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ABSTRACT
For modelling geophysical systems, large-scale processes are described through a set of coarse-grained dynamical
equations while small-scale processes are represented via parameterizations. This work proposes a method for
identifying the best possible stochastic parameterization from noisy data. State-of-the-art sequential estimation methods
such as Kalman and particle filters do not achieve this goal successfully because both suffer from the collapse of the
posterior distribution of the parameters. To overcome this intrinsic limitation, we propose two statistical learning
methods. They are based on the combination of the ensemble Kalman filter (EnKF) with either the expectation–
maximization (EM) or the Newton–Raphson (NR) used to maximize a likelihood associated to the parameters to be
estimated. The EM and NR are applied primarily in the statistics and machine learning communities and are brought here
in the context of data assimilation for the geosciences. The methods are derived using a Bayesian approach for a hidden
Markov model and they are applied to infer deterministic and stochastic physical parameters from noisy observations in
coarse-grained dynamical models. Numerical experiments are conducted using the Lorenz-96 dynamical system with
one and two scales as a proof of concept. The imperfect coarse-grained model is modelled through a one-scale Lorenz-
96 system in which a stochastic parameterization is incorporated to represent the small-scale dynamics. The algorithms
are able to identify the optimal stochastic parameterization with good accuracy under moderate observational noise.
The proposed EnKF-EM and EnKF-NR are promising efficient statistical learning methods for developing stochastic
parameterizations in high-dimensional geophysical models.

Keywords: parameter estimation, model error estimation, stochastic parameterization, expectation–maximization
algorithm

1. Introduction

The statistical combination of observations of a dynamical model
with a priori information of physical laws allows the estimation
of the full state of the model even when it is only partially ob-
served. This is the main aim of data assimilation (Kalnay, 2002).
One common challenge of evolving multi-scale systems in ap-
plications ranging from meteorology, oceanography, hydrology
and space physics to biochemistry and biological systems is
the presence of parameters that do not rely on known physical
constants so that their values are unknown and unconstrained.

∗Corresponding author. e-mail: pulido@unne.edu.ar

Data assimilation techniques can also be formulated to estimate
these model parameters from observations (Jazwinski et al.,
1970; Wikle and Berliner, 2007).

There are several multi-scale physical systems which are mod-
elled through coarse-grained equations. The most paradigmatic
cases being climate models (Stensrud, 2009), large-eddy sim-
ulations of turbulent flows (Mason and Thomson, 1992) and
electron fluxes in the radiation belts (Kondrashov et al., 2011).
These imperfect models need to include subgrid-scale effects
through physical parameterizations (Nicolis, 2004). In the last
years, stochastic physical parameterizations have been incor-
porated in weather forecast and climate models (Palmer, 2001;
Christensen et al., 2015; Shutts, 2015). They are called stochastic
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parameterizations because they represent stochastically a pro-
cess that is not explicitly resolved in the model, even when the
unresolved process may not be itself stochastic. The forecast skill
of ensemble forecast systems has been shown to improve with
these stochastic parameterizations (Palmer, 2001; Christensen et
al., 2015; Shutts, 2015). Deterministic integrations with models
that include these parameterizations have also been shown to
improve climate features (see e.g. Lott et al., 2012). In general,
stochastic parameterizations are expected to improve coarse-
grained models of multi-scale physical systems (Katsoulakis et
al., 2003; Majda and Gershgorin, 2011). However, the functional
form of the schemes and their parameters, which represents
small-scale effects, are unknown and must be inferred from
observations. The development of automatic statistical learning
techniques to identify an optimal stochastic parameterization and
estimate its parameters is, therefore, highly desirable.

One standard methodology to estimate physical model param-
eters from observations in data assimilation techniques, such
as the traditional Kalman filter, is to augment the state space
with the parameters (Jazwinski et al., 1970). This methodol-
ogy has also been implemented in the ensemble-based Kalman
filter (see e.g. Anderson, 2001). The parameters are constrained
through their correlations with the observed variables. However,
three challenges are posed for parameter estimation in EnKFs.
Firstly, parameter probability distributions are in general non-
Gaussian, even though Kalman-based filters rely on the Gaussian
assumption. Secondly, the estimation of global parameters is
theoretically incompatible with the use of domain localization
(Bellsky et al., 2014), which is very often employed to implement
the EnKF in high-dimensional systems. Thirdly, the parameters
are usually assumed to be governed by persistence so that their
impact on the augmented error covariance matrix diminishes
with time (Ruiz et al., 2013a).

The collapse of the parameter posterior distribution found in
both ensemble Kalman filters (Delsole and Yang, 2010; Ruiz
et al., 2013a, 2013b; Santitissadeekorn and Jones, 2015) and
particle filters (West and Liu, 2001) is a major contention point
when one is interested in estimating stochastic parameters of
non-linear dynamical models. Hereafter, we refer as stochastic
parameters to those that define the covariance of a Gaussian
stochastic process (Delsole and Yang, 2010). In other words,
the sequential filters are, in principle, able to estimate determin-
istic physical parameters, the mean of the parameter posterior
distribution, through the augmented state-space procedure, but
they are unable to estimate stochastic parameters of the model,
because of the collapse of the corresponding posterior distribu-
tion. Using the Kalman filter with the augmentation method,
Delsole and Yang (2010) proved analytically the collapse of
the parameter covariance in a first-order autoregressive model.
They proposed a generalized maximum likelihood estimation
using an approximate sequential method to estimate stochastic
parameters. Carrassi and Vannitsem (2011) derived the evolution
of the augmented error covariance in the extended Kalman filter

using a quadratic in time approximation that mitigates the col-
lapse of the parameter error covariance. Santitissadeekorn and
Jones (2015) proposed a particle filter blended with an ensemble
Kalman filter and use a random walk model for the parameters.
This technique was able to estimate stochastic parameters in the
first-order autoregressive model, but a tunable parameter in the
random walk model needs to be introduced.

The expectation–maximization (EM) algorithm (Dempster et
al., 1977; Bishop, 2006) is a widely used method to maximize the
likelihood function in a broad spectrum of applications. One of
the advantages of the EM algorithm is that its implementation is
rather straigthforward. Wu (1983) showed that if the likelihood
is smooth and unimodal, the EM algorithm converges to the
unique maximum likelihood estimate. Accelerations of the EM
algorithm have been proposed for its use in machine learning
(Neal and Hinton, 1999). Recently, it was used in an application
with a highly non-linear observation operator (Tandeo et al.,
2015). The EM algorithm was able to estimate subgrid-scale
parameters with good accuracy while standard ensemble Kalman
filter techniques failed. It has also been applied to the Lorenz-63
system to estimate model error covariance (Dreano et al., 2017).

In this work, we combine the ensemble Kalman filter (Evensen,
1994; Evensen, 2003) with maximum likelihood estimators for
stochastic parameterization identification. Two maximum like-
lihood estimators are evaluated: the EM (Dempster et al., 1977;
Bishop, 2006) and the Newton-Raphson algorithm (Cappé et al.,
2005). The derivation of the techniques is explained in detail and
simple terms so that readers that are not from those communities
can understand the basis of the methodologies, how they can be
combined, and hopefully foresee potential applications in other
geophysical systems. The learning statistical techniques are suit-
able to infer the functional form and the parameter values of
stochastic parameterizations in chaotic spatio-temporal dynam-
ical systems. They are evaluated here on a two-scale spatially
extended chaotic dynamical system (Lorenz, 1996) to estimate
deterministic physical parameters, together with additive and
multiplicative stochastic parameters. Pulido et al. (2016) evalu-
ated methods based on the EnKF alone to estimate subgrid-scale
parameters in a two-scale system: they showed that an offline
estimation method is able to recover the functional form of the
subgrid-scale parameterization, but none of the methods was
able to estimate the stochastic component of the subgrid-scale
effects. In the present work, the results show that the NR and
EM techniques are able to uncover the functional form of the
subgrid-scale parameterization while successfully determining
the stochastic parameters of the representation of subgrid-scale
effects.

This work is organized as follows. Section 2 briefly introduces
the EM algorithm and derives the marginal likelihood of the data
using a Bayesian perspective. The implementation of the EM and
NR likelihood maximization algorithms in the context of data
assimilation using the ensemble Kalman filter is also discussed.
Section 3 describes the experiments which are based on the
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one- and two-scale Lorenz-96 systems. The former includes sim-
ple deterministic and stochastic parameterizations to represent
the effects of the smaller scale to mimic the two-scale Lorenz-96
system. Section 4 focuses on the results: Section 4.1 discusses
the experiments for the estimation of model noise. Section 4.2
shows the results of the estimation of deterministic and stochastic
parameters in a perfect-model scenario. Section 4.3 shows the
estimation experiments for an imperfect model. The conclusions
are drawn in Section 5.

2. Methodology

2.1. Hidden Markov model

A hidden Markov model is defined by a stochastic non-linear
dynamical model M that evolves in time the hidden variables
xk−1 ∈ R

N , according to,

xk = M�(xk−1) + ηk , (1)

where k stands for the time index. The dynamical model M
depends on a set of deterministic and stochastic physical param-
eters denoted by �. We assume an additive random model error,
ηk , with covariance matrix Qk = E

(
ηkηT

k

)
. The notation E ()

stands for the expectation operator, E [ f (x)] ≡ ∫
f (x)p(x)dx

with p being the probability density function of the underlying
process X .

The observations at time k, yk ∈ R
M , are related to the hidden

variables through the observational operator H,

yk = H(xk) + εk , (2)

where εk is an additive random observation error with observa-
tion error covariance matrix Rk = E

(
εkεT

k

)
.

Our estimation problem: Given a set of observation vectors
distributed in time, {yk , k = 1, . . . , K }, a nonlinear stochastic
dynamical model, M, and a nonlinear observation operator,
H, we want to estimate the initial prior distribution p(x0), the
observation error covariance Rk , the model error covariance
Qk , and deterministic and stochastic physical parameters � of
M.

In the EM literature, the term ‘parameters’ is used for all the
parameters of the likelihood function including the moments of
the statistical distributions. Here, the parameters of the likelihood
function are referred more specifically to as likelihood param-
eters. The likelihood parameters may include the deterministic
and stochastic physical parameters, the observation error and the
model error covariances and the first two moments of the initial
prior distribution.

The estimation method we derived is based on maximum
likelihood estimation. Given a set of independent and identically

distributed (iid) observations from a probability density function
represented by p(y1:K |θ), we seek to maximize the likelihood
function L(y1:K ; θ) as a function of θ . We denote {y1, . . . , yK }
by y1:K and the set of likelihood parameters to be estimated
by θ : the deterministic and stochastic physical parameters � of
the dynamical model M as well as observation error covari-
ances Rk , model error covariances Qk and the mean x0 and
covariance P0 of the initial prior distribution p(x0). In practical
applications, the statistical moments Rk , Qk and P0 are usually
poorly constrained. It may thus be convenient to estimate them
jointly with the physical parameters. The dynamical model is
assumed to be non-linear and to include stochastic processes
represented by some of the physical parameters in �.

The estimation technique used in this work is a batch method: a
set of observations taken along a time interval is used to estimate
the model state trajectory that is closest to them, considering
measurement and model errors with a least-square criterion to
be established below. The simultaneous use of observations dis-
tributed in time is essential to capture the interplay of the several
likelihood parameters included in the estimation problem. The
required minimal length K for the observation window is eval-
uated in the numerical experiments. The estimation technique
may be applied in successive K-windows. For stochastic param-
eterizations in which the parameters are sensitive to processes
of different time scales, a batch method may also be required to
capture the sensitivity to slow processes.

2.2. Expectation-maximization algorithm

The EM algorithm maximizes the log-likelihood of observations
as a function of the likelihood parameters θ in the presence of a
hidden state x0:K ,1

l(θ) = ln L(y1:K ; θ) = ln
∫

p(x0:K , y1:K ; θ)dx0:K . (3)

An analytical form for the log-likelihood function, (3), can be
obtained only in a few ideal cases. Furthermore, the numerical
evaluation of (3) may involve high-dimensional integration of
the complete likelihood (integrand of (3)). Given an initial guess
of the likelihood parameters θ , the EM algorithm maximizes the
log-likelihood of observations as a function of the likelihood
parameters in successive iterations without the need to evaluate
the complete likelihood.

2.2.1. The principles. Let us introduce in the integral (3)
an arbitrary probability density function of the hidden state,
q(x0:K ),

l(θ) = ln
∫

q(x0:K )
p(x0:K , y1:K ; θ)

q(x0:K )
dx0:K . (4)
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We assume that the support of q(x0:K ) contains that of p(x0:K ,

y1:K ; θ). The density, q(x0:K ) may be thought, in particular, as
a function of a set of fixed likelihood parameters θ ′, q(x0:K ; θ ′).
Using Jensen inequality, a lower bound for the log-likelihood is
obtained,

l(θ) ≥
∫

q(x0:K ) ln

(
p(x0:K , y1:K ; θ)

q(x0:K )

)
dx0:K ≡ Q(q, θ).

(5)
If we choose q(x0:K ) = p(x0:K |y1:K ; θ ′), the equality is

satisfied in (5), therefore p(x0:K |y1:K ; θ ′) is an upper bound to
Q and so it is the q function that maximises Q(q, θ). The inter-
mediate function Q(q, θ) may be interpreted physically as the
free energy of the system, so that x are interpreted as the physical
states and the energy is the joint density (Neal and Hinton, 1999).
Rewriting the joint density in (5) as a function of the conditional
density, p(x0:K , y1:K ; θ) = p(x0:K |y1:K ; θ)L(y1:K ; θ), the
intermediate function may be related to the Kullback–Leibler
divergence,

Q(q, θ) = −DK L (q|p(x0:K |y1:K ; θ)) + l(θ), (6)

where DK L (q|p) ≡ ∫
q ln

(
q
p

)
dx is a positive definite func-

tion and DK L (q|p) = 0 iff q = p. From (6), using the properties
of the Kullback–Leibler divergence, it is clear that the upper
bound of Q is obtained for q = p(x0:K |y1:K ; θ).

From (5), we see that if we maximize Q(q, θ) over θ , we
find a lower bound for l(θ). The idea of the EM algorithm is to
first find the probability density function q that maximizes Q,
the conditional probability of the hidden state given the obser-
vations, and then to determine the parameter θ that maximizes
Q. Hence, the EM algorithm encompasses the following steps:

Expectation: Determine the distribution q that maximizes Q.
This function is easily shown to be q∗ = p(x0:K |y1:K ; θ ′) (see
(5); Neal and Hinton 1999). The function q∗ is the conditional
probability of the hidden state given the observations. In practice,
this is obtained by evaluating the conditional probability at θ ′.

Maximization: Determine the likelihood parameters θ∗ that
maximize Q(q∗, θ) over θ . The new estimation of the likelihood
parameters is denoted by θ∗ while the (fixed) previous estimation
by θ ′. The expectation step is a function of these old likelihood
parameters θ ′. The part of function Q to maximize is given by:

∫
p(x0:K |y1:K ; θ ′) ln (p(x0:K , y1:K ; θ)) dx0:K
≡ E [ln (p(x0:K , y1:K ; θ)) |y1:K ] , (7)

where we use the notation E ( f (x)|y) ≡ ∫
f (x)p(x |y)dx

(Jazwinski et al., 1970). While the function that we want to
maximize is the log-likelihood, the intermediate function (7)

to maximize in the EM algorithm is the expectation of the joint
distribution conditioned to the observations.

2.2.2. Expectation-maximization for a hidden Markov model.
The joint distribution of a hidden Markov model using the defi-
nition of the conditional probability distribution reads

p(x0:K , y1:K ) = p(y1:K |x0:K )p(x0:K ). (8)

The model state probability density function can be expressed
as a product of the transition density from tk to tk+1 using
the definition of the conditional probability distribution and the
Markov property,

p(x0:K ) = p(x0)

K∏
k=1

p(xk |xk−1). (9)

The observations are mutually independent and are conditioned
on the current state (see (2)) so that

p(y1:K |x0:K ) =
K∏

k=1

p(yk |xk). (10)

Then, replacing (9) and (10) in (8) yields

p(x0:K , y1:K ) = p(x0)

K∏
k=1

p(xk |xk−1)p(yk |xk). (11)

If we now assume a Gaussian hidden Markov model, and that
the covariances Rk and Qk are constant in time, the logarithm
of the joint distribution (11) is then given by:

ln(p(x0:K , y1:K ))

= − (M + N )

2
ln(2π) − 1

2
ln |P0| − 1

2
(x0 − x0)TP−1

0

× (x0 − x0) − K

2
ln |Q| − 1

2

K∑
k=1

(xk − M (
xk−1

)
)T

× Q−1(xk − M (
xk−1

)
) − K

2
ln |R|

− 1

2

K∑
k=1

(yk − H (xk))TR−1(yk − H (xk)). (12)

The Markov hypothesis implies that model error is not corre-
lated in time. Otherwise, we would have cross terms in the model
error summation of (12). The assumption of a Gaussian hidden
Markov model is central to derive a closed analytical form for the
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likelihood parameters that maximize the intermediate function.
However, the dynamical model and observation operator may
have non-linear dependencies so that the Gaussian assumption
is not strictly held. We therefore consider an iterative method in
which each step is an approximation. In general, the method will
converge through successive approximations. For severe non-
linear dependencies in the dynamical model, the existence of a
single maximum in the log-likelihood is not guaranteed. In that
case, the EM algorithm may converge to a local maximum. As
suggested by Wu (1983), one way to avoid that the EM algorithm
be trapped in a local maximum of the likelihood function is to
apply the algorithm for different starting parameters. Then, the
EM simulation with the highest likelihood is chosen and the
corresponding estimated parameters. In practice, the stochastic
nature of the likelihood function may contribute to avoid the
EM algorithm gets stuck in a local maximum (as in stochastic
optimization).

We consider (12) as a function of the likelihood parameters θ

in this Gaussian state-space model. In this way, given the known
values of the observations the log-likelihood function in (3), is
a function of the likelihood parameters, namely: x0, P0, Q, R,
and �, the physical parameters from M.

In this Gaussian state-space model, the maximum of the inter-
mediate function in the EM algorithm, (7), may be determined
analytically from

0 = ∇θE [ln (p(x0:K , y1:K ; θ)) |y1:K ]

=
∫

p(x0:K |y1:K ; θ ′)∇θ ln(p(x0:K , y1:K ; θ)) dx0:K
= E [∇θ ln (p(x0:K , y1:K ; θ)) |y1:K ] (13)

Note that θ ′ is fixed in (13). We only need to find the critical
values of the likelihood parameters Q and R. The physical pa-
rameters are appended to the state, so that their model error is
included in Q. The x0, P0 are at the initial time so that they are
obtained as an output of the smoother which gives a Gaussian
approximation of p(xk |y1:K ) with k = 0, . . . , K . The smoother
equations are shown in the Appendix 1.

Differentiating (12) with respect to Q and R and applying the
expectation conditioned to the observations, we can determine
the root of the condition, (13), which gives the maximum of the
intermediate function. The value of the model error covariance,
solution of (13), is

Q = 1

K

K∑
k=1

E([
xk − M (

xk−1
) ][

xk − M (
xk−1

) ]T∣∣y1:K
)
.

(14)
In the case of the observation error covariance, the solution

is:

R = 1

K

K∑
k=1

E([
yk − H (xk)

][
yk − H (xk)

]T∣∣y1:K
)
. (15)

Therefore, we can summarize the EM algorithm for a hidden
Markov model as:

Expectation: The required set of expectations given the ob-
servations must be evaluated at θ i , i being the iteration number,
specifically, E(

xk
∣∣y1:K

)
, E(

xkxT
k

∣∣y1:K
)
, etc. The outputs of a

classical smoother are indeed E(
xk

∣∣y1:K
)
, E((

xk −E(
xk

∣∣y1:K
))

(
xk −E(

xk
∣∣y1:K

))T∣∣y1:K
)

which fully characterize p(xk |y1:K )

in the Gaussian case. Hence, this expectation step involves the
application of a foward filter and a backward smoother.

Maximization: Since we assume Gaussian distributions, the
optimal value of θ i+1 can be determined analytically, which
in our model are Q and R, as derived in (14) and (15). These
equations are evaluated using the expectations determined in the
Expectation step.

The basic steps of this EM algorithm are depicted in Fig. 1a. In
this work, we use an ensemble-based Gaussian filter, the ensem-
ble transform Kalman filter (Hunt et al., 2007) and the Rauch–
Tung–Striebel (RTS) smoother (Cosme et al., 2012; Raanes,
2016).2 A short description of these methods is given in the
Appendix. The empirical expectations are determined using the
smoothed ensemble member states at tk , xs

m(tk). For instance,

E(
xkxT

k

∣∣y1:K
) = 1

Ne

Ne∑
m=1

xs
m(tk)xs

m(tk)T, (16)

where Ne is the number of ensemble members. Then, using these
empiral expectations R and/or Q are computed from (14) and/or
(15).

The EM algorithm applied to a linear Gaussian state-space
model using the Kalman filter was first proposed by Shumway
and Stoffer (1982). Its approximation using an ensemble of draws
(Monte Carlo EM) was proposed in Wei and Tanner (1990).
It was later generalized with the extended Kalman filter and
Gaussian kernels by Ghahramani and Roweis (1999). The use
of the EnKF and the ensemble Kalman smoother permits the
extension of the EM algorithm to non-linear high-dimensional
dynamical models and non-linear observation operators.

2.3. Maximum likelihood estimation via Newton–
Raphson

The EM algorithm is highly versatile and can be readily imple-
mented. However, it requires the optimal value in the maximiza-
tion step to be computed analytically which limits the range of its
applications. If physical deterministic parameters of a non-linear
model need to be estimated, an analytical expression for the op-
timal likelihood parameter values may not be available. Another
approach to find an estimate of the likelihood parameters consists
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in maximizing an approximation of the likelihood function l(θ)

with respect to the parameters, (3). This maximization may be
conducted using standard optimization methods (Cappé et al.,
2005).

Following Carrassi et al. (2017), the observation probability
density function can be decomposed into the product

p(y1:K ; θ) =
K∏

k=1

p(yk |y1:k−1; θ), (17)

with the convention y1:0 = ∅. In the case of sequential applica-
tion of NR maximization in successive K -windows, the a priori
probability distribution p(x0) can be taken from the previous
estimation. For such a case, we leave implicit the conditioning in
(17) on all the past observations, p(y1:K ; θ) = p(y1:K |y:0; θ),
y:0 = {y0, y−1, y−2, . . .} which is called contextual evidence
in Carrassi et al. (2017). The times of the evidencing window,
1 : K , required for the estimation are the only ones that are kept
explicit in (17).

Replacing (17) in (3) yields

l(θ) =
K∑

k=1

ln p(yk |y1:k−1; θ)

=
K∑

k=1

ln

(∫
p(yk |xk)p(xk |y1:k−1; θ)dxk

)
. (18)

If we assume Gaussian distributions and linear dynamical and
observational models, the integrand in (18) is exactly the analysis
distribution given by a Kalman filter (Carrassi et al., 2017). The
likelihood of the observations conditioned on the state at each
time is then given by:

p(yk |xk) = [(2π)M/2|R|1/2]−1

× exp

[
−1

2
(yk − H(xk))TR−1(yk − H(xk))

]
,

(19)

and the prior forecast distribution,

p(xk |y1:k−1; θ) = [(2π)N/2|P f
k |1/2]−1

× exp

[
−1

2
(xk − x f

k )T(P f
k )−1(xk − x f

k )

]
,

(20)

where x f
k = M(xa

k−1)+ηk is the forecast with ηk ∼ N (0, Qk),
xa

k−1 is the analysis state – filter mean state estimate – at time

k − 1 and P f
k is the forecast covariance matrix of the filter.

The resulting approximation of the observation likelihood
function which is obtained replacing (19) and (20) in (18), is

l(θ) ≈ −1

2

K∑
k=1

[
(yk − Hx f

k )T(HP f
k HT + R)−1

× (yk − Hx f
k ) + ln(|HP f

k HT + R|)
]

+ C (21)

where C stands for the constants independent of θ and the ob-
servational operator is assumed linear, H = H. Equation (21) is
exact for linear models M = M, but just an approximation for
non-linear ones. As in EM, the point we made is that we expect
that the likelihood in the iterative method can converge through
successive approximations.

The evaluation of the model evidence (21) does not require
the smoother. The forecasts x f

k in (21) are started from the
analysis – filter state estimates. In this case, the initial likelihood
parameters x0 and P0 need to be good approximations (e.g. an
estimation from the previous evidencing window) or they need to
be estimated jointly to the other potentially unknown parameters
�, R, and Q. Note that (21) does not depend explicitly on Q
because the forecasts x f

k already include the model error. The
steps of the NR method are sketched in Fig. 1b.

For all the cases in which we can find an analytical expres-
sion for the maximization step of the EM algorithm, we can
also derive a gradient of the likelihood function (Cappé et al.,
2005). However, for the application of the NR maximization
in both cases; when the EM maximization step can be derived
analytically but also when it cannot, we have implemented an
NR maximization based on a so-called derivative-free optimiza-
tion method, i.e. a method that does not require the likelihood
gradient, to be described in the next section.

3. Design of the numerical experiments

A first set of numerical experiments consists of twin experi-
ments in which we first generate a set of noisy observations
using the model with known parameters. Then, the maximum
likelihood estimators are computed using the same model with
the synthetic observations. Since we know the true parameters,
we can evaluate the error in the estimation and the performance
of the proposed algorithms. A second set of experiments applies
the method for model identification. The (imperfect) model rep-
resents the multi-scale system through a set of coarse-grained
dynamical equations and an unknown stochastic physical param-
eterization. The model-identification experiments are imperfect
model experiments in which we seek to determine the stochas-
tic physical parameterization of the small-scale variables from
observations. In particular, the ‘nature’ or true model is the two-
scale Lorenz-96 model and it is used to generate the synthetic
observations, while the imperfect model is the one-scale Lorenz-
96 model forced by a physical parameterization which has to be
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(a) (b)

Fig. 1. (a) Flowchart of the EM algorithm (left panel). (b) NR flowchart (right panel). Each column of the matrix Xk is an ensemble member state
Xk ≡ x1:Ne (tk ) at time k. Subscript (i) means i th iteration. A final application of the filter may be required to obtain the updated analysis state at
i + 1. The function llik is the log-likelihood calculation from (21). The newuoa function in the optimization step refers to the ’new’ unconstrained
optimization algorithm (Powell, 2006).
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identified. This parameterization should represent the effects of
small-scale variables on the large-scale variables. In this way, the
coarse-grained one-scale model with a physical parameterization
with tunable deterministic and stochastic parameters is adjusted
to account for the (noisy) observed data. We evaluate whether
the EM algorithm and the NR method are able to determine the
set of optimal parameters, assuming they exist.

The synthetic observations are taken from the known nature
integration by, see (2),

yk = Hxk + εk (22)

with H = I, i.e. all the state is observed. Futhermore, we assume
non-correlated observations Rk = E

(
εkεT

k

)
= αRI.

3.1. Twin experiments

In the twin experiments, we use the one-scale Lorenz-96 system
and a physical parameterization that represents subgrid-scale
effects. The nature integration is conducted with this model
and a set of ‘true’ physical parameter values. These parame-
ters characterize both deterministic and stochastic processes. By
virtue of the perfect model assumption, the model used in the
estimation experiments is exactly the same as the one used in
the nature integration except that the physical parameter values
are assumed to be unknown. Although for simplicity we call this
‘twin experiment’, this experiment could be thought as a model
selection experiment with parametric model error in which we
know the ‘perfect functional form of the dynamical equations’
but the model parameters are completely unknown and they need
to be selected from noisy observations.

The equations of the one-scale Lorenz-96 model are:

dXn

dt
+ Xn−1(Xn−2 − Xn+1) + Xn = Gn(Xn, a0, . . . , aJ ) ,

(23)
where n = 1, . . . , N . The domain is assumed periodic, X−1 ≡
X N−1, X0 ≡ X N , and X N+1 ≡ X1.

We have included in the one-scale Lorenz-96 model a physical
parameterization which is taken to be,

Gn(Xn, a0, . . . , a2) =
2∑

j=0

(a j + η j (t)) · (Xn) j , (24)

where a noise term, η j (t), of the form,

η j (t) = η j (t − �t) + σ j ν j (t), (25)

has been added to each deterministic parameter. Equation (25)
represents a random walk with standard deviation of the pro-

cess σ j , the stochastic parameters, and ν j (t) is a realization
of a Gaussian distribution with zero mean and unit variance.
The standard deviation in the Runge–Kutta scheme is taken
proportional to the square root of the time step

√
�t (Hansen and

Penland, 2006). The parameterization (24) is assumed to repre-
sent subgrid-scale effects, i.e. effects produced by the small-scale
variables to the large-scale variables (Wilks, 2005).

3.2. Model-identification experiments

In the model-identification experiments, the nature integration is
conducted with the two-scale Lorenz-96 model (Lorenz, 1996).
The state of this integration is taken as the true state evolution.
The equations of the two-scale Lorenz-96 model, ‘true’ model,
are given by N equations of large-scale variables Xn ,

dXn

dt
+ Xn−1(Xn−2 − Xn+1) + Xn =

= F − h c

b

nNS/N∑
j=NS/N (n−1)+1

Y j ; (26)

with n = 1, . . . , N ; and NS equations of small-scale variables
Ym , given by:

dYm

dt
+ c b Ym+1(Ym+2 − Ym−1) + c Ym

= h c

b
X int[(m−1)/NS/N ]+1 , (27)

where m = 1, . . . , NS . The two set of equations, (26) and (27),
are assumed to be defined on a periodic domain, X−1 ≡ X N−1,
X0 ≡ X N , X N+1 ≡ X1, and Y0 ≡ YNS , YNS+1 ≡ Y1,
YNS+2 ≡ Y2.

The imperfect model used in the model-identification experi-
ments is the one-scale Lorenz-96 model (23) with a parameter-
ization (24) meant to represent small-scale effects (right-hand
side of (26)).

3.3. Numerical experiment details

As used in previous works (see e.g. Wilks 2005; Pulido et al.
2016), we set N = 8 and NS = 256 for the large- and small-
scale variables, respectively. The constants are set to the standard
values b = 10, c = 10 and h = 1. The external forcing for the
model-identification experiments is taken to be F = 18. The
ordinary differential equations (26)–(27) are solved by a fourth-
order Runge–Kutta algorithm. The time step is set to dt = 0.001
for integrating (26) and (27).

For the model-identification experiments, we aim to mimic the
dynamics of the large-scale equations of the two-scale Lorenz-
96 system with the one-scale Lorenz-96 system (23) forced by a
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(a) (b)

Fig. 2. Log-likelihood function as a function of (a) model noise for three true observational noise values, αt
R = 0.1, 0.5, 1.0; and as a function of

(b) model noise (αQ ) and observational noise (αR ) for a case with αt
Q = 1.0 and αt

R = 0.5. Darker red shading represents larger log-likelihood.

(a) (b)

Fig. 3. Convergence of the NR maximization as a function of the iteration of the outer loop (inner loops are composed of 2NC + 1 function
evaluations, where NC is the control space dimension) for different evidencing window lengths (K = 100, 500, 1000). (a) Log-likelihood function.
(b) Frobenius norm of the model noise estimation error.

physical parameterization (24). In other words, our nature is the
two-scale model, while our imperfect coarse-grained model is
the forced one-scale model. For this reason, we take 8 variables
for the one-scale Lorenz-96 model for the twin experiments (as
the number of large-scale variables in the model-identification
experiments). Equations (23) are also solved by a fourth-order
Runge–Kutta algorithm. The time step in all the experiments is
also set to dt = 0.001.

The EnKF implementation we use is the ensemble transform
Kalman filter (Hunt et al., 2007) without localization. A short
description of the ensemble transform Kalman filter is given in
the Appendix. The time interval between observations (cycle) is

0.05 (an elapsed time of 0.2 represents about 1 day in the real
atmosphere considering the error growth rates; Lorenz, 1996).
The number of ensemble members is set to Ne = 50. The number
of assimilation cycles (observation times) is K = 500. This is
the ‘evidencing window’ (Carrassi et al., 2017) in which we
seek for the optimal likelihood parameters. The measurement
variance error is set to αR = 0.5 except otherwise stated. We
do not use any inflation factor, since the model error covariance
matrix is estimated.

The optimization method used in the NR maximization is
‘newuoa’ (Powell, 2006). This is an unconstrained minimiza-
tion algorithm which does not require derivatives. It is suitable
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(a) (b)

Fig. 4. Convergence of the EM algorithm as a function of the iteration for different observation time lengths (evidencing window). An experiment
with Ne = 500 ensemble members and K = 500 is also shown. (a) Log-likelihood function. (b) The Frobenius norm of the model noise estimation
error.

(a) (b)

Fig. 5. Estimated model noise as a function of the iteration in the EM algorithm. (a) Mean diagonal model noise (true value is 1.0). (b) Mean
off-diagonal absolute model noise value (true value is 0.0).

for control spaces of about a few hundred dimensions. This
derivative-free method could eventually permit to extend the
NR maximization method to cases in which the state evolution
(1) incorporates a non-additive model error.

4. Results

4.1. Twin experiments: Estimation of model noise param-
eters

The nature integration is obtained from the one-scale Lorenz-
96 model (23) with a constant forcing of a0 = 17 without
higher orders in the parameterization; in other words a one-

scale Lorenz-96 model with an external forcing of F = 17.
Information quantifiers show that for an external forcing of F =
17, the Lorenz-96 model is in a chaotic regime with maximal
statistical complexity (Pulido and Rosso, 2017). The true model
is represented by (1) with model noise following a normal den-
sity, ηk ∼ N (0, Qt ). The true model noise covariance is defined
by Qt = αt

QI with αt
Q = 1.0 (true parameter values are denoted

by a t superscript). The observations are taken from the nature
integration and perturbed using (22).

A first experiment examines the log-likelihood (21) as a
function of αQ for different true measurement errors, αt

R =
0.1, 0.5, 1.0 (Fig. 2a).Arelatively smooth function is found with
a well-defined maximum. The function is better conditioned for
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(a) (b)

Fig. 6. (a) Estimated mean deterministic parameters, ai , as a function of the EM iterations for the twin parameter experiment. (b) Estimated
stochastic parameters, σi .

(a) (b) (c)

Fig. 7. (a) Estimated deterministic parameters as a function of the EM iterations for the model-identification experiment. Twenty experiments with
random initial deterministic and stochastic parameters are shown. (b) Estimated stochastic parameters. (c) Log-likelihood function.

the experiments with smaller observational noise, αR . Figure 2b
shows the log-likelihood as a function of αQ and αR . The darkest
shading is around (αQ , αR) ≈ (1.0, 0.5). However, note that
because of the asymmetric shape of the log-likelihood function
(Fig. 2a), the darker red region is shifted toward higher αQ and
αR values. The up-left bottom-right orientation of the likelihood
pattern in the plane αQ and αR reveals a correlation between
them: the larger αQ , the smaller αR for the local maximal like-
lihood.

We conducted a second experiment using the same obser-
vations but the estimation of model noise covariance matrix
is performed through the NR method. The control space is of
8×8 = 64 dimensions, i.e. the full Q model error covariance
matrix is estimated (note that N = 8 is the model state dimen-
sion). Figure 3a depicts the convergence of the log-likelihood
function in three experiments with evidencing window K =
100, 500 and 1000. The Frobenius norm of the error in the
estimated model noise covariance matrix, i.e. ‖Q − Qt‖F =

√∑
i j

(
Qi j − Qt

i j

)2
, is shown in Fig. 3b. As the number of

cycles used in a single batch process increases, the estimation
error diminishes.

The convergence of the EM algorithm applied for the estima-
tion of model noise covariance matrix only (8×8 = 64 dimen-
sions) is shown in Fig. 4. This work is focused on the estimation
of model parameters so that the observation error covariance
matrix is assumed to be known. The method would allow to
estimate it jointly through (15), however, this is beyond the main
aim of this work. This is similar to the previous experiment,
using the EM instead of the NR method. In 10 iterations, the EM
algorithm achieves a reasonable estimation, which is not further
improved for larger number of iterations. The obtained log-
likelihood value is rather similar to the NR method. The noise in
the log-likelihood function diminishes with longer evidencing
windows. The amplitude of the log-likelihood function noise for
K = 100 is about 3%. These fluctuations are caused by sampling
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(a) (b)

Fig. 8. (a) Log-likelihood as a function of the σ0 parameter at the σ1 and σ2 optimal values for the NR estimation (green curve) and with the
optimal values for the EM estimation (blue curve) for the imperfect-model experiment. (b) Analysis RMSE as a function of the σ0 parameter.

noise. Note that the number of likelihood parameters is 64 and
the evidencing window K = 100 in this case. For larger K , the
log-likelihood noise is diminished < 1%. As mentioned above
a certain amount of noise may be beneficial for the convergence
of the algorithm.

Comparing the standard Ne = 50 experiments with Ne = 500
in Fig. 4a, the noise also diminishes by increasing the number of
ensemble members. Increasing the number of members does not
appear to impact on the estimation of off-diagonal values, but
it does so on the diagonal stochastic parameter values (Fig. 5a
and b). The error in the estimates is about 7% in both diagonal
and off-diagonal terms of the model noise covariance matrix for
K = 100, and lower than 2% for the K = 1000 cycles case
(Fig. 5).

4.2. Twin experiments: estimation of deterministic and
stochastic parameters

A second set of twin experiments evaluates the estimation of
deterministic and stochastic parameters from a physical parame-
terization. The model used to generate the synthetic observations
is (23) with the physical parameterization (24). The length of
the assimilation cycle is set to its standard value, 0.05. The
deterministic parameters to conduct the nature integration are
fixed to at

0 = 17.0, at
1 = −1.15 and at

2 = 0.04 and the model
error variance in each parameter is set to σ t

0 = 0.5, σ t
1 =

0.05, and σ t
2 = 0.002, respectively. The true parameters are

governed by a stochastic process (25). This set of deterministic
parameters is a representative physical quadratic polynomial
parameterization, which closely resembles the dynamical regime
of a two-scale Lorenz-96 model with F = 18 (Pulido and Rosso,
2017). The observational noise is set to αR = 0.5.An augmented
state space of 11 dimensions is used, which is composed by
appending to the 8 model variables the 3 physical parameters

(a0, a1, a2). The evolution of the augmented state is represented
by (1) for the state vector component and a random walk for
the parameters. The EM algorithm is then used to estimate the
additive augmented state model error Q which is an 11×11
covariance matrix. Therefore, the smoother recursion gives an
estimate of both the state variables and deterministic parameters.
The recursion formula for the model error covariance matrix (and
the parameter covariance submatrix) is given by (14).

Figure 6a shows the estimation of the mean deterministic
parameters as a function of the EM iterations. The estimation
of the deterministic parameters is rather accurate; a2 has a small
true value and it presents the lowest sensitivity. The estimation
of the stochastic parameters by the EM algorithm converges
rather precisely to the true stochastic parameters (Fig. 6b). The
convergence requires of about 80 iterations.The estimated model
error for the state variables is in the order of 5 × 10−2. This rep-
resents the additive inflation needed by the filter for an optimal
convergence. It establishes a lower threshold for the estimation
of additive stochastic parameters.

A similar experiment was conducted with NR maximization
for the same synthetic observations. A scaling of Sσ = (1, 10,

100) was included in the optimization to increase the condition
number.Agood convergence was obtained with the optimization
algorithm. The estimated optimal parameter values are σ0 =
0.38 σ1 = 0.060 σ2 = 0.0025 for which the log-likelihood is
l = −491. The estimation is reasonable with a relative error of
about 25%.

4.3. Model-identification experiment: estimation of the
deterministic and stochastic parameters

As a proof-of-concept model-identification experiment, we now
use synthetic observations with an additive observational noise
of αR = 0.5 taken from the nature integration of the two-
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(a) (b)

(c) (d)

Fig. 9. (a) Scatterplot of the true small-scale effects in the two-scale Lorenz-96 model as a function of a large-scale variable (coloured dots) and
scatterplot of the deterministic parameterization with optimal parameters (white dots). (b) Scatterplot from the stochastic paramerization with optimal
parameters obtained with the EM algorithm and (c) with the NR method. (d) Scatterplot given by a constrained random walk with optimal EM
parameters.

scale Lorenz-96 model with F = 18. On the other hand, the
one-scale Lorenz-96 model is used in the ensemble Kalman
filter with a physical parameterization that includes the quadratic
polynomial function, (24), and the stochastic process (25). The
deterministic parameters are estimated through an augmented
state space while the stochastic parameters are optimized via the
algorithm for the maximization of the log-likelihood function.
The model error covariance estimation is constrained for these
experiments to the three stochastic parameters alone. Figure 7a
shows the estimated deterministic parameters as a function of
the EM iterations. Twenty experiments with different initial de-
terministic parameters and initial stochastic parameter values
were conducted. The deterministic parameter estimation does
not manifest a significant sensitivity to the stochastic parame-
ter values. The mean estimated values are a0 = 17.3, a1 =
−1.25 and a3 = 0.0046. Note that the deterministic parame-
ter values estimated with information quantifiers in Pulido and

Rosso (2017) for the two-scale Lorenz-96 with F = 18 are
(a0, a1, a2) = (17.27, −1.15, 0.037). Figure 7b depicts the con-
vergence of the stochastic parameters. The mean of the optimal
stochastic parameter values are σ0 = 0.60, σ1 = 0.094 and
σ2 = 0.0096 with the log-likelihood value being 98.8 (single
realization). The convergence of the log-likelihood is shown in
Fig. 7c.

NR maximization is applied to the same set of synthetic obser-
vations. The mean estimated deterministic and stochastic
parameters are (a0, a1, a2) = (17.2, −1.24, 0.0047) and (σ0,

σ1, σ2) = (0.59, 0.053, 0.0064) from 20 optimizations. As in
the EM experiment, only the three stochastic parameters were es-
timated as likelihood parameters. Preliminary experiments with
the full augmented model error covariance gave smaller esti-
mated σ0 values and nonnegligible model error variance (not
shown). The log-likelihood function (Fig. 8a) and the analy-
sis root-mean-square error (RMSE, Fig. 8b) are shown as a
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function of σ0 at the σ1 and σ2 optimal values given by the
Newton–Rapshon method (green curve) and at the σ1 and σ2
optimal values given by the EM algorithm (blue curve). The
log-likelihood values are indistinguishable. A slightly smaller
analysis RMSE is obtained for the EM algorithm (Fig. 8b),
which is likely related to the improvement with the iterations
of the initial prior distribution in the EM algorithm, while this
distribution is fixed in the NR method.

Long integrations (106 time cycles) of the nature model and
the identified coarse-grained models were conducted to eval-
uate the parameterizations. The true effects of the small-scale
variables on a large-scale variable from the two-scale Lorenz-
96 model are shown in Fig. 9 as a function of the large-scale
variable. This true scatterplot is obtained by evaluating the right-
hand side of (26). The deterministic quadratic parameterization
with the optimal parameters from the EnKF is also represented
in Fig. 9a. A poor representation of the functional form and
variability is obtained. Figure 9b shows the scatterplot with
a stochastic parameterization which stochastic parameters are
the ones estimated with EM algorithm, while Fig. 9c shows it
for the stochastic parameters estimated with the NR method.
The two methods, NR and EM, give scatterplots of the pa-
rameterization which are almost indistinguishable and improve
the small-scale representation with respect to the deterministic
parameterization. Figure 9d shows the scatterplot resulting from
the quadratic parameterization using a random walk for the pa-
rameters set to the estimated values with the EM algorithm. The
values of the parameters are limited to the ai ± 4σi range. The
parameter values need to be constrained, because for these long
free simulations, some parameter values given by the random
walk produce numerical instabilities in the Lorenz-96 model
(Pulido et al., 2016). The stochastic parameterization which was
identified by the statistical learning technique improves sub-
stantially the functional form of the effects of the small-scale
variables. Using a constrained random walk appears to give the
best simulation.

5. Conclusions

Two novel methods to estimate and charactize physical
parametrizations in stochastic multi-scale dynamical systems
have been introduced, the expectation–maximization algorithm
(EnKF-EM) and Newton–Raphson likelihood maximization
(EnKF-NR) combined with the ensemble Kalman filter. These
new methods are suitable for the estimation of both stochastic
and deterministic parameters, based on sparse and noisy obser-
vations. Both methods determine the maximum of the observa-
tion likelihood , also known as model evidence, given a set of
spatio-temporally distributed observations, using the ensemble
Kalman filter to combine observations with model predictions.
The methods are first evaluated in a controlled model experiment
in which the true parameters are known and then, in the two-

scale Lorenz-96 dynamics which is represented with a stochas-
tic coarse-grained model. The performance of the methods is
excellent, even in the presence of moderate observational noise.
The methods do not require neither inflation factors nor any
other tunable parameters , because the methodology includes an
additive model noise term or stochastic parameters, which com-
pensate for the underestimation of the forecast error covariance.
The level of model noise to be added is not arbitrarily chosen
but the one that gives the maximal observation likelihood.

The estimation based on the expectation–maximization al-
gorithm gives very promising results in these medium-sized
experiments (≈100 parameters). About 50 iterations are needed
to achieve an estimation error lower than 10% using 100 observa-
tion times. Using a longer observation time interval, the accuracy
is improved. The estimation of stochastic parameters included
the case of additive, i.e. a0, and multiplicative parameters, i.e.
a1 Xn and a2 X2

n . The number of ensemble members has a strong
impact on the stochastic parameter variance, while the length of
the observation time interval appears to have a stronger impact
on the stochastic parameter correlations.

The computational cost of the algorithm is directly related to
the number of iterations needed for convergence. Each iteration
requires the application of an ensemble Kalman filter and a
smoother (which needs an extra inversion through singular value
decomposition). In the model-identification experiments, 50 EM
iterations were chosen as a secure option, with a minimal itera-
tion number of 20 for coarse convergence. In an operational high-
dimensional data assimilation system, the application of 20–50
ensemble Kalman filters would be prohibitive. On the other hand,
these experiments would be computationally feasible for model
identification, during the model development phase, even for
high-dimensional systems or for tuning the data assimilation
scheme.

The estimation based on the NR method also presents good
convergence for the twin experiment with an additive stochastic
parameter. For the more realistic model-identification experi-
ments, the model evidence presents some noise which may affect
the convergence. The free-derivative optimization requires about
10 iterations of 2NC + 1 evaluations where NC is the control
space dimension (number of parameters to be estimated). For
higher dimensional problems and large number of parameters,
optimization algorithms that use the gradient of the likelihood
to the likelihood parameters need to be implemented. Moreover,
the use of simulated annealing or other stochastic gradient opti-
mization techniques suitable for noisy cost functions would be
required.

The EM algorithm assumes a Gaussian additive model er-
ror term, which leads to an analytical expression for the maxi-
mization step. Besides, the derivation of the likelihood function
in the NR method also assumes Gaussian additive model and
observation errors. The methods could be extended for non-
Gaussian statistics, in which case the maximization step in the
EM algorithm can be conducted through an optimization itera-
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tive method. For cases with multimodal statistics, the application
of a particle filter (vanLeeuwen, 2009) and smoother (Briers et
al., 2010) instead of the Kalman filter and RTS smoother would
be required.

Both estimation methods can be applied to a set of different dy-
namical models to address which one is more reliable given a set
of noisy observations; the so called ‘model selection’ problem.
A comparison of the likelihood from the different models with
the optimal parameters gives a measure of the model fidelity
to the observations. Majda and Gershgorin (2011) seeked to
improve imperfect models by adding stochastic forcing and used
a measure from information theory that gives the closest model
distribution to the observed probability distribution. The model-
identification experiments in the current work can be viewed as
pursuing a similar objective, stochastic processes are added to
the physical parameterization to improve the model representa-
tion of the unresolved processes. Different structural parameter-
izations can be compared through their maximal observation
likelihood, the one that gets the larger maximal observation
likelihood for the optimal likelihood parameters using the same
set of observations is the parameterization that best suits the data.

Hannart et al. (2016) proposed to apply the observation like-
lihood function, model evidence, that results from assimilating
a set of observations, for the detection and attribution of climate
change. They suggest to evaluate the likelihood in two possi-
ble model configurations, one with the current anthropogenic
forcing scenario (factual world) and one with the preindustrial
forcing scenario (contrafactual world). If the evidencing window
where the observations are located includes, for instance, an ex-
treme event then one could determine the fraction of attributable
risk as the fraction of the change in the observation likelihood
of the extreme event which is attributable to the anthropogenic
forcing.

The increase of data availability in many areas has fostered
the number of applications of the ensemble Kalman filter. In
particular, it has been used for influenza forecasting (Shaman
et al., 2013) and for determining a neural network structure
(Hamilton et al., 2013). The increase in spatial and temporal
resolution of data offers great opportunities for understanding
multi-scale strongly-coupled systems such as atmospheric and
oceanic dynamics. This has lead to the proposal of purely data-
driven modelling which uses past observations to reconstruct
the dynamics through the ensemble Kalman filter without a
dynamical model (Hamilton et al., 2016; Lguensat et al., 2017).
The use of automatic statistical learning techniques that can use
measurements for improvement of multi-scale models is also
a promising venue. Following this recent stream of research,
in this work, we propose the coupling of the EM algorithm
and NR method with the ensemble Kalman filter which may
be applicable to a wide range of multi-scale systems to improve
the representation of the complex interactions between different
scales.
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Notes

1. We use the notation ‘;’, p(y1:K ; θ) instead of conditioning ‘|’ to
emphasize that θ is not a random variable but a parameter. NR
maximization and EM are point estimation methods so that θ is
indeed assumed to be a parameter (Cappé et al., 2005).

2. In principle what is required in (7) is p(x0:K |y1:K ) so that a fixed-
interval smoother needs to be applied. However, it has been shown
by Raanes (2016) that the Rauch–Tung–Striebel smoother and the
ensemble Kalman smoother, a fixed-interval smoother, are equiva-
lent even in the non-linear, non-Gaussian case.
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Appendix 1. Ensemble Kalman filter and
smoother

The ensemble Kalman filter determines the probability density
function of a dynamical model conditioned to a set of past
observations, i.e. p(xk |y1:k), based on the Gaussian assumption.
The mean and covariances are represented by a set of possible
states, called ensemble members. Let us assume that the a priori
ensemble members at time k are x f

1:Ne
(tk), so that the empirical

mean and covariance of the a priori hidden state are:

x f (tk) = 1

Ne

Ne∑
m=1

x f
m(tk),

P f (tk) = 1

Ne − 1
X f (tk)[X f (tk)]T, (A1)

where X f (tk) is a matrix with the ensemble member perturba-
tions, x f

m(tk) − x f (tk), as the m-th column.
To obtain the estimated hidden state, called analysis state, the

observations are combined statistically with the a priori model
state using the Kalman filter equations. In the case of the ensem-
ble transformed Kalman filter (Hunt et al., 2007), the analysis
state is a linear combination of the Ne ensemble member pertur-
bations,

xa = x f + X f wa, Pa = X f P̃a(X f )T. (A2)

The optimal ensemble member weights wa are obtained con-
sidering the distance between the projection of member states
to the observational space, y f

m ≡ H(x f
m), and observations y.

These weights and the analysis covariance matrix in the pertur-
bation space are:

wa = P̃a(Y f )TR−1[y − y f ],
P̃a = [(Ne − 1)I + (Y f )TR−1Y f ]−1. (A3)

All the quantities in (A2) and (A3) are at time tk so that the time
dependence is omitted for clarity. A detailed derivation of (A2)

and (A3) and a thorough description of the ensemble transformed
Kalman filter and its numerical implementation can be found in
Hunt et al. (2007).

To determine each ensemble member of the analysis state,
the ensemble transformed Kalman filter uses the square root of
the analysis covariance matrix, thus it belongs to the so-called
square-root filters,

xa
m = x f + X f wa

m (A4)

where the perturbations of wa
m are the columns of Wa = [(Ne −

1)P̃a]1/2.
The analysis state is evolved to the time of the next available

observation tk+1 through the dynamical model equations which
given the a priori or forecasted state,

x f
m(tk+1) = M(xa

m(tk)). (A5)

The smoother determines the probability density function of
a dynamical model conditioned to a set of past and future ob-
servations, i.e. p(xk |y1:K ), based on the Gaussian assumption.
Applying the Rauch–Tung–Striebel smoother retrospective for-
mula to each ensemble member (Cosme et al., 2012),

xs
m(tk) = xa

m(tk) + Ks(tk)[xs
m(tk+1) − x f

m(tk+1)], (A6)

where Ks(tk) = Pa(tk)MT
k→k+1[P f (tk+1)]−1, and Mk→k+1

being the linear tangent model. For the application of the smoother
in conjunction with the ensemble transformed Kalman filter, the
smoother gain is re-expressed as:

Ks(tk) = X f (tk)Wa[X f (tk+1)]†. (A7)

In practice, the pseudo inversion of the forecast state perturbation
matrix X f required in (A7) is conducted through singular value
decomposition.
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