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Abstract

When we make rapid reaching movements, we have to trade speed for accuracy. To do so,

the trajectory of our hand is the result of an optimal balance between feed-forward and feed-

back control in the face of signal-dependant noise in the sensorimotor system. How far do

these principles of trajectory formation still apply after a stroke, for persons with mild to mod-

erate sensorimotor deficits who recovered some reaching ability? Here, we examine the

accuracy of fast hand reaching movements with a focus on the information capacity of the

sensorimotor system and its relation to trajectory formation in young adults, in persons who

had a stroke and in age-matched control participants. We find that persons with stroke follow

the same trajectory formation principles, albeit parameterized differently in the face of higher

sensorimotor uncertainty. Higher directional errors after a stroke result in less feed-forward

control, hence more feed-back loops responsible for segmented movements. As a conse-

quence, movements are globally slower to reach the imposed accuracy, and the information

throughput of the sensorimotor system is lower after a stroke. The fact that the most abstract

principles of motor control remain after a stroke suggests that clinicians can capitalize on

existing theories of motor control and learning to derive principled rehabilitation strategies.

Introduction

Reaching with one’s hand is the building block of most of our movements with the upper-limb

in everyday life. When we make rapid reaching movements, we have to trade speed for accu-

racy [1], and the way we do so is predicted by one of the most robust laws in motor control,

the Fitts’s law [2]. The general idea behind this law is that a limited information throughput

acts as a constraint on trajectory formation: the higher the accuracy requirement, the higher

the amount of information to transmit and, consequently, the longer the time it will take to

perform an accurate movement. In rapid reaching movements, feed-forward control is used to

implement a fast initial impulse that, on average, rapidly moves the hand within the target [3].

Yet, due to signal-dependent noise in the motor command, a stronger initial impulse results in
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more endpoint variability [4,5], which might necessitate a corrective sub-movement. By opti-

mally adjusting the average magnitude and duration of each noisy impulse used to generate a

sub-movement, we can minimize the overall movement duration for the requested accuracy

[6]. Nowadays, it seems undisputed that the way we trade speed for accuracy is an emergent

feature of optimal trajectory formation in the face of noise in the sensorimotor system [7,8].

So, higher sensorimotor noise due to ageing is likely one possible cause of the strategic adapta-

tions in sensorimotor control with age [9], whether resulting in lower information throughput

[10–12] or not [13].

However, it is largely unclear if and how the same principles apply for movement genera-

tion with a damaged brain, such as it is the case after a stroke, for persons who recovered some

reaching ability. Stroke results in higher sensorimotor noise compared to age-matched con-

trols[14,15], and we have seen that the same is likely true for aging. Here, we want to disentan-

gle the effects of ageing and of stroke. We address the organization of fast reaching movement

after an unilateral stroke, in age-matched and in young control participants, with a focus on

the information capacity of the sensorimotor system and its relation to trajectory formation,

that is, in relation to the principles and laws that shape the geometrical and temporal features

of our movements [16]. Stroke is the leading cause of long-term disability, despite many forms

of neuroplasticity contributing to recovery [17]. Reaching movements post-stroke are charac-

terized by coarse-grained force production with tremor [18]. It is also likely that moving out-

ward in the homolateral space is more difficult, because gravity compensation devices are

especially effective in this quadrant [19,20]. In addition, the unfolding of the hand trajectory in

space and time is marked by more directional errors, stronger segmentation, and less overall

speed [21–23]. However, for people with mild or moderate stroke, the lack of available force is

not the main reason for the impaired control, which seems mainly related to unavoidable

abnormal synergies [24,25]. All in all, the main characteristic of the motor output after a stroke

seems to be a higher amount of noise, likely combined with a cost of the movement that varies

as a function of its direction, especially for persons with severe sensorimotor deficits [26,27].

Therefore, we formulate three hypotheses. First, we hypothesize that increasing accuracy

requirements will have a stronger impact on movement organization in people post-stroke

and that this impact will be even stronger when moving outward in the homolateral space. Sec-

ond, we hypothesize that both ageing and stroke will result in lower sensorimotor perfor-

mance, yet with a stronger effect of stroke. Third, we hypothesize that people will follow the

same principles of trajectory formation in the face of sensorimotor noise, whether they are

young or aged and healthy, or suffering from stroke.

Methods

Participants

A group of 19 adults with stroke (aged 61.0 ±13.8, 9 male) performed the task with their paretic

hand. Inclusion criteria were (1) unilateral stroke at least one month before, (2) capacity to

hold a pen, with more than 2 at the Enjalbert test [28], and (3) capacity to actively extend the

elbow up to 135˚ in the horizontal plane. Exclusion criteria were (1) neglect (Catherine Ber-

gego scale > 0/30 [29]) and (2) cognitive deficits (mini mental state examination < 25/30

[30]). Table 1 provides more detailed information about the patient group.

A group of 13 age-matched healthy participants (aged 65.2 ±9.5, 6 male) and a group of 19

healthy young adults (aged 25.7 ±2.5, 14 male), with no history of neurological disease, per-

formed the task with their dominant hand. The young group provided the reference of the best

possible performance at the task, which allowed to disentangle the effects of ageing and of

stroke, so to complement previous works [14,15].

Trajectory formation when reaching after stroke
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All participants had normal or corrected-to-normal vision.

All study procedures were approved by the Ethics Committee of Nimes, France (n˚ 2010-

A0059633) and executed at the Physical and Rehabilitation Medicine Departments of the Uni-

versity Hospital of Nimes and of Montpellier. All participants gave written informed consent

before inclusion. All procedures complied with the ethical standards outlined by the Declara-

tion of Helsinki.

Procedure

Participants sat in front of a graphic tablet (Wacom Intuos4 XL, A3), facing a screen (Apple,

17 inch) located about 60 cm from their eyes, and with their belly in contact with the edge of

the graphics tablet. A displacement of 20 cm of their hand on the graphics tablet corresponded

to a 16 cm displacement of the cursor on the screen (approximately 16˚ of visual angle). Partic-

ipants could see their own hand movement on the graphics tablet with peripheral vision. We

did not use devices for trunk restriction or upper-limb support. For some patients, the pen was

strapped to the fingers of the paretic hand to facilitate the grip.

After familiarization, participants had to perform two trials separated by a rest period. Each

trial consisted of a series of 40 reaching movements at targets appearing one after the other, in

a fixed order described in Fig 1. Participants were instructed to perform the whole sequence as

fast as possible.

In total, each participant performed 80 reaching movements, which corresponded to 20

task conditions (5 orientations × 2 directions × 2 indexes of difficulty) repeated 2 times in each

of the 2 trials. Motion orientation was coded according to the rose of the winds: west, north-

west, north, northeast and east (W, NW, N, NE, E see Fig 1). The same index of difficulty (3.80

Table 1. Characteristics of the hemi-paretic group.

Gender Age MAS Month since stroke Brain lesion side Brain lesion type Brain lesion location Enjalbert score

P01 F 48.1 0 2 R I Middle cerebral artery 5

P03 F 57.8 1+ 3 L H Thalamic capsule 3

P04 F 53.6 1 35 L I Superficial middle cerebral artery 2

P05 M 70.4 0 4 R I Superficial middle cerebral artery 4

P06 F 72.6 0 5 L H Putamen 2

P07 M 61.9 1 3 L I Internal Capsule 4

P09 F 52.2 0 5 R I Internal Capsule 2

P10 M 58.5 1 2 L I Middle cerebral artery 3

P11 M 57.9 0 4 R I Middle cerebral artery 2

P12 M 69.4 1 2 L H Capsulo-thalamic 3

P13 F 67.3 0 2 L I Middle cerebral artery 4

P14 M 69.1 0 10 R H Capsulo-thalamic 5

P16 M 64.9 0 2 L I Para middle cerebral artery 6

P20 F 23.0 1 5 L H Frontal parenchymatic 2

P21 M 74.0 1 63 R I Temporal lobe 2

P22 M 71.6 0 3 R H Thalamic capsule 3

P23 F 75.1 0 4 R I Middle cerebral artery 3

P25 F 37.3 0 5 L I Middle cerebral artery 2

P29 F 74.5 0 4 R I Middle cerebral artery 5

Brain lesion side is right of left (R/L). Brain lesion type is ischemic or hemorrhagic (I/H). MAS stands for Modified Ashworth Scale for the assessment of

spasticity in elbow flexors from 0 (normal) to 4 (rigid). The Enjalbert test classifies prehension from 0 (no motricity) to 6 (sub-normal).

https://doi.org/10.1371/journal.pone.0173674.t001
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and 5.43 bit) was obtained for reaching distances of 175 and 100 mm by setting target size

proportional to distance (14.28% and 4.62%). Preliminary tests revealed that random order,

higher average difficulty or more reaching movements was not possible in a single experimen-

tal session for persons with stroke.

Data analysis

Movements performed with the left hand were flipped so that a reaching to the east always

corresponded to a reaching to the side of the active upper-limb. Position time series were

recorded every 30 ms and low pass filtered at 15 Hz. Each reach movement was parsed using

hand velocity profile (see Fig 2). The appearance of the target defined the Go signal. The move-

ment time (MT) was the duration between when the pointer left the start target and the first

velocity minimum that was within the target. The first velocity peak was used to separate an

initial adjustment (IA) phase and a current control (CC) phase [1,31,32]. The first velocity min-

imum was used to estimate the end of the first sub-movement (end of SM1 in Fig 2), which

includes IA and the first part of the deceleration, up to the first re-acceleration. At these

marked points within a movement time (Fig 2), we analyzed the percentage of movement dis-

tance and time that was covered to get a numerical estimate of the shape of the trajectory in

time and space [3,33,34]. The number of sub-movements (nSM) was assessed using the num-

ber of velocity maxima [23].

Information capacity

When reaching at a target, the relative accuracy (namely, the ratio of target distance D over tar-

get width W) determines the index of difficulty of the task, ID = log2(2D/W). The ID measures

the amount of information that the sensorimotor system must transmit during execution of

the task, by direct analogy to Shannon’s theory about communication of information over a

noisy channel [35].

Fig 1. Disposition of the targets. The task was to successively reach each target in a fixed order. The letters

W, NW, N, NE, E refer to movement orientation coded according to the rose of the winds. Only one target was

present on the screen at a time. No click was required: the reaching was successful when staying within the

target for 1 s (see Fig 2). After reaching the central target (large blue circle), the trial started with the outward

reaching to the target at the largest distance and lowest difficulty (i.e., large blue target to the west). Each

outward reach was followed with an inward reach to the central target. The whole sequence of reaching was

outward then inward, along directions from west to east, at distances of 175 and 100 mm (blue and red circles)

and at large and small targets, whose size was equal to 14.28% and 4.62% of the distance.

https://doi.org/10.1371/journal.pone.0173674.g001
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In fast and accurate reaching, more accuracy implies more information and, consequently,

the movement time becomes longer to accommodate the higher amount of information to

transmit. This rationale gave rise to a famous quantitative relation in human motor control,

the Fitts’s law, which predicts that the movement time MT will be a linear function of the

index of difficulty ID [2,3,6]. In the equation MT = a + b ID, the slope (b) captures the infor-

mational aspects of the performance, and the intercept (a) aggregates the non-informational

aspects in the MT vs. ID relation [36]. The inverse of the slope (1/b) quantifies the information

throughput [2,36,37]. The intercept (a) quantifies the minimum time for a movement without

accuracy, which makes sense, due to the limited acceleration capabilities of any effector [38].

Note that the values of the parameters (a) and (b) are specific to each individual person, but

they also depend on the device/effector used to perform the task [39].

Statistical analysis

The effects of the experimental manipulation were assessed for each dependent measure using

an ANOVA with one between-group factor (G: Young/Age-matched/Patient) and three

within-group factors: orientation (ORI: W/NW/N/NE/E), direction (DIR: Outward/Inward)

and index of difficulty (ID: 3.80/5.43). Effect size was estimated with generalized eta squared

(Z2
G), which is well adapted to mixed within-between design [40]. Statistical significance was

set to alpha < .01, with Greenhouse & Geisser corrected probabilities for the ORI factor.

Effects with Z2
G < 0.01 were deemed too small to be considered [40]. Post hoc multiple mean

comparisons with Tukey contrasts were used to complement the ANOVA.

For the movement time, the data were not normally distributed. As a consequence, it is rec-

ommended to use non-parametric tests to assess the effects of the experimental factors. How-

ever, the ANOVA is robust to normality violation provided that the distributions are similar in

shape [41], and we moreover found that the ANOVA and the non-parametric tests yielded

similar conclusions. Consequently, for the sake of simplicity, we report the ANOVA results for

all variables.

Fig 2. Typical tangential velocity profile showing the method for parsing a reaching movement. The reaching was successful when the

cursor remained within the target for 1 sec (no click required). Red circles indicate velocity minima. Blue squares indicate velocity maxima. The

blue triangle represents peak acceleration. The figure illustrates the durations of the reaction time (RT), movement time (MT), time to peak

acceleration (*), first sub-movement (SM1), homing-in (HI), initial adjustment (IA) and current control phase (CC). The beginning of the MT is

the last velocity minimum inside the previous target. The end of the first sub-movement is the first velocity minimum. The end of the MT is the

first velocity minimum that is inside the target. The number of sub-movements (nSM) is the number of velocity maxima.

https://doi.org/10.1371/journal.pone.0173674.g002
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Results

Movement time and the Fitts’s law

The movement time was longer for participants with stroke (F(2, 48) = 35.32, p = 0.0000, Z2
G =

0.67), increased with the index of difficulty (F(1, 48) = 5.42, p = 0.0000, Z2
G = 0.03), and this

increase was stronger for patients (F(2, 48) = 10.02, p = 0.0003, Z2
G = 0.03). Post-hoc compari-

son indicated that the mean movement time for participants with stroke what higher than for

the young and age-matched control groups, which did not differ significantly (respectively,

p = 0.0000, p = 0.0000 and p = 0.7880).

As a consequence, the slope of the Fitts’s Law was higher after a stroke (Fig 3, left panel),

which indicates that the information throughput was lower (Table 2). The consequences of

stroke resulted in a significant slow down of 6.42 bits/sec (82% less than age matched). The

intercept of the Fitts’s Law did not vary significantly among groups (F(2, 48) = 0.17, p = 0.8391,

Z2
G = 0.00).

Fig 3. Movement time (MT) and number of sub-movements (nSM) as a function of index of difficulty (ID). Each point in the figure corresponds to

40 reaching movements multiplied by the number of participants in the group, for the patients with stroke (blue line) and the aged-matched and young

adults (thin red lines). Errors bars indicate standard deviations between participants. The difference in slope between the groups indicates that the

effect of the informational load (ID) is about 5–7 times stronger for persons with stroke, for the MT and for the nSM (see also Table 2). There is no

significant difference in intercept. The number of sub-movements is likely the main determinant of the lower information throughput in persons with

stroke.

https://doi.org/10.1371/journal.pone.0173674.g003

Table 2. Average values of the main variables for the three experimental groups.

Variable Age-matched Young Patient

Movement time (sec) 1.17 0.92 3.53

Fitts’s slope (sec/bit) 0.118 0.097 0.672

Throughput (bit/sec) 8.47 10.30 1.49

Sub Movements (number) 1.84 1.99 7.52

Time in IA (%) 28.67 27.87 17.48

Distance in IA (%) 39.27 43.20 22.49

Error in distance at the end of SM1 (%) 7.55 8.26 56.25

Error in direction at the end of SM1 (˚) 1.38 1.62 8.72

For all variables in the table, multiple comparisons with Tukey contrasts indicate that the means of the Age-

matched and Young groups do not differ, but differ from the means of the Patient group.

https://doi.org/10.1371/journal.pone.0173674.t002
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We did not find significant effects involving the DIR and ORI factors.

Feed-forward and feed-back control

To better understand the control processes at work to accommodate the speed and accuracy

constraints, we divided each reaching movement into two phases corresponding to a dominant

role of different control processes [1,3]: feed-forward in the initial adjustment phase and feed-

back in the current control phase (see Fig 2).

Movement distance and time during the initial adjustment phase. The percentage of

movement time in the initial adjustment phase was lower for participants who had a stroke

(F(2, 48) = 27.17, p = 0.0000, Z2
G = 0.38), when moving outward (F(1, 48) = 27.75, p = 0.0000,

Z2
G = 0.03), when the ID was high (F(1, 48) = 151.74, p = 0.0000, Z2

G = 0.10), and when moving

closer to the North orientation (F(4, 192) = 8.48, p = 0.0000, Z2
G = 0.02).

The percentage of the distance to the center of the target that was covered in the initial

adjustment phase was lower for participants who had a stroke (F(2, 48) = 77.85, p = 0.0000,

Z2
G = 0.62) and when moving outward (F(1, 48) = 110.09, p = 0.0000, Z2

G = 0.08), the latter effect

being stronger when moving along the West and East orientations (IO:ORI: F(4, 192) = 9.83,

p = 0.0000, Z2
G = 0.03).

The initial adjustment phase, driven by feed-forward control, was proportionally shorter—

in space and in time—after a stroke, as illustrated in Fig 4, where typical examples of trajecto-

ries and velocity profiles are provided.

Errors in direction and distance at the end the first sub-movement. The previous

results converge to indicate that persons with stroke relied far less on feed-forward control

when reaching with speed and accuracy. To better understand why, we investigated the effi-

ciency of the first sub-movement (SM1 in Fig 2). We analyzed the error at the end of the first

sub-movement, which should be zero for an ideal movement without corrections. We com-

puted the error in direction and in distance. The error in distance was the Euclidian distance

from the current position to the center of the target. The error in direction was the angle

between three points: the current position, the center of the target, and the position at the

beginning of the movement.

At the end of the first sub-movement, the mean error in distance to the center of the target

was about doubled for persons who had a stroke (F(2, 48) = 88.68, p = 0.0000, Z2
G = 0.66,

see Table 2), was increased when reaching outward (F(1, 48) = 88.08, p = 0.0000, Z2
G = 0.07)

and the latter effect was less strong when moving along the North and North-West directions

(F(4, 192) = 5.60, p = 0.0003, Z2
G = 0.02). The error in distance at the end of the first sub-move-

ment tended to be less for higher ID, but this effect was very weak (F(1, 48) = 5.00, p = 0.0301,

Z2
G = 0.00).

At the end of the first sub-movement, the mean angular error in direction was about 5

times larger in participants with stroke (F(2, 48) = 45.59, p = 0.0000, Z2
G = 0.32, see Table 2)

and increased when reaching outward (F(1, 48) = 12.31, p = 0.0010, Z2
G = 0.01) especially for

patients (F(2, 48) = 11.00, p = 0.0001, Z2
G = 0.02). The angular error at the end of the first sub-

movement did not depend on the ID (F(1, 48) = 0.40, p = 0.5297, Z2
G = 0.00).

Trial-to-trial within-participant variability during a movement. The previous results

indicate that, after a stroke, the first sub-movement results in larger errors, both in direction

and in distance. To better understand how participants coped with the final accuracy require-

ments in spite of noise in their movement production, we analyzed how variable was their

movements at peak acceleration, peak velocity, peak deceleration, and at the end of the move-

ment [3]. The dependent variable was the within-participant standard deviation of the
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displacement in the primary direction of the movement at repetitions of the same experimen-

tal condition [3].

At peak acceleration, within-participant variability was higher for the persons with stroke

(F(2, 48) = 30.41, p = 0.0000, Z2
G = 0.32).

At peak velocity, within-participant variability was higher for persons with stroke (F(2, 48) =

31.57, p = 0.0000, Z2
G = 0.13).

Fig 4. Typical movement patterns. The figure shows typical trajectory and velocity profile during an outward reaching toward

the East for persons with stroke, age-matched and young control participants, as a function of the index of difficulty (ID). The

trajectory ends at the rightmost circle that represents the target. The movement time is reported at the end of each velocity

profile. Blue circles represent velocity peaks used to count the sub-movements. Red squares indicate velocity minima, and the

filled square emphasizes the end of the first sub-movements (SM1 in Fig 2). The initial adjustment phase is from the beginning

of the movement up to the first blue circle (IA in Fig 2). The initial adjustment phase, driven by feed-forward control, is shorter

after a stroke, both in space (trajectory) and in time (velocity profile). All in all, persons with stroke use shorter and more

numerous sub-movements, and they need more time to complete a movement with similar accuracy.

https://doi.org/10.1371/journal.pone.0173674.g004
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At peak deceleration, within-participant variability was higher for persons with stroke

(F(2, 48) = 56.37, p = 0.0000, Z2
G = 0.30) and when reaching outward (F(1, 48) = 25.58, p =

0.0000, Z2
G = 0.02).

At the end of the reaching movement, within-participant variability was higher for persons

with stroke (F(2, 48) = 13.71, p = 0.0000, Z2
G = 0.09). Because the tolerance was higher for low

ID, within-participant variability was higher for lower ID (F(1, 48) = 108.90, p = 0.0000, Z2
G =

0.13), and the G×ID interaction indicated that patients exploited better the larger tolerance

(G:ID F(2, 48) = 14.44, p = 0.0000, Z2
G = 0.04).

All in all, within-participant variability was systematically higher for people with stroke

than in both control groups, and the difference was especially strong at peak acceleration (Fig

5), which suggests that feed-forward control was not enough to cancel out higher noise levels

in early movement production for people with stroke.

Accuracy as a consequence of the number of feed-back loops. The previous results indi-

cate that, after a stroke, variability is larger in the initial adjustment phase, especially early in

the movement, when only feed-forward control can account for trajectory formation. Conse-

quently, greater variability in the initial adjustment must be compensated by larger and/or

more numerous corrections in the current control phase [1,3,31,42]. Following this reasoning,

we investigated the number of velocity peaks, to get a rough but robust estimate of the number

of sub-movements, which is desirable when dealing with patient data [23].

The number of sub-movements was higher for participants with stroke (F(2, 48) = 37.24,

p = 0.0000, Z2
G = 0.60), and increased with the index of difficulty (F(1, 48) = 26.10, p = 0.0000,

Z2
G = 0.04), but it increased stronger in patients (F(2, 48) = 11.46, p = 0.0000, Z2

G = 0.04) as illus-

trated in Fig 3, right panel.

We also investigated the relations between the main movement’s characteristics [33,34],

that is, between reaction time (RT), movement time (MT), peak velocity (PV), relative distance

during the first sub-movement (dSM1), relative duration of homing-in (tHI) and number of

number of sub-movements (nSM). Correlations between these variables (Pearson’s r values)

are summarized in Fig 6. As expected, in all groups, higher peak velocity resulted in larger dis-

tance during the primary sub-movements (i.e., positive correlations between PV and dSM1),

Fig 5. Movement variability within a reaching movement. The figure presents trial-to-trial within-participant standard deviation of the displacement in

the primary direction of the movement at peak acceleration (PA), peak velocity (PV), peak deceleration (PD), and end of the movement (END) for the

patients with stroke (blue line) and the aged-matched and young adults (thin red lines). Each point in the figure corresponds to 40 reaching movements

multiplied by the number of participants in the group. In panel B, data are in percentage of the Young group, used as the reference. Spatial variability is

higher for patients at all kinematic markers, but do not differ significantly between aged and young healthy adults.

https://doi.org/10.1371/journal.pone.0173674.g005
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though less strongly in young participants. Similarly, in all groups, primary sub-movements

that were shorter in space allowed more time for homing-in (i.e., negative correlation between

dSM1and tHI), and this correlation was especially strong for persons with stroke. As expected

again, the homing-in phase lengthened with the number of corrections (i.e., positive correla-

tions between tHI and nSM, though less strongly after a stroke), with the consequence that the

movement time also lengthened when the percentage of homing-in was high, due to a larger

number of corrective sub-movements (i.e., positive correlations between MT, tHI and nSM).

Because the strongest correlation is between the nSM and the MT in persons with stroke, it is

likely that the nSM is the primary cause of changes in MT for persons with stroke.

Discussion

We addressed the accuracy of fast reaching movements after mild or moderate stroke, with a

focus on the information capacity of the sensorimotor system and its relation to trajectory for-

mation. By comparing a group of participants with stroke, age-matched and young control

participants in a single experiment, we could disentangle the effects of stroke and of ageing.

In agreement with our first hypothesis, we found that increasing accuracy requirements

had a stronger impact on movement organization in people with stroke, with a lower informa-

tion throughput of the sensorimotor system, compared to age-matched and young. People

with stroke made larger errors in direction and distance at the end of the first sub-movement,

and compensated for this higher variability in movement production with a shorter first sub-

movement indicating a strong minimization of feed-forward control, and with more numer-

ous feed-back loops at the cost of longer movement times. Conversely to our initial hypotheses,

we found that ageing did not result in significantly lower sensorimotor performance in this

particular task, and we also found that the impact of stroke was not significantly stronger in

the homolateral space. Finally, in agreement with our last hypothesis, we found that people in

all groups follow the same principles of trajectory formation to move with speed and accuracy.

Fig 6. Correlation matrices between reaction time (RT), movement time (MT), peak velocity (PV), relative distance of the primary

sub-movement end (dSM1), relative duration of homing-in (tHI) and number of number of sub-movements (nSM), for the three

experimental groups. Only significant correlations are illustrated. The colored pie figures the value of the Pearson’s r, using the color code

from the bar at the bottom. In all groups, higher PV result in longer dSM1 and higher nSM result in longer tHI and longer MT. Because the

strongest correlation is between the nSM and the MT, and especially in the patients group, it is likely that the nSM is the primary cause of MT

changes after a stroke.

https://doi.org/10.1371/journal.pone.0173674.g006
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Informational and non-informational aspects of motor performance after

a stroke

After a stroke, movements with the paretic limb are jerkier [23], and globally slower for the

same task difficulty [14]. Here, we found that the information throughput was 5–7 times lower

after a stroke (6.42 bits/sec, 82% less than age-matched), but did not differ between the young

and aged control groups. We also found that the minimum time for a movement without accu-

racy was similar.

We expected the lower information throughput after a stroke (illustrated by the higher

slope for the patients’ group in Fig 3, right panel) as it was already reported for persons with

chronic stroke compared to age-matched people [14]. We also expected a lower information

throughput due to ageing [10,11]. Conversely, we found that the small decrease in information

throughput with age did not reach significance. This was reported when varying ID by varying

target size only [13], and the changes in ID in our experiment were mainly due to changes in

target size. Consequently, we conclude that stroke induces a strong decrease in information

throughput, but that the decrease due to ageing is far weaker, hence was too small to be

detected in our experiment.

We did not expect a similar minimum time for a fast movement without accuracy in the

three groups (illustrated by the similar intercept in Fig 3, right panel). Conversely, we reasoned

that the limited force after a stroke would cause an increase in the minimum time for a fast

movement without accuracy [38], hence should result in a higher intercept for patients in Fig

3. A higher intercept was reported for the paretic arm after a stroke in comparison to age-

matched controls, and also within participant, in comparison to the less affected arm [14]. In

comparison to the present experiment, we note that the difference in intercept was obtained

with doubled movement distances, and was mainly true for the most severely impaired partici-

pants [14]. Consequently, we interpret the present lack of significant difference with caution,

because extrapolations are very sensitive to errors (ID = 0 is outside the ID range) and because

the between-participants standard deviations were high for persons with stroke.

All in all, persons after a stroke are clearly more sensitive to accuracy constraints than age-

matched and young adults, but we cannot conclude that mild or moderate stroke influences the

minimum time for a fast movement without accuracy. This calls for analyses accounting for the

organization inside a movement time, to get a better perspective on trajectory formation, espe-

cially when comparing participants after a stroke and age-matched control participants.

Trajectory formation after a stroke: feed-forward vs. feed-back control

Since the seminal work of Woodworth, better understanding the relative part played by

feed-forward and feed-back control in fast and accurate movement became important [1,31].

With the boundary between the two phases set at peak velocity, the asymmetry of the velocity

profile provides a good estimate of the feed-forward vs. feed-back ratio [43]: More asymmetry

indicates a deceleration that is longer and devoted to the corrections that ensure to meet the

accuracy constraints, which is classically reported for discrete [39] as well as for rhythmical

movements [44]. Here, we found that the percentage of time under feed-forward control was

higher when the ID was low, in the three groups.

The novel result is that, on average, the percentage of distance covered under feed-forward

control was halved after a stroke and lasted for a smaller part of the movement time (Table 2)

while within-participant variability was 7 times higher at peak acceleration and (Fig 5) com-

pared to both young and age-matched control participants. These results indicate that, after a

stroke, feed-forward control was not enough to cancel out higher noise levels in early movement

production so that persons with stroke relied less on feed-forward to achieve the requested
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spatial accuracy. Moreover, we found that participants with stroke made 4 times larger errors

than healthy at the end of the first sub-movement, which replicates the finding that directional

errors increase with impairment after a stroke [32,45]. A computational model of cortical dam-

age and its consequences on arm reaching movements revealed how the errors could be corre-

lated with the loss of neurons [46,47]. In addition, participants with stroke are quickly

confronted with fatigue [48], and fatigue contributes to increasing signal-dependent noise [49].

All this translates into higher noise levels, resulting in a larger disparity between the planned

and the actual movement. As a consequence, because persons with stroke experience a more

variable link between what they aim and what they do, persons with stroke have no option but

minimizing feed-forward control to accommodate the accuracy constraints.

Moreover, as the decreased signal-to-noise ratio increases the probability of errors, persons

with stroke have to wait for feed-back information to run (a series of) corrections to reach the

target. As illustrated in Fig 4, it looks like persons with stroke reach the target with a concate-

nation of non-overlapping sub-movements, that is, with sub-movements separated by pauses.

We checked for the occurrence of pauses by counting the number of sub-movements sepa-

rated by a velocity lower than 1% of peak velocity. The number of pauses within a reach move-

ment was more than doubled in persons with stroke (i.e., 1.35 vs. 0.54 and 0.55, F(2, 48) =

5.43, p = 0.0075, Z2
G = 0.07). Hence, more than young and age-matched adults, participants

with stroke have to wait for the end of a sub-movement before starting the next.

Finally, we point out that most of the changes in movement production that we observed

seem related to a lower signal to noise ratio. We found that when the ID is high, all people

used a shorter first sub-movement and an increased number of sub-movements to ensure that

the required accuracy is met, which are typical features of the “play-it-safe” strategy [3]. The

“play-it-safe” strategy was evidenced in older adults, but also in young adults when visual feed-

back is compromised [33,34]. We also replicated the finding that, in the face of an increase in

task demands, participants decreased feed-forward control and favored a feed-back based

strategy irrespective of age [33], and we extend this result to participants with mild to moder-

ate stroke. However, our results also indicate that within-participant variability at peak acceler-

ation is higher for persons with stroke when it is similar for young and aged participants (Fig

5). This result is important, because it reveals likely the main reason why persons with stroke

are always using less feed-forward control: this is because they are not able to produce reliable

muscular forces. Also, stroke results in more directional errors, stronger segmentation, less

overall speed [21–23], it impairs the ability to implement internal models used for anticipatory

control of arm movement [50], and all this might be due to the high noise level.

We conclude by pointing out that all these findings are coherent with the demonstration

that signal dependent noise in movement production determines movement organization, via

open-loop optimization [4] and optimal of feed-back control [8,51]. This is an important

point, which indicates that, even though the movement appears jerky and disorganized after a

stroke, trajectory formation relies, at least in part, on the same organizing principles as in

healthy persons.

Information capacity does not depend on motion orientation

In healthy adults, movement time is lower when the orientation of the movement is perpendic-

ular to the forearm [52,53] and biomechanical manipulations of the force/mass ratio can

influence the shaping of reaching trajectories [54]. Here, the lack of significant effect of the ori-

entation factor in the control groups is, we think, due to two combined causes. First, the inten-

sity of the orientation effect is very small, with Z2
P about 0.01, here as in [52]. Second, reaching

in healthy adults is largely planned independently of position and orientation of the end-
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effector in space [53,55]. Thus, we conclude that the effect of the orientation was here too

small to be detectable.

When reaching after a stroke, movements to the north-east quadrant are often more diffi-

cult to control, and it is in this quadrant that gravity compensation devices are the most effec-

tive [19]. Here, we did not find systematic effects of the orientation of the reaching

movements, which is counterintuitive from a clinical perspective. It is likely that this lack of

variations of movement unfolding according to the direction of movement is because the

range of motion was short and without restrictions of trunk compensations, and because we

did not include patients with severe deficits, who are more sensitive to the position of the tar-

get in the workspace [26]. Thus, we conclude that the control of the reaching after a stroke is

largely independent of the orientation and direction of the movement for persons without

severe sensorimotor deficits.

Our findings indicate that, in all groups, the influence of biomechanical constraints was an

order of magnitude lower than the influence of informational constraints. We cannot exclude

that this hierarchy of constraints is specific to the present reaching task in 2D, because the ori-

entation effect is absent in all the groups. However, the fact that the initial adjustment phase is

shorter when reaching outward indicates an effect of the biomechanical constraints on trajec-

tory formation [52,54], and this effect was similar in all three groups.

From a theoretical perspective, the fact that the information capacity of the sensorimotor

system does not depend on the biomechanical constraints is predicted by the abstract nature

of the informational approach [2,36,38,56]. Moreover, trajectory formation is largely indepen-

dent of the orientation in space in which the trajectory is implemented in healthy adults

[55,57] and after a stroke as well [45]. It is thus logical that movement orientation had a mini-

mal influence on trajectory formation, especially when compared to the influence of accuracy.

Task constraints lie in the forefront and biomechanical constraints lie in the background [52].

The fact that the same hierarchy of constraints applies for sensorimotor control in healthy

adults and after a stroke is a novel important idea brought about by our work. The presence of

the same hierarchy of constraints in the face of increased noise after a stroke suggests that

these abstract principles are preserved after a stroke, at least for mild and moderate deficits.

Although this remains to be confirmed with dedicated experimental work, the promise that

the most abstract principles of sensorimotor control and learning remain after a stroke is good

news. Therapists can capitalize on such abstract principles for the design of effective rehabilita-

tion programs that drive neural plasticity towards better and faster recovery [17].

Limitations of this study

We used only two ID values to assess the slope and intercept in the relation ID-MT and ID-

nSM that are presented in Fig 3. This hinders the possibility to check that the linear model is

correct, which should be the case for the movement time MT in young [6] and age-matched

control participants [13], as well as in persons with stroke [14,15,32], but is only suspected for

the number of sub-movements nSM [14].

We used velocity minima as the only criterion parse a movement time into sub-movements.

Even though this simple method is widely used [9,23,33,34,58], it does not allow to address

strategic variations among participants. More detailed kinematic analyses of the deceleration

phase are necessary to address the repertoire of strategies, which is smaller in older than in

young participants, with age-related differences in strategy performance and in sequential

effects [59,60].

We used rather broad inclusion criteria and we did not perform systematic clinical assess-

ments of the severity of patients’ sensorimotor impairment. As a consequence, we cannot
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easily link our results to clinical outcomes, which impedes any direct relation to possible clini-

cal applications.

We did not separate participants with left vs. right lesion, and we did not take into account

laterality before stroke. Consequently, the present results average the effects of consequences

that differ among people with left and right stroke [15].

We acknowledge the diversity of the brain lesions among the 19 persons with stroke in the

present study. Averaging over lesions hardly makes sense, and the detailed behavior of each

patient differs from that of any other patient. For sure, the present approach will not serve for

an individualized understanding of the functional consequences of the brain lesion. Yet, it is

remarkable that, among this diversity, we were able to highlight regularities shared by all par-

ticipants after a stroke, and that these regularities are also shared by age-matched controls and

young adults representing the best possible human performance. Such regularities are likely

the signatures of fundamental principles of sensorimotor control that are shared by people

with stroke and control participants, but that are parameterized differently [61].

Conclusion

Sensorimotor control after a stroke is characterized by higher uncertainty in the relation

between the desired command and the effective motor output. Given a desired command, the

uncertain motor output results in higher task-related variability, with consequences for trajec-

tory formation, and especially for the partitioning between feed-forward and feed-back

control.

Goal directed movements start with a feed-forward phase, eventually followed by feed-back

corrections loops. Here, we found that the first sub-movement was designed to cover about

90% of the distance in young and age-matched healthy, while it was designed to cover about

45% of the distance after a stroke. We take this result as evidence that the same Bayesian deci-

sion rules apply for trajectory formation after a stroke and in healthy people: the weight of

the feed-forward mode of control is inversely proportional to the uncertainty of its output.

Because feed-forward is a reliable mode of control in healthy adults, the first sub-movement is

designed to cover 90% of the distance to the target. Because feed-forward is an uncertain mode

of control after a stroke, the first sub-movement is designed to cover 45% of the distance, and

a series of sub-movements becomes mandatory to reach the target. The price to pay for the

series of feed-back loops is a longer movement time, but it is only at this price that the accuracy

constraint can be met.
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