new algorithms to project curves onto spaces of curves with bounded length and curvature or speed
and acceleration. We illustrate the algorithm’s interest through applications in advanced sampling theory, non-
photorealistic rendering and path planning.

(a) Original (b) Stippling (c) Curvling (d) Dashing

Figure 1: Approximating an image with a measure supported on points (stippling, 100k, 202”), curve (curvling,
100k, 313”) or segments (dashing, 33k, 237”). In each case, the iterative algorithm starts from a set of points drawn
uniformly at random.

1 Introduction

The aim of this paper is to approximate a target measure µ with probability density function ρ : Ω → R+ with
probability measures possessing some structure. This problem arises in a large variety of fields including finance
[47], computer graphics [53], sampling theory [7] or optimal facility location [23]. An example in non photo-realistic
rendering is shown in Figure 1, where the target image in Fig. 1a is approximated by an atomic measure in Fig. 1b,
by a smooth curve in Fig. 1c and by a set of segments in Fig. 1d. Given a set of admissible measuresM (i.e. atomic
measures, measures supported on smooth curves or segments), the best approximation problem can be expressed as
follows:

min
ν∈M

D(ν, µ), (1)

where D is a distance between measures.
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1.1 Contributions

Our main contributions in this article are listed below.

• Develop a few original applications for the proposed algorithm.

• Develop a fast numerical algorithm to minimize problem (1), when D is the W2 transportation distance and
Ω = [0, 1]2.

• Show its connections to existing methods such as Lloyd’s algorithm [38] or optimal transport halftoning [15].

• Provide some theoretical convergence guarantees for the computation of the optimal semi-discrete transporta-
tion plan, especially for complicated point configurations and densities, for which an analysis was still lacking.

• Design algorithms specific to the case where the space of admissible measuresM consists of measures supported
on curves with geometric constraints (e.g. fixed length and bounded curvature).

• Generate a gallery of results to show the versatility of the approach.

In the next section, we put our main contributions in perspective.

1.2 Related works

1.2.1 Projections on measure spaces

To the best of our knowledge, the generic problem (1) was first proposed in [10] with a distance D constructed
through a convolution kernel. Similar problems were considered earlier, with spaces of measures restricted to a fixed
support for instance [39], but not with the same level of generality.

Formulation (1) covers a large amount of applications that are often not formulated explicitly as optimization
problems. We review a few of them below.

Finitely supported measures A lot of approaches have been developed when M is the set of uniform finitely
supported measures

Mf,n =

{
ν(x) =

1

n

n∑
i=1

δx[i],x ∈ Ωn

}
, (2)

where n is the support cardinality, or the set of atomic measures defined by:

Ma,n=

{
ν(x,w)=

n∑
i=1

w[i]δx[i],x ∈ Ωn,w ∈ ∆n−1

}
, (3)

where ∆n−1 = {
∑n
i=1 w[i] = 1,w[i] ≥ 0, ∀i} is the canonical simplex.

For these finitely supported measure sets, solving problem (1) yields nice stippling results, which is the process
of approximating an image with a finite set of dots (see Fig. 1b). This problem has a long history and a large
amount of methods were designed to find dots locations and radii that minimize visual artifacts due to discretization
[20, 38, 57, 6]. Lloyd’s algorithm is among the most popular. We will see later that this algorithm is a solver of (1),
with M =Ma,n. Lately, explicit variational approaches [52, 15] have been developed. The work of The work of de
Goes et al [15] is closely related to our paper since they propose solving (1), where D is the W2 transportation distance
andM =Mf,n. This sole problem is by no means limited to stippling and it is hard to provide a comprehensive list
of applications. A few of them are listed in the introduction of [62].
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Best approximation with curves Another problem that is met frequently is to approximate a density by a
curve. This can be used for non photorealitistic rendering of images or sculptures [32, 2]. It can also be used to
design trajectories of the nozzle of 3D printers [12]. It was also used for the generation of sampling schemes [7].

Apart from the last application, this problem is usually solved with methods that are not clearly expressed as an
optimization problem.

Best approximation with arbitrary objects Problem (1) encompasses many other applications such as the
optimization of networks [23], texture rendering or non photorealistic rendering [28, 29, 51, 33, 17], or sampling
theory [8].

Overall, this paper unifies many problems that are often considered as distinct with specific methods.

1.2.2 Numerical optimal transport

In order to quantify the distance between the two measures, we use transportation distances [43, 31, 58]. In our
work, we are interested mostly in the semi-discrete setting, where one measure is a density and the other is discrete.
In this setting, the most intuitive way to introduce this distance is via Monge’s transportation plan and allocation
problems. Given an atomic measure ν ∈ Ma,n and a measure µ with density, a transport plan T ∈ T (x,w) is a
mapping T : Ω→ {x[1], . . . ,x[n]} such that ∀1 ≤ i ≤ n, µ(T−1(x[i])) = w[i]. In words, the mass at any point x ∈ Ω
is transported to point T (x). In this setting, the W2 transportation distance is defined by:

W 2
2 (µ, ν) = inf

T∈T (x,w)

∫
Ω

‖x− T (x)‖22dµ(x), (4)

and the minimizing mapping T describes the optimal way to transfer µ to ν.
Computing the transport plan T and the distance W2 is a challenging optimization problem. In the semi-discrete

setting, the paper [5] provided an efficient method based on “power diagram” or “Laguerre diagram”. This framework
was recently further improved and analyzed recently in [15, 40, 35, 34]. The idea is to optimize a concave cost function
with second-order algorithms. We will make use of those results in the paper, and improve them by stabilizing them
while keeping the second-order information.

1.2.3 Numerical projections on curve spaces

Projecting curves on admissible sets is a basic brick for many algorithms. For instance, mobile robots are subject
to kinematic constraints (speed and acceleration), while steel wire sculptures have geometric constraints (length,
curvature).

While the projection on kinematic constraints is quite easy, due to convexity of the underlying set [11], we believe
that this is the first time projectors on sets defined through intrinsic geometry are designed. Similar ideas have
been explored in the past. For instance, curve shortening with mean curvature motion [19] is a long-studied problem
with multiple applications in computer graphics and image processing [63, 42, 54]. The proposed algorithms allow
exploring new problems such as curve lengthening with curvature constraints.

1.3 Paper outline

The rest of the paper is organized as follows. We first outline the overarching algorithm in Section 2. In Sections 3
and 4, we describe more precisely and study the theoretical guarantees of the algorithms used respectively for
computing the Wasserstein distance, and for optimising the positions and weights of the points. We describe the
relationships with previous models in Section 5. The algorithms in Sections 3 and 4 are enough for, say, halftoning,
but do not handle constraints on the points. In Section 6, we add those constraints and design algorithms to make
projections onto curves spaces with bounded speed and acceleration, or bounded length and curvature. Finally some
application examples and results are shown in Section 7.
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2 The minimization framework

In this section, we show how to numerically solve the best approximation problem:

inf
ν∈M

W 2
2 (ν, µ), (5)

where M is an arbitrary set of measures supported on Ω = [0, 1]2.

2.1 Discretization

Problem (5) is infinite-dimensional and first needs to be discretized to be solved using a computer. We propose to
approximate M by a subset Mn ⊆Ma,n of the atomic measures with n atoms. The idea is to construct Mn as

Mn = {ν(x,w),x ∈ Xn,w ∈Wn}, (6)

where the mapping ν : (Ωn ×∆n−1)→Ma,n is defined by

ν(x,w) =

n∑
i=1

w[i]δx[i]. (7)

The constraint set Xn ⊆ Ωn describes interactions between points and the set Wn ⊆ ∆n−1 describes the admissible
weights.

We have shown in [10] that for any subsetM of the probability measures, it is possible to construct a sequence of
approximation spaces (Mn)n∈N of the type (6), such that the solution sequence (ν∗n)n∈N of the discretized problem

inf
ν∈Mn

W 2
2 (ν, µ), (8)

converges weakly along a subsequence to a global minimizer ν∗ of the original problem (5). Let us give a simple
example: assume thatM is a set of pushforward measures of curves parameterized by a 1-Lipchitz function on [0, 1].
This curve can be discretized by a sum of n Dirac masses with a distance between consecutive samples bounded by
1/n. It can then be shown that this space Mn approximates M well, in the sense that each element of Mn can be
approximated with a distance O(1/n) by an element in M and vice-versa [10]. We will show explicit constructions
of more complicated constraint sets Xn and Wn for measures supported on curves in Section 6.

The discretized problem (8) can now be rewritten in a form convenient for numerical optimization:

min
x∈X,w∈W

F (x,w), (9)

where we dropped the index n to simplify the presentation and where

F (x,w) =
1

2
W 2

2 (ν(x,w), µ). (10)

2.2 Overall algorithm

In order to solve (9), we propose to use an alternating minimization algorithm: the problem is minimized alternatively
in x with one iteration of a variable metric projected gradient descent and then in w with a direct method. Algorithm 1
describes the procedure in detail.

A few remarks are in order. First notice that we are using a variable metric descent algorithm with a metric
Σk � 0. Hence, we need to use a projector defined in this metric by:

ΠΣk

X (x0) := Argmin
x∈X

‖x− x0‖2Σk
with

‖x− x0‖2Σk
= 〈Σk(x− x0), (x− x0)〉.
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Second, notice that X may be nonconvex. Hence, the projector ΠΣk

X on X might be a point-to-set mapping. In the
x-step, the usual sign = is therefore replaced by ∈.

There are five major difficulties listed below to implement this algorithm:

ψ step: How to compute efficiently F (x,w)?

w step: How to compute argmin
w∈W

F (x,w)?

x step: How to compute the gradients ∇xF and the metric Σk?

Π step: How to implement the projector ΠΣk

X ?

Generally: How to accelerate the convergence given the specific problem structure?

The next four sections provide answers to these questions.

Algorithm 1 Alternating projected gradient descent to minimize (1).

Require: Oracle that computes F . ψ-step.
Require: Projectors ΠX on X.
1: Inputs:
2: Initial guess x0

3: Target measure µ
4: Number of iterations Nit.
5: Outputs:
6: An approximation (x̂, ŵ) of the solution of (1).
7: for k = 0 to Nit− 1 do
8: wk+1 = argmin

w∈W
(F (xk,w)) . w-step

9: Choose a positive definite matrix Σk, a step sk.
10: yk+1 = xk − skΣ−1

k ∇xF (xk,wk+1). . x-step

11: xk+1 ∈ ΠΣk

X (yk+1) . Π-step
12: end for
13: Set x̂ = xNit and ŵ = wNit.

Note that if there are no constraints like in halftoning or stippling, there is no projection and the Π-step is trivial:
xk+1 = yk+1.

3 Computing the Wassertein distance F : ψ-step

3.1 Semi-discrete optimal transport

In this paragraph, we review the main existing results about semi-discrete optimal transport and explain how it can
be computed. Finally, we provide novel computation algorithms that are more efficient and robust than existing
approaches. We work under the following hypotheses.

Assumption 1.

• The space Ω is a compact convex polyhedron, typically the hypercube.

• µ is an absolutely continuous probability density function w.r.t. the Lebesgue measure.

• ν is an atomic probability measure supported on n points.
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Let us begin by a theorem stating the uniqueness of the optimal transport plan, which is a special case of Theorem
10.41 in the book by [59].

Theorem 1. Under Assumption 1, there is a unique optimal transportation plan µ-a.e.T ∗, solution of problem (4).

Before further describing the structure of the optimal transportation plan, let us introduce a fundamental tool
from computational geometry [4].

Definition 1 (Laguerre diagram). Let x ∈ Ωn denotes a set of point locations and ψ ∈ Rn denotes a weight vector.
The Laguerre cell Li is a closed convex polygon set defined as

Li(ψ,x) = {x ∈ Ω,∀1 ≤ j ≤ n, j 6= i, ‖x− x[i]‖22 −ψ[i] ≤ ‖x− x[j]‖22 −ψ[j]}. (11)

The Laguerre diagram generalizes the Voronoi diagram, since the latter is obtained by taking ψ = 0 in equation
(11).

The set of Laguerre cells partitions Ω in polyhedral pieces. It can be computed in O(n log(n)) operations for
points located in a plane [4]. In our numerical experiments, we make use of the CGAL library to compute them [56].
We are now ready to describe the structure of the optimal transportation plan T ∗, see [22, Example 1.9].

Theorem 2. Under Assumption 1, there exists a vector ψ∗ ∈ Rn, such that

(T ∗)
−1

(x[i]) = Li(ψ∗,x). (12)

In words, (T ∗)
−1

(x[i]) is the set where the mass located at point x[i] is sent by the optimal transport plan.
Theorem 2 states that this set is a convex polygon, namely the Laguerre cell of x[i] in the tessellation with a weight
vector ψ∗. More physical insight on the interpretation of ψ∗ can be found in [36]. From a numerical point of view,
the Theorem 2 allows transforming the infinite dimensional problem (4) into the following finite dimensional problem:

W2(µ, ν) = max
ψ∈Rn

g(ψ,x,w), (13)

where

g(ψ,x,w) =

n∑
i=1

∫
Li(ψ,x)

(
‖x[i]− x‖2 −ψ[i]

)
dµ(x) +

n∑
i=1

ψ[i]w[i]. (14)

Solving the problem (13) is the subject of numerous recent papers, and we suggest an original approach in the
next section.

3.2 Solving the dual problem

In this paragraph, we focus on the resolution of (13), i.e. computing the transportation distance numerically. The
following proposition summarizes some concavity and differential properties of the functional g.

Proposition 1. Under Assumption 1, the function g is concave with respect to the variable ψ and differentiable with
a Lipschitz gradient. Its gradient is given by:

∂g

∂ψi
= w[i]− µ(Li(ψ,x)). (15)

In addition, if ρ ∈ C1(Ω), then g is also twice differentiable w.r.t. ψ almost everywhere and - when defined - its
second order derivatives are given by:

∂2g

∂ψi∂ψj
=

∫
∂Li(ψ,x)∩∂Lj(ψ,x)

dµ(x)

‖x[i]− x[j]‖
if i 6= j. (16)
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The formula for the diagonal term ∂2g
∂ψi∂ψi

is given by the closure relationship

∀1 ≤ i ≤ n,
n∑
j=1

∂2g

∂ψi∂ψj
= 0. (17)

Proof. Most of these properties have been proved in [34] and refined in [16]. The Lipschitz continuity of the gradient
seems to be novel.

Twice differentiability. If a Laguerre cell Li(ψ,x) is empty, it remains so for small variations of ψ, by the
definition (11). It remains to prove that the set of ψ for which there exists nonempty Laguerre cells with zero
measure is negligible. The fact that Li(ψ,x) is nonempty of zero Lebesgue measure means that it is either a segment
or a point. We consider the case, where the points x are in generic position, meaning that any three distinct points
are not aligned. This implies that Li(ψ,x) is a singleton {x} since the boundaries of Laguerre cell cannot be parallel.
We further assume that x belongs to the interior of Ω. Under those assumptions, x necessarily satisfies at least 3
equalities of the form

‖x− x[i]‖22 −ψ[i] = ‖x− x[jk]‖22 −ψ[jk], (18)

for some jk 6= i (i.e. Li(ψ,x) is the intersection of at least 3 half spaces). The set of ψ allowing to satisfy a system
of equations of the form (18) is of co-dimension at least 1. Indeed, this system implies that x is the intersection
of 3 lines, each perpendicular to one of the segment [x[i],x[jk]] and translated along the direction of this segment
according to ψ. Now, by taking all the finitely many sets of quadruplets (i, j1, j2, j3), we conclude that the set of ψ
allowing to make Li(ψ,x) a singleton is of zero Lebesgue measure. It remains to treat the case of x belonging to the
boundary of Ω. This can be done similarly, by replacing one or more equalities in 18, by the equations describing
the boundary.

The case of points in non generic position can also be treated similarly, since for 3 aligned points at least 2
equations of the form (18) allow to turn Li(ψ,x) into a line of zero Lebesgue measure. A solution of such a system
is also of co-dimension 1.

Lipschitz gradient. In order to prove the Lipschitz continuity of the gradient, we first remark that the Laguerre
cells defined in (11) are intersections of half spaces with a boundary that evolves linearly w.r.t. ψ. The rate of
variation is bounded from above by η = 1

mini6=j ‖x[i]−x[j]‖2 . Hence, letting ∆ ∈ Rn denote a unit vector, a rough

bound on the variation of a single cell is:

‖µ(Li(ψ + t∆,x))− µ(Li(ψ,x))‖ ≤ t(n− 1)‖ρ‖∞ηdiam(Ω).

Summing this inequality over all cells, we get that

‖∇ψg(ψ + t∆,x)−∇ψg(ψ + t∆,x)‖2 ≤ tn3/2‖ρ‖∞ηdiam(Ω).

Notice that this upper-bound is very pessimistic. For instance, applying Gersgorin’s circle theorem shows that -
when defined - the minimum eigenvalue of the Hessian matrix given in (16) is bounded below by −nη‖ρ‖∞diam(Ω).

In addition, the following proposition given in [41, Thm. 6] shows that the function g is well behaved around the
minimizers.

Proposition 2. If minx∈Ω ρ(x) > 0 and that the points (x[i]) are pairwise disjoint, Problem (13) admits a unique
maximizer, up to the addition of constants. The function g is twice differentiable in the vicinity of the minimizers
and strongly concave on the set of vectors with zero mean.

Many methods have been proposed in the literature to compute the optimal vector ψ∗, with the latest references
providing strong convergence guarantees [5, 15, 40, 35, 34]. This may give the false impression that the problem
has been fully resolved: in practice the conditions guaranteeing convergence are often unmet. For instance, it is
well-known that the convergence of first-order methods depends strongly on the Lipschitz constant of the gradient
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[45, Thm 2.1.7]. Unfortunately, this Lipschitz constant may blow up depending on the geometry of the point set x
and the regularity of the density ρ, see Remark 1. On the other hand, the second-order methods heavily depend on
the Hölder regularity of g [30, 26]. Unfortunately, it can be shown that g is Hölder with respect to ψ only under
certain circumstances. In particular, the mass of the Laguerre cells µ(Li(ψ,x)) should not vanish [34, Remark 4.2].
Hence, only first-order methods should be used in the early steps of an optimization algorithm, and the initial guess
should be well-chosen due to slow convergence. Then, second-order methods should be the method of choice.

The Levenberg-Marquardt algorithm and the trust-region methods [61] are two popular solutions that interpolate
between first- and second- order methods automatically. Unfortunately, to the best of our knowledge, the existing
convergence theorems rely on a global C2-regularity of the functional, which is not satisfied here. In this work, we
therefore advocate the use of a regularized Newton method [49], which retains the best of first and second order
methods: a global convergence guarantee and a locally quadratic convergence rate. The algorithm reads as follows:

ψk+1 = ψ − tk(A(ψ) + ‖∇ψg(ψk)‖2Id)−1∇ψg(ψk), (19)

where

A(ψ) =

{
∇2
ψg(ψk) if ∇2

ψg is defined at ψk,

0 otherwise.
(20)

The algorithm is implemented on the set of vectors with zero mean to ensure the uniqueness of a solution, see
Proposition 2.

Without the term ‖∇ψg(ψk)‖2Id, the equation (19) would simplify to a pure Newton algorithm. The addition of
this term makes the method (19) similar to a Levenberg-Marquardt algorithm, with the important difference that the
regularization parameter is set automatically to ‖∇ψg(ψk)‖2. The rationale behind this choice is that the gradient
vanishes close to the minimizer, making (19) similar to a damped Newton method and that the gradient amplitude
should be large far away from the minimizer, making (19) closer to a pure gradient descent.

Following [49], we get the following proposition.

Proposition 3. Algorithm (19) implemented with step-sizes tk satisfying the Wolfe conditions converges globally to
the unique maximizer of (13). In addition, the convergence is quadratic in the vicinity of the minimizer.

To the best of our knowledge, this is the first algorithm coming with a global convergence guarantee. Up to now,
the convergence was only local [34].

To further accelerate the convergence, the method can be initialized with the multi-scale approach suggested in
[40]. In practice, replacing (19) by a standard Levenberg-Marquardt method i.e ψk+1 = ψ−(A(ψ)+ckId)−1∇ψg(ψk)
yields similar rate of convergence. In this case ck > 0 is interpreted as the “step” of the descent method and it is
decreased or increased following Wolfe criterion.

Remark 1 (High Lipschitz constant of the gradient). In this example illustrated by Figure 2, we show that the
Lipschitz constant of the gradient can be arbitrarily large. We consider that µ is the uniform measure on Ω and that
ν is an atomic measure supported on n points aligned vertically and equispaced i.e. x[i] =

(
1
2 ,

1+2i
2n

)
on Ω = [0, 1]2.

In this case the Hessian is a multiple of the matrix of the 1d Laplacian with Neumann boundary conditions and
the largest eigenvalue of H scales as 4n.

The Lipschitz constant hence blows up with the dimension since. Notice that this situation is typical when it
comes to approximating a density with a curve.

3.3 Numerical integration

The algorithm requires computing the integrals (14) and (16). In all our numerical experiments, we use the following
strategy. We first discretize the density ρ associated to the target measure µ using a bilinear or a bi-cubic interpolation
on a regular grid. Then, we observe that the volume integrals in Equation (14) can be replaced by integrals of
polynomials along the edges of the Laguerre diagram by using Green’s formula. Hence computing the cost function,
the Hessian or the gradient all boil down to computing edge integrals.
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‖xi − xi+1‖

(a) Example with 5 points

‖xi − xi+1‖

(b) Example with 25 points

Figure 2: Configurations of points generating a high Lipschitz constant for the gradient of g in ψ.

Then, since the underlying density is piecewise polynomial, it is easy to see that only the first moments of
the measure µ along the edges are needed to compute all formula. We pre-evaluate the moments by using exact
quadrature formulas and then use linear combinations of the moments to finish the evaluation.

To the best of our knowledge, this is a novel lightweight procedure. It significantly speeds up the calculations
compared to former works [40, 15], which enables discretization of the density ρ over an arbitrary 3D mesh. After
finishing this paper, we realized that the idea of using Green formulas was already suggested by [62], although not
implemented. It is to be noted that this idea is particularly well suited to Cartesian grid discretization of the target
density ρ. Indeed, in this case, we take advantage of the fact that the intersection of the Laguerre cells and the grid
can be computed analytically without search on the mesh.

4 Optimizing the weights and the positions: w and x steps

4.1 Computing the optimal weights

In this section, we focus on the numerical resolution of the following subproblem

argmin
w∈W

F (x,w). (21)

4.1.1 Totally constrained w

When W = {w} is reduced to a singleton, the solution of (21) is obviously given by w∗ = w.

4.1.2 Unconstrained minimization in w

When W is the simplex, the unconstrained minimization problem (21) can be solved analytically.

Proposition 4. If W = ∆n−1, the solution w∗ of (21) is given for all 1 ≤ i ≤ n by

w∗[i] = µ(Li(0,x)), (22)

that is the volume (w.r.t. the measure µ) of the i-th Laguerre cell with zero cost ψ, i.e. the i-th Voronöı cell.

Proof. In expression (14), the vector ψ can be interpreted as a Lagrange multiplier for the constraint

µ(T−1(x[i])) = w[i].

Since the minimization in w removes this constraint, the Lagrange multiplier might be set to zero.
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4.2 Gradient ∇xF and the metric Σk

The following proposition provides some regularity properties of ∇xF . It can be found in [16].

Proposition 5. Let ψ∗ denote the maximizer of (13). Assume that ρ ∈ C0 ∩W 1,1(Ω), that w > 0, and that the
points in x are separated. Then F is C2 at (x,w) with respect to the variable x and its gradient ∇xF (x,w) is given
by the following formula:

∂F (x,w)

∂x[i]
= w[i] (x[i]− b[i]) (23)

where b[i] is the barycenter of the i-th Laguerre cell Li(ψ∗,x):

b[i] = b(x)[i] =

∫
Li(ψ∗,x)

xdµ(x)∫
Li(ψ∗,x)

dµ(x)
. (24)

Now, we discuss the choice of the metric (Σk) in Algorithm 1. In what follows, we refer to the “unconstrained
case” as the case where there is no Π-step in Algorithm 1. The metric used in our paper is the following:

Σk = diag(µ(Li(ψ∗k,x∗k)))1≤i≤n). (25)

We detail the rationale behind this choice below. First, with the choice (25), we have xk−Σ−1
k ∇xF (xk) = b(xk).

In the unconstrained case, this particular choice of Σk amounts to moving the points x towards their barycenters,
which is the celebrated Lloyd’s algorithm.

Beside this nice geometrical intuition, in the unconstrained case, the choice (25) leads to an alternating direction
minimization algorithm. Indeed, given a set of points, this algorithm computes the optimal transport plan (ψ-step).
Then, fixing this transport plan and the associated Laguerre tessellation, the mass of the point is moved to the
barycenter of the Laguerre cell, which is the optimal position for a given tessellation. This algorithm is widespread
because it does not require additional line-search.

Third, in the unconstrained case, the choice (25) leads to an interesting regularity property around the critical
points. Assume that ∇xF (x∗) = 0, i.e. that x∗[i] = b(x∗)[i] for all i, then the mapping x 7→ b(x) is locally
1-Lipschitz [18, Prop. 6.3]. This property suggests that a variable metric gradient descent with metric Σk and step
size 1 may perform well in practice for X = Ωn, at least around critical points.

Fourth, this metric is the diagonal matrix with coefficients obtained by summing the coefficients of the corre-
sponding line of Hxx[F ], the Hessian of F with respect to x see [16]. In this sense, Σk is an approximation of Hxx[F ].
In the unconstrained case Algorithm 1 can be interpreted as a quasi-Newton algorithm.

A safe choice of the step sk in Algorithm 1 to ensure convergence could be driven by Wolfe conditions. In view
of all the above remarks, it is tempting to use a gradient descent with the choice sk = 1. In practice, it gives a
satisfactory rate of convergence for Algorithm 1. For all the experiments presented in this paper, we therefore make
this empirical choice. We provide some elements to justify the local convergence under a more conservative choice of
parameters in Section A.

5 Links with other models

5.1 Special cases of the framework

5.1.1 Lloyd’s algorithm

Lloyd’s algorithm [38] is well-known to be a specific solver for problem (5), with X = Ω and W = ∆n−1, i.e. to solve
the quantization problem with variable weights. We refer to the excellent review by [18] for more details. It is easy
to check that Lloyd’s algorithm is just a special case of Algorithm 1, with the specific choice of metric

Σk = diag (µ(Li(0,x))) . (26)
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5.1.2 Blue noise through optimal transport

In, [15], the authors has proposed to perform stippling by using optimal transport distance. This application can be
cast as a special case of problem (5), with X = Ω and W =

{
1

n

}
. The algorithm proposed therein is also a special

case of algorithm 1 with

Σk = diag (µ(Li(φ?(x),x))) =
1

n
(27)

and the step-size τk is optimized through a line search. Note however the extra cost of applying a line-search might
not worth the effort, since a single function evaluation requires solving the dual problem (13).

5.2 Comparison with electrostatic halftoning

In [52, 55, 21, 10], an alternative to the W2 distance was proposed, implemented and studied. Namely, the distance
D in (1) is defined by

D(ν, µ) =
1

2
‖h ? (ν − µ)‖2L2(Ω), (28)

where h is a smooth convolution kernel and ? denotes the convolution product. This distance can be interpreted
intuitively as follows: the measures are first blurred by a regularizing kernel to map them in L2(Ω) and then compared
using a simple L2 distance. It appears in the literature under different names such as Maximum Mean Discrepancies,
kernel norms or blurred SSD. In some cases, the two approaches are actually quite similar from a theoretical point
of view. Indeed, it can be shown that the two distances are strongly equivalent under certain assumptions [48].

The two approaches however differ significantly from a numerical point of view. Table 1 provides a quick summary
of the differences between the two approaches. We detail this table below.

• The theory of optimization is significantly harder in the case of optimal transport since it is based on a subtle
mix between first and second order methods.

• The convolution-based algorithms require the use of methods from applied harmonic analysis dedicated to par-
ticle simulations such as fast multiple methods (FMM) [27] or non-uniform Fast Fourier Transforms (NUFFT)
[50]. On their side, the optimal transport based approaches require the use of computational geometry tools such
as Voronoi or Laguerre diagrams. The former has been parallelized efficiently on CPU and GPU and turnkey
toolboxes are now available, while the latter seem to be less accessible for now and some implementations are
intrinsically serial.

• The examples provided here are only two-dimensional. Many applications in computer graphics require dealing
with 3D problems or larger dimensional problems (e.g. clustering problems). In that case, the numerical
complexity of convolution based problems seems much better controlled: it is only linear in the dimension d
(i.e. O(dn log(n))), while the exact computation of Laguerre diagrams requires in average O(ndd/2e) operations,
the worst case time complexity for d = 2 is O(n log n)[3]. Hence, for a large number of particles, the approach
suggested here is mostly restricted to d = 2.

• In terms of computational speed for 2D applications, we observed that the optimal transport based approach
was usually between 1 and 2 orders of magnitude faster. This is mostly due to the fact that the descent
algorithm based on optimal transport converges in significantly less iterations than that based on convolution
distances.

• Finally, we did not observe significant differences in terms of approximation quality from a perceptual point of
view.

5.2.1 Benchmark with other methods

In this section we provide compare 4 methods: two versions of electrostatic halftoning [10], ibnot (a semi-discrete
optimal transport toolbox [15]) and the code presented in this paper.
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Convolution Optimal transport
Optimization 1st order Mix of 1st and 2nd
Computation FMM/NUFFT Power diagram
Scaling to d Linear Exponential
Speed in 2d Slower Faster
Quality Good Good

Table 1: A comparison between convolution and optimal transport based approximation of measures.

Choice of a stopping criterion The comparison of different methods yields the question of a stopping criterion.
Following [52], the signal-to-noise ratio (SNR) of the original image and the stippled image convolved with a Gaussian
function has been chosen. The standard deviation of the Gaussian is chosen as 1/

√
n, which is the typical distance

between points. Figure 3 shows different values of this criterion for an increasing quality of stippling. In all the
forthcoming benchmarks, the algorithms have been stopped when the underlying measured reached a quality of
31dB.

Figure 3: Evolution of the PSNR through iteration : top left 8dB, top right 25dB, bottom left 31dB, bottom right
34dB

Benchmarks The first benchmark is illustrated in Table 2. For this test the background measure has a constant
density and consists of 1024×1024 pixels. The number of Dirac masses increases from 210 to 218. The initialization
is obtained by a uniform Poisson point process.

In this case ibnot and our code present the same complexity and roughly the same number of x-step to achieve
convergence. The time per iterations is significantly smaller in our code due to the use of Green’s formula for
integration (see Section 3.3), which reduces the integration’s complexity from n to

√
n where n the number of pixels.

We tested multiple versions of electrostatic halftoning, differing in the choice of the optimization algorithm. The
code Electro 20 cores corresponds to a constant step-size gradient descent as proposed in [52]. The code Electro BB
20 cores is a gradient descent with a Barzilai-Borwein step-size rule. In our experience, this turns out to be the most
efficient solver (e.g. more efficient than a L-BFGS algorithm). The algorithms have been parallelized with Open-MP
and evaluated on a 20 cores machine using the NFFT to evaluate the sums [50].

In Table 2, the electrostatic halftoning algorithms are always slower than our optimal transport algorithms despite
being multi-threaded on 20 cores.

The second test is displayed in Table 3. It consists in trying to approximate a non-constant density ρ(x, y) equal
to 2 if x < 0.5 and 0 if x > 0.5. In this test we also start from a uniform point process.

In this test ibnot always fails to converge since the Hessian in ψ is not definite. In comparison with the previous
test, our code is slightly slower since the first ψ-step requires to find a ψ that maps Laguerre cells far away from the
localization of their site (x). After the first x-step, the position of the site is decent and the optimization routine

12



# pts Electro 20 cores Electro BB 20 cores ibnot 1 core our 1 core
210 130.3 — 317 34.4 — 84 131.47 — 15 4.03 — 19
211 240.1 — 558 49.5 — 115 165.42 — 18 4.83 — 23
212 293.9 — 637 47.8 — 104 267.59 — 22 10.86— 19
213 415.2 — 798 78.8 — 152 235.87 — 15 26.43 — 20
214 783.5 — 1306 106.3 — 177 344.77 — 17 47.90— 21
215 1160.5 — 1319 156.8 — 178 598.60 — 18 99.63— 18
216 4568.5 — 3286 569.2 — 410 1208.45 — 20 252.24— 26
217 15875.0 — 4628 1676.3 — 489 2498.58 — 19 620.90— 19
218 TL 12125.2 — 1103 5633.68 — 23 1136.51— 21

Table 2: Times in second and number of iterations to achieve convergence for the uniform background measure.
TL means that the computing time was too long and that we stopped the experiment before reaching the stopping
criterion. For the Electrostatic halftoning, two different methods are compared : a gradient descent with constant
step-size (2nd column), and the Brazalai Borwein method (third column).

# pts Electro BB 20 cores ibnot 1 core our 1 core
210 40.2 — 99 NC 4.34 — 24
211 59.6 — 142 NC 9.70 — 21
212 84.5 — 190 NC 15.36— 19
213 125.1 — 248 NC 29.76— 25
214 177.7 — 282 NC 79.73— 27
215 287.6 — 298 NC 113.56 —18
216 746.3 — 424 NC 280.02— 17
217 3052.9 — 712 NC 703.39— 21
218 39546.1 — 2022 NC 1315.01—24

Table 3: Times in seconds and number of iterations to achieve convergence for the non uniform setting. NC stands
for does not converge. TL stands for too long (exceeding 4 hours of computations on 20 cores).

performs as well as the previous example. Again, the computing times of electro-static halftoning is significantly
worse than the one of optimal transport. Notice in particular how the number of iterations needed to reach the
stopping criterion increases with the number of points, while it remains about constant for the optimal transport
algorithm.

6 Projections on curves spaces

In this section, we detail a numerical algorithm to evaluate the projector ΠX, for spaces of curves with kinematic or
geometric constraints.
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6.1 Discrete curves

A discrete curve is a set of points x ∈ Ωn with constraints on the distance between successive points. Let

Aa1 : x→


x[2]− x[1]

...
x[n]− x[n− 1]

x[1]− x[n]



and

Ab1 : x→


x[2]− x[1]
x[3]− x[2]

...
x[n]− x[n− 1]


denote the discrete first order derivatives operators with or without circular boundary conditions. From hereon, we
let A1 denote any of the two operators. In order to control the distance between two neighboring points, we will
consider two types of constraints: kinematic ones and geometrical ones.

6.1.1 Kinematic constraints

Kinematic constraints typically apply to vehicles: a car for instance has a bounded speed and acceleration. Bounded
speeds can be encoded through inequalities of type

‖(A1x)[i]‖2 ≤ α1,∀i. (29)

Similarly, by letting A2 denote a discrete second order derivative, which can for instance be defined by A2 = AT1 A1,
we may enforce bounded acceleration through

‖(A2x)[i]‖2 ≤ α2,∀i. (30)

The set X is then defined by
X = {x ∈ Ωn, ‖A1x‖∞,2 ≤ α1, ‖A2x‖∞,2 ≤ α2}, (31)

where, for y = (y[1], . . . ,y[n]), ‖y‖∞,p = sup1≤i≤n ‖y[i]‖p.

6.1.2 Geometrical constraints

Geometrical constraints refer to intrinsic features of a curve such as its length or curvature. In order to control those
quantities using differential operators, we need to parameterize the curve with its arc length. Let s : [0, T ] → R2

denote a C2 curve with arc length parameterization, i.e. ‖ṡ(t)‖2 = 1,∀t ∈ [0, T ]. Its length is then equal to T . Its
curvature at time t ∈ [0, T ] is equal to κ(t) = ‖s̈(t)‖2.

In the discrete setting, constant speed parameterization can be enforced by imposing

‖(A1x)[i]‖2 = α1,∀i. (32)

The total length of the discrete curve is then equal to (n− 1)α1.
Similarly, when (32) is satisfied, discrete curvature constraints can be captured by inequalities of type

‖(A2x)[i]‖2 ≤ α2,∀i. (33)
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Indeed, at a index 2 ≤ i ≤ n− 1, we get:

‖(A2x)[i]‖22 = ‖(x[i]− x[i− 1])− (x[i+ 1]− x[i])‖22
= ‖x[i]− x[i− 1]‖22 + ‖x[i+ 1]− x[i]‖22
− 2〈x[i]− x[i− 1],x[i+ 1]− x[i]〉
= 2α2

1(1− cos (θi)),

where θi = ∠ (x[i]− x[i− 1],x[i+ 1]− x[i]) is the angle between successive segments of the curve. Hence, by imposing
(32) and (33), the angle θi satisfies

|θi| ≤ arccos

(
1− α2

2

2α2
1

)
. (34)

In order to fix the length and bound the curvature, we may thus choose the set X as

X = {x ∈ Ωn, ‖(A1x)[i]‖2 = α1, ‖A2x‖∞,2 ≤ α2}. (35)

Let us note already that this set is nonconvex, while (31) was convex.

6.1.3 Additional linear constraints

In applications, it may be necessary to impose other constraints such as passing at a specific location at a given time,
closing the curve with x1 = xn or having a specified mean value. All those constraints are of form

Bx = b, (36)

where B ∈ Rp×2n and b ∈ Rp are a matrix and vector describing the p linear constraints.

6.1.4 Summary

In this paper, we will consider discrete spaces of curves X defined as follows:

X = {x such that Aix ∈ Yi, 1 ≤ i ≤ m,Bx = b}, (37)

The operators Ai may be arbitrary, but in this paper, we will focus on differential operators of different orders. The
set Yi describes the admissible set for the i-th constraint. For instance, to impose a bounded speed (29), we may
choose

Y1 = {y ∈ Rn×2, ‖yi‖2 ≤ α1,∀i}. (38)

In all the paper, the set of admissible weights W will be either the constant {1/n} or the canonical simplex ∆n−1.

6.2 Numerical projectors

The Euclidean projector ΠX : Rn → X is defined for all z ∈ Ωn by

ΠX(z) = Argmin
x∈X

1

2
‖x− z‖22

= Argmin
Akx∈Yk,1≤k≤m

Bx=b

1

2
‖x− z‖22 (39)

When X is convex, ΠX(z) is a singleton. When it is not, there exists z such that ΠX(z) contains more than one
element. The objective of this section is to design an algorithm to find critical points of (39).
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The specific structure of (39) suggests using splitting based methods [14], able to deal with multiple constraints
and linear operators. The sparse structure of differential operator makes the Alternating Direction Method of
Multipliers (ADMM, [25]), particularly suited for this problem. Let us turn (39) into a form suitable for the ADMM.

Let γ1, . . . , γm denote positive reals used as preconditionners. Define

A =

 γ1A1

...
γmAm

 , y =

y1

...
ym

 (40)

and
Y = γ1Y1 × . . .× γmYm. (41)

Problem (39) then becomes

ΠX(z) = Argmin
Bx=b
Ax=y
y∈Y

1

2
‖x− z‖22

= Argmin
Ax=y

f1(x) + f2(y), (42)

where f1(x) = 1
2‖x − z‖22 + ιL(x), f2(y) = ιY(y), L = {x, Bx = b} denotes the set of linear constraints and the

indicator ιY of Y is defined by:

ιY(y) =

{
0 if y ∈ Y,

+∞ otherwise.
(43)

The ADMM for solving (42) is given in Algorithm 2. Specialized to our problem, it yields Algorithm 3. The linear
system can be solved with a linear conjugate gradient descent.

Algorithm 2 Generic ADMM.

Inputs:
functions f1 and f2, matrix A, initial guess (x0,λ0), parameter β > 0.

1: while Stopping criterion not met do

yk+1 = Argmin
y

f2(y) +
β

2
‖Ax− yk+1 + λk‖22.

xk+1 = Argmin
x

f1(x) +
β

2
‖Ax− yk+1 + λk‖22.

λk+1 = λk +Axk+1 − yk+1.
2: end while

Convergence issues The convergence and rate of convergence of the ADMM is a complex issue that depends on
the properties of functions f1 and f2 and on the linear transform A. In the convex setting (31), the sequence (xk)k
converges to ΠX(z) linearly (see Corollary 2 in [24]). The behavior in a nonconvex setting (35) is still mostly open
despite recent advances in [37]. Nevertheless, we report that we observed convergence empirically towards critical
points of Problem (39).

Choosing the coefficients β and (γi) Despite recent advances [46], a theory to select good values of β and (γi)
still seems lacking. In this paper, we simply set γi = ‖Ai‖2, the spectral norm of Ai. In practice, it turns out that
this choice leads to stable results. The parameter β is set manually to obtain a good empirical behavior. Notice that
for a given application, it can be tuned once for all.
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Algorithm 3 ADMM to solve the projection problem.

Inputs:
Vector to project z, initial guess (x0,λ0), matrices A and B, projector (ΠY), β > 0.

1: while Stopping criterion not met do
yk+1 = ΠY(Axk + λk).
Solve [

βATA+ I BT

B 0

](
xk+1

µ

)
=

(
βAT (yk+1 − λk) + z

b

)
.

λk+1 = λk +Axk+1 − yk+1.
2: end while

6.3 Numerical examples

To illustrate the proposed method, we project the silhouette of a cat onto spaces of curves with fixed length and
bounded curvature in Fig. 4. In the middle, we see how the algorithm simplifies the curve by making it smaller
and smoother. On the right, we see how the method is able to make the curve longer, by adding loops of bounded
curvature, while still keeping the initial cat’s shape.

Figure 4: Examples of projections of a curve (in red) on spaces of curves with constraints (in blue). Center: projection
on sets of curves with smaller length and bounded curvature. Right: projection on sets of curves with longer length
and bounded curvature.

6.4 Multi-resolution implementation

When X is a set of curves, the solution of (9) can be found more efficiently by using a multi-resolution approach.
Instead of optimizing all the points simultaneously, it is possible to only optimize a down-sampled curve, allowing to
get cheap warm start initialization for the next resolution.

In our implementation, we use a dyadic scaling. We up-sample the curve by adding mid-points in between
consecutive samples. The weights from one resolution to the next are simply divided by a factor of 2.
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(a) Original (b) Curve length l (c) Curve length l
3

(d) Curve length l
12

Figure 5: Examples of Curvling (stippling + curve projection, 256k, ≈ 10’),

7 Applications

7.1 Non Photorealistic Rendering with curves

In the following subsections we exhibit a few rendering results of images using different types of measures sets M.

7.1.1 Gray-scale images

A direct application of the proposed algorithm allows to approximate an arbitrary image with measures supported
on curves. An example is displayed in Fig. 5 with curves satisfying different kinematic constraints.

7.1.2 Color images

There are different ways to render color images with the proposed idea. We refer for instance to [60, 9] for two
different examples. In this section, we propose a simple alternative idea to give a color to the dots or curves. Given
a target vectorial density ρ = (ρR, ρG, ρB) : Ω→ [0, 1]3, the algorithm we propose simply reads as follows:

1) We first construct a gray level image defined by:

ρ̄ = (ρR + ρG + ρB)/3. (44)

2) Then, we project the density ρ̄ onto the set of constraints M with Algorithm 1. This yields a sequence of
points x ∈ Ωn.

3) Then, for each point x[i] of the discretized measure, we select a color as ρ(x[i])
ρ̄(x[i])) .

We use only saturated colors, explaining the division in step 3). The parallel for gray-scale images, is that we
represent stippling results with disks taking only the maximal intensity. Then, the mean in step 1) is used to attract
the curve towards the regions of high luminance of the image. An example of result of the proposed algorithm is
shown in Figure 6.

7.1.3 Dynamic examples

The codes can also be used to approximate videos. The principle is simple: first we approximate the first sequence of
the frame with our projection algorithm starting from an arbitrary initial guess. Then, the other frames are obtained
with the projection algorithm, taking as an initial guess, the result of the previous iteration. This ensures some
continuity of the dots or curves between consecutive frames. Some videos are given in the supplementary material.
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(a) Target color image (b) Approximate color measure

Figure 6: Examples of color curvling, 512k, ≈ 24’),

7.2 Path planning

In this section, we provide two applications of the proposed algorithm to path planning problems.

7.2.1 Videodrone

Drone surveillance is an application with increasing interest from cities, companies or even private individuals. In
this paragraph, we show that the proposed algorithms can be used to plan the drone trajectories for surveillance
applications. We use the criminal data provided by [13] to create a density map of crime in Philadelphia, see Fig.
7a. We give different weights to different types of crimes. By minimizing (1), we can design an optimal path, in the
sense that it satisfies the kinematic constraints of the drone and passes close to dangerous spots more often than in
the remaining locations. In this example, we impose a bounded speed, a maximal yaw angular velocity and also to
pass at a given location at a given time to recharge the drone to satisfy autonomy constraints.

7.2.2 Laser engraving

In Fig. 8, we gave a trajectory to a laser engraving machine in order to reproduce a landscape with a continuous
line. We suspect that the same techniques could be used to optimize the nozzle and the flow of matter trajectory of
3D printers.

7.2.3 Sampling in MRI

Following [7], we propose to generate compressive sampling schemes in MRI (Magnetic Resonance Imaging), using
the proposed algorithm.

In MRI, images are probed indirectly through their Fourier transform. Fourier transform values are sampled along
curves with bounded speed and bounded acceleration, which exactly corresponds to the set of constraints defined in
(31). The latest compressed sensing theories suggest that a good way of subsampling the Fourier domain, consists in
drawing points independently at random according to a certain distribution µ, that depends on the image sparsity
structure in the wavelet domain [7, 1]. Unfortunately, this strategy is impractical in MRI due to physical constraints.
To simulate such a sampling scheme, we therefore propose to project µ onto the set of admissible trajectories.
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(a) The crime density µ (b) Path adopted by the drone

Figure 7: The data superimposed on a map of Philadelphia. A possible drone trajectory made. In this example, the
drone passes 4 times to its recharging location, explaining the different colors of the trajectory. In this example, the
trajectory was discretized with 8k points and optimized in 30”.

Let u : [0, 1]2 → R denote a magnetic resonance image. The sampling process yields a set of Fourier transform
values y[i] = û(x[i]). Given this set of values, the image is then reconstructed by solving a nonlinear convex
programming problem:

min
v,v|x=y

1

2
‖v̂(x)− y‖22 + λ‖Ψu‖1, (45)

where Ψ is a linear sparsifying transform, such as a redundant wavelet transform.
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(a) Laser engraving machine (b) The resulting wood engraved trajectory

Figure 8: Example of wood engraving. Left: a laser burning the wood by following an input trajectory. Right: the
final result.
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(a) Target density µ (b) Sampling scheme

(c) True image (d) Reconstructed image

Figure 9: Example of sampling scheme generation and image reconstruction in MRI. The target density µ is shown in
9a. The sampling scheme generated by our algorithm is shown in 9b. The background shows the Fourier transform
of u in log-scale. It contains one fourth of the total number of Fourier transform values. The true image and the
reconstructed one are shown in Fig. 9c and 9d.
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A Theoretical convergence of Algorithm 1

The following result is a direct application of standard convergence results, see e.g. [44].

Theorem 3. Suppose that X ⊂ Rn is closed and convex, that Σk = Σ is a constant positive definite matrix. In
addition, suppose that F is a C1 function with Lipschitz continuous gradient:

∀(x1,x2), ‖∇F (x1)−∇F (x2)‖Σ−1 ≤ L‖x1 − x2‖Σ. (46)

Finally suppose that either X is compact or F is coercive. Then Algorithm 1 converges to a critical point of F for
step-size sk = 1

L .

Applying Theorem 3 requires Σk to be constant, hence the mass w to be prescribed. We make this assumption
in this section.

Theorem 3 shows that it is critical to evaluate - if it exists - the Lipschitz constant of ∇xF . By equation (23),
we need to evaluate the variations of the Laguerre cells barycenter b with respect to x. Unfortunately, following
the Hessian computation in [16], the Lipschitz constant scales as mini6=j ‖x[i]− x[j]‖−1 and cannot be proven to be
uniform in x. Hence, we can only hope for a local result describing the Lipschitz constant.

Hence, if the hypothesis of existence of the Hessian of F are met (see [16]), an estimation of the Lipschitz constant
of F by its Hessian yields a theory of local convergence of F in a vicinity V(x∗) of a local minimizer x∗, for small
enough steps sk. Without these assumptions, local Lipschitz continuity of the gradient of F cannot be enforced.

If in addition there is no Π-step, that is X = Ωn, the gradient of F is 1-Lipschitz around critical points (the
so-called centroidal tessellation), see [18, Prop. 6.3]. Hence, convergence can be proven in a vicinity of x∗ for step
choice sk = 1 and the metric Σk. However, the size of the vicinity V(x∗) relies on the geometrical properties of the
“optimal” Laguerre tessellation. The quality of such a local minimum could be very far from the global minimizer,
nevertheless numerical experiments tend to indicate that is it not the case. For the same problem, hundreds of
random initializations converge to a set of stationary points with a nice visual property.
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