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STRATIFIED SPACES AND SYNTHETIC RICCI CURVATURE BOUNDS

We prove that a compact stratied space satises the Riemannian curvature-dimension condition RCD(K, N ) if and only if its Ricci tensor is bounded below by K ∈ R on the regular set, the cone angle along the stratum of codimension two is smaller than or equal to 2π and its dimension is at most equal to N . This gives a new wide class of geometric examples of metric measure spaces satisfying the RCD(K, N ) curvature-dimension condition, including for instance spherical suspensions, orbifolds, Kähler-Einstein manifolds with a divisor, Einstein manifolds with conical singularities along a curve. We also obtain new analytic and geometric results on stratied spaces, such as Bishop-Gromov volume inequality, Laplacian comparison, Lévy-Gromov isoperimetric inequality. Our result also implies a similar characterization of compact stratied spaces carrying a lower curvature bound in the sense of Alexandrov.

Introduction

Singular metric spaces naturally appear in dierential geometry when considering quotients of smooth manifolds, their Gromov-Hausdor limits, when they exist, or geometric ows. One of the main questions when dealing with singularities, is how to dene a good notion of curvature, or of curvature bounds. One of the possible and more ecient ways to answer this question is given by the work of K.-T. Sturm [START_REF] Sturm | On the geometry of metric measure spaces. I[END_REF] [START_REF]On the geometry of metric measure spaces[END_REF], and of J. Lott together with C. Villani [START_REF] Lott | Ricci curvature for metric-measure spaces via optimal transport[END_REF], which initiated the study of synthetic Ricci curvature bounds on metric measure spaces. In the recent years, such study has given rise to a rich theory where signicant analytic and geometric results intertwine. The idea for the CD(K, N ) curvature-dimension condition is to dene a lower bound K for the curvature, and an upper bound N for the dimension, in terms of convexity for entropy functionals in the appropriate space of probability measures, the L 2 -Wasserstein space. L. Ambrosio, N. Gigli and G. Savaré [START_REF]Metric measure spaces with Riemannian Ricci curvature bounded from below[END_REF] [Gig15] rened the previous condition and introduced the Riemannian curvature-dimension condition RCD(K, N ), which rules out Finsler geometries. Some of the many good features of the Riemannian curvature-dimension condition is that it corresponds, in the setting of smooth Riemannian manifolds, to a standard lower Ricci bound, and moreover it is stable under measured Gromov-Hausdor convergence (mGH convergence for short). Therefore, mGH-limits of smooth manifolds whose Ricci curvature is uniformly bounded below are the rst, possibly singular, examples of metric measure spaces satisfying the RCD condition.

Other examples are given by nite dimensional Alexandrov spaces with a lower curvature bound [START_REF] Kuwae | Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces[END_REF]Pet11], and weighted manifolds with Bakry-Émery tensor bounded below. In more general terms, it is now known that all the constructions which preserve a lower Ricci bound in the context of smooth manifolds, cones, suspensions, quotients, (metric) foliations/submersions, also preserve, under some technical assumptions, the RCD condition in the setting of metric measure spaces [START_REF]Cones over metric measure spaces and the maximal diameter theorem[END_REF][START_REF] Ketterer | Ricci curvature bounds for warped products[END_REF][START_REF] Galaz-Garcia | On quotients of spaces with Ricci curvature bounded below[END_REF]. However, all these examples are, in some sense, rigid: 1 cones in the work of the second author carry an exact cone metric; an orbifold singularity is modeled on a cone over a quotient of the sphere, and other cone sections are not allowed. If we consider a more general and exible model for conical singularities, isolated or not, on a smooth Riemannian manifold, there isn't any known geometric criterion to establish whether a synthetic lower Ricci bound holds.

The aim of this paper is to ll this gap and present a new class of geometric examples satisfying a RCD condition, which includes in particular orbifolds, spherical suspensions over smooth manifolds, and manifolds with conical singularities (isolated or not). More precisely, we give a criterion on compact stratied spaces, as dened in the works of K. Akutagawa, G. Carron, R. Mazzeo [START_REF] Akutagawa | The Yamabe problem on stratied spaces[END_REF] and of the third author, under which such metric measure spaces satisfy the Riemannian curvature-dimension condition.

Stratied spaces can be seen as a generalization of manifolds with isolated conical singularities; in fact, they can be decomposed into a regular set X reg , which is a smooth manifold of dimension, and a closed singular set, made of singular strata of possibly dierent dimensions, with a local cone-like structure. This means that a tubular neighbourhood of a singular stratum is the product of an Euclidean ball and a cone, thus we can consider not only isolated conical singularities, but also conical singularities along a curve or more generally along a submanifold. We focus our attention on compact stratied spaces without boundary, hence the minimal codimension of a singular stratum is two.

Stratied spaces were rst introduced in topology by H. Withney and R. Thom, then later studied from a more analytical point of view starting from the work of J. Cheeger [START_REF]Spectral geometry of singular Riemannian spaces[END_REF]. In this paper, we consider stratied spaces with a Riemannian approach; indeed, it is possible to dene an iterated edge metric (see [START_REF] Albin | The signature package on Witt spaces[END_REF] , [START_REF] Akutagawa | The Yamabe problem on stratied spaces[END_REF]) which is a Riemannian metric on the regular set, and whose asymptotic expansion is close to a model metric, depending on the strata to which the point where the expansion is performed belongs. The fact that we only require closeness to a model geometry gives more exibility about the choice of the iterated edge metric, including its regularity.

In [START_REF]The local Yamabe constant of Einstein stratied spaces[END_REF][START_REF]An Obata singular theorem for stratied spaces[END_REF], the third author studied compact stratied spaces with a lower Ricci curvature bound. Note that the Ricci tensor is only well-dened on the regular set of a stratied space; one has to be careful about the behaviour of the metric near singular strata, and in particular near the stratum of codimension two. Indeed, the singularities along this stratum are modeled on a two-dimensional metric cone, which has an angle. If such angle is smaller than 2π, then the cone has positive curvature in the sense of Alexandrov, negative otherwise. This plays an important role in the following denition: Denition (Singular lower Ricci bound). Let X be a compact stratied space of dimension n endowed with an iterated edge metric g. Let K ∈ R. We say that g has singular Ricci curvature bounded from below by K if (i) Ric g ≥ K on the regular set X reg , (ii) the angle α along the stratum Σ n-2 is smaller than or equal to 2π.

Observe that we do not need to give any condition on the strata of codimension larger than two, since the condition on the regular set suces to control the behaviour of the Ricci curvature of the cone sections at those strata. It is not the case for the codimension-two stratum. Using the stability under mGH convergence of the RCD condition, one can guess that some assumption on the cone angle is needed for a RCD condition to hold on a stratied space: in fact, if the space is RCD, then all the tangent cones must have a non-negative RCD curvature bound, and K. Bacher and K-T. Sturm [START_REF]Ricci bounds for Euclidean and spherical cones, Singular phenomena and scaling in mathematical models[END_REF] proved that a cone over a manifold of diameter larger than π does not satisfy a CD condition.

In dimension two, the previous denition corresponds to surfaces with sectional curvature bounded below and isolated conical singularities with angles smaller than 2π. Such singular surfaces are known to be Alexandrov spaces [START_REF] Alexandrov | Alexandrov selected works[END_REF], and thus are examples of RCD spaces. In higher dimension, more general singularities can occur; stratied spaces satisfying the previous denition include orbifolds, Kähler-Einstein manifolds with a divisor, spherical suspensions over smooth manifolds (or stratied spaces) with a lower Ricci bound.

As proven by the second and the third author, both RCD and stratied spaces share properties with smooth Riemannian manifolds involving the bottom of the spectrum or the diameter; corresponding rigidity results also hold [START_REF]The local Yamabe constant of Einstein stratied spaces[END_REF][START_REF]An Obata singular theorem for stratied spaces[END_REF][START_REF]Cones over metric measure spaces and the maximal diameter theorem[END_REF][START_REF]Obata's rigidity theorem for metric measure spaces[END_REF]. It is then natural to expect, but not elementary to prove, that stratied spaces with a singular lower Ricci bound also satisfy a RCD condition.

We are going to prove that the former condition is actually equivalent to the latter.

More precisely, taken for granted that a compact stratied space admits a natural distance d g as well as a volume measure v g (see Section 1 for more on these points), our main theorem states the following: Theorem A. Let (X, g) be a compact stratied space endowed with an iterated edge metric g. Equipped with its natural distance d g and measure v g , the stratied space (X, d g , v g ) satises the RCD(K, N ) condition if and only if its dimension is smaller than or equal to N and the iterated edge metric g has singular Ricci curvature bounded below by K.

Under the assumption of a singular lower Ricci bound, we actually prove a condition referred to as BE(K, N ), which is known to be equivalent to RCD(K, N ) under some conditions ([EKS15, AMS15]). The condition BE(K, N ) stays for Bakry-Émery and is inspired by the Γ 2 -calculus developed by these authors, built on the Bochner formula. We emphasize that the proof of the BE(K, N ) condition in our setting relies on a non trivial regularity result for the eigenfunctions of the Laplacian due to [START_REF]The local Yamabe constant of Einstein stratied spaces[END_REF], which strongly depends on the angle α along Σ n-2 being smaller than 2π. To prove the reverse implication, we only need stability properties of the RCD condition mentioned above.

Not only the previous theorem gives a new ample class of geometric examples

of RCD(K, N ) spaces, but also allows us to apply the rich theory of RCD(K, N ) spaces to stratied spaces. As a consequence, we obtain previously unknown results in this setting such as Laplacian comparisons, Bishop-Gromov volume estimate, Lévy-Gromov isoperimetric inequality. Note that it is not immediate to deduce Laplacian comparisons and volume estimates on stratied spaces, since the classical proofs require regularity properties of the distance function, that can fail to be true when considering the distance to a singular point. Let us also add that it is a dicult problem to understand the behaviour of (long) geodesics on stratied spaces; for instance, it is not known whether the regular set of a compact stratied space with a singular lower Ricci bound is geodesically convex. Nevertheless, our main theorem implies that any stratied space (X, g) with a singular lower Ricci bound is essentially non-branching and, as it was pointed to us by V. Kapovitch, its regular set X reg is almost everywhere convex. By applying a result of N. Li [START_REF] Li | Globalization with probabilistic convexity[END_REF], this weak level of control on the geodesics turns out to be enough to show an analogue of Theorem A for lower bounds on the sectional curvature: Corollary B. Let (X, g) be a compact stratied space. Then (X, d g ) has curvature bounded from below by k in the sense of Alexandrov if and only if the following two conditions are satised:

(i) The sectional curvature of g is larger than or equal to k on X reg . (ii) The angle α along the singular stratum is at most 2π.

Finally, we would like to point out that RCD(K, N ) spaces includes, but are not necessarily, Ricci limit spaces. For example, it is known that the spherical suspension over RP 2 is a RCD(K, N ) space, and it is a compact stratied space with singular Ricci lower bound as well, but, as observed by G. De Philippis, A. Mondino and P. Topping, it cannot be a non-collapsed limit of Riemannian manifolds. Indeed, M. Simon proved in [START_REF] Simon | Ricci ow of non-collapsed three manifolds whose Ricci curvature is bounded from below[END_REF] that the Gromov-Hausdor limit of a sequence of 3-manifolds with a lower bound on the Ricci tensor and an upper bound on the diameter must be a topological manifold, which the spherical suspension over RP 2 is not. M. Simon's results proves a conjecture of of M. Anderson, J. Cheeger, T.-H. Colding and G. Tian, which has also been shown in [START_REF] Simon | Local mollication of Riemannian metrics using Ricci ow, and Ricci limit spaces[END_REF] without assuming the upper bound on the diameter. It is in general a very dicult question to nd new examples of RCD spaces not arising as Gromov-Hausdor limits of smooth manifolds; moreover, even in the simple case of cones and spherical suspension, for example over RP 2 , it is not easy to gure out whether they are collapsed limits of Riemannian manifolds or not. Having a wider class of geometric examples of RCD spaces could contribute to make progresses in solving this question.

The paper is organized as follows. The rst section is devoted to illustrate some notions about stratied spaces which will be used throughout the paper. In the second section, we recall the basics of curvature-dimension conditions on metric measure spaces. We then give some examples of stratied spaces which carry a singular lower Ricci bound, and thus, thanks to our main theorem, satisfy the RCD(K, N ) condition. The fourth section is devoted to reformulating some analytic and geometric results about RCD(K, N ) spaces in the setting of stratied spaces with a singular lower Ricci bound, as an application of our main theorem. 1.1.1. Denition and dierential properties. The topological denition of a stratied space can be given by induction with respect to a quantity called depth of the space. For the sake of simplicity, we present here a denition by induction on the dimension. In the denition and in the following we will use truncated cones. A truncated cone over a metric space Z is the quotient space ([0, 1] × Z)/ ∼ with the equivalence relation (0, z 1 ) ∼ (0, z 2 ) for all z 1 , z 2 ∈ Z. If the interval is not [0, 1] but [0, δ) for some δ > 0 we will write C [0,δ) (Z).

It also includes

Denition 1.1. A one-dimensional compact stratied space is simply a connected compact dierentiable manifold of dimension one. For n larger than one, assume that we have dened (n -1) dimensional compact stratied spaces. Then, an ndimensional stratied space is a connected compact topological space X such that the following properties hold: (a) There exists a decomposition of X in strata

X = n j=0 Σ j ,
where Σ 0 is a nite set of points, and Σ j are smooth, possibly open, mani-

folds of dimension j ∈ {1, • • • , n}. Each Σ j is called a stratum. We assume X is without boundary, namely Σ n-1 = ∅. The closure of Σ j is required to satisfy Σ j ⊂ l≤j Σ l .
(1)

We further dene the regular set X reg as the stratum Σ n of highest dimension and the singular set Σ as its complement, namely Σ = ∪ n-2 j=0 Σ j . The strata of dimension j ≤ (n -2) are called singular strata. Thanks to (1) Σ is a closed set, thus the regular set X reg is an open and dense subset of X.

(b) Each connected component Σ j of the singular stratum Σ j of dimension j ≤ (n -2) admits a neighbourhood U j homeomorphic to the total space of a bundle of truncated cones over Σ j . More precisely, there exists a retraction π j : U j → Σ j , and a compact stratied space Z j of dimension (n -j -1) such that π j is a cone bundle whose bre is a truncated cone over Z j . We set ρ j :

U j → [0, 1]
the radial function where ρ j (x) stands for the radial factor in the conical ber π -1 j ({x}). The stratied space Z j is called the link of the stratum. We are interested in studying smoothly stratied spaces. This means that the cone bundle given in the denition is assumed to satisfy a smoothness property that we now describe. Indeed, we have a notion of local chart in a neighbourhood of a singular point and such chart is smooth on the regular subset of the neighbourhood.

More precisely, for each x ∈ Σ j there exists a relatively open ball B j (x) ⊂ Σ j and a homeomorphism ϕ x such that:

ϕ x : B j (x) × C [0,δx) (Z j ) -→ W x := π -1 j (B j (x)
), satises π j • ϕ x = p 1 where δ x > 0, and p 1 is the projection on the rst factor of the product B j (x) × C [0,δx) (Z j ). Moreover, ϕ x restricts to a smooth dieomorphism on the regular sets, that is from

B j (x) × C [0,δx) (Z reg j ) \ B j (x)) × {0} onto the regular subset W x ∩ X reg of W x .
Remark 1.2. First examples of stratied spaces are manifolds with isolated conical singularities and orbifolds. In this second case, the links are quotients of the sphere by a nite subgroup of O(n), acting freely on R n \ {0}. Note that not all stratied spaces are necessarily orbifolds.

Remark 1.3. To have a better picture of the local geometry, let us point out the case of a stratum Σ n-2 of minimal codimension: each point of Σ n-2 has a neighbourhood which is homeomorphic to the product of a ball in R n-2 and a two-dimensional truncated cone. There is only one possibility for the link of Σ n-2 : since it has to be a one-dimensional compact stratied space, it is a circle S 1 . 1.1.2. Iterated edge metric. We are going to dene a class of Riemannian metrics on a stratied space: iterated edge metrics. Such metrics are proven to exist in [START_REF] Albin | The signature package on Witt spaces[END_REF]. We briey sketch the inductive construction of an iterated edge metric.

Recall that in dimension one a stratied space is a standard smooth manifold; in this case an iterated edge metric is nothing but a smooth Riemannian metric. Assume that we have constructed an admissible iterated edge metric on compact stratied spaces of dimension k ≤ (n -1) and consider a stratied space X n . In order to dene an iterated edge metric, we rst set a model metric on U j , the neighbourhood of a connected component of the singular stratum Σ j introduced in the previous paragraph.

Consider k j a symmetric 2-tensor on ∂U j = ρ -1 j (1) which restricts to an admissible metric on each bre of the cone bundle π j and vanishes on a j-dimensional subspace. Such tensor exists because the link Z j is a stratied space of dimension smaller than n. We dene the model metric on U j as follows: g 0,j = π * j h + dρ 2 j + ρ 2 j k j , where h is a smooth Riemannian metric on Σ j . Observe that, in terms of the local coordinates given by a chart ϕ x around x ∈ Σ j , if (y, ρ j , z) are the coordinates of a point in U j with y in R j and z in Z j , h only depends on y, while k depends on y and z.

Denition 1.4 (Iterated edge metric). Let X be a stratied space with strata Σ j and links Z j ; let g 0,j be the model metric dened above. A smooth Riemannian metric g on the regular set X reg is said to be an iterated edge metric if there exist constants α, Λ > 0 such that for each j and for each x ∈ Σ j we have:

|ϕ * x g -g 0,j | ≤ Λr α , on B j (r) × C (0,r) (Z reg j ), (2) 
for any r < δ x (where δ x and the local chart ϕ x are dened as above and | • | refers to the norm on tensors induced by g 0,j ).

Remark 1.5. When we consider a stratum Σ n-2 of codimension 2, the link is a circle S 1 , and therefore the model metric around x ∈ Σ n-2 has the following form:

g 0,n-2 = π * n-2 h + dρ 2 n-2 + ρ 2 n-2 (a 2
x dθ 2 ), where a 2

x dθ 2 is a metric on S 1 , for a x ∈ (0, +∞). We refer to α x = a x • 2π as the angle of Σ n-2 at x, since α x is the angle of the exact cone (C(S 1 ), dρ 2 + a 2

x ρ 2 dθ 2 ). Note that α x may depend on x, and it can be smaller or larger than 2π. This will play a crucial role in studying lower curvature bounds. 1.2. Stratied space viewed as Metric Measure Space. In this part, we introduce a distance and a measure on a compact stratied space equipped with an iterated edge metric. To this aim, we shall follow and use properties from the book [START_REF] Burago | A course in metric geometry[END_REF]. 1.2.1. Distance on a stratied space. Denition 1.6 (Length structure). If g is an iterated edge metric for X, one introduces the associated length structure as follows. A continuous curve γ : [a, b] → X is said to be admissible if the image γ([a, b]) is contained in X reg up to nitely many points; we further assume γ to be C 1 on the complement of this nite set.

We then dene the length of such a curve as

L g (γ) = ˆb a | γ(t)|dt.
Consequently, we dene the distance between two points x, y ∈ X as follows:

d g (x, y) = inf{L g (γ)|γ : [a, b] → X admissible curve s.t. γ(a) = x, γ(b) = y}.
It is rather straightforward to check that the above length structure meets the hypotheses described in [BBI01, Chapter 2] which ensures that d g is indeed a distance.

We shall also use the following result:

Lemma 1.7. Let (X, g) be a compact stratied space of dimension n endowed with the iterated edge metric g. Let γ : [0, 1] → X be an admissible curve. For any ε > 0, there exists an admissible curve γ ε with the same endpoints as γ and such that γ ε ((0, 1)) is contained in the regular set X reg . Moreover L g (γ ε ) ≤ L g (γ) + ε.

More details about the length structure, including a proof of the above Lemma, can be found in the appendix.

As proved in [BBI01, Chapter 2], the length structure induced by d g gives rise to a distance d which coincides with d g . This fact allows us to consider the larger set of rectiable curves (where the length is intended as the standard one on a metric space). Note also that according to the above lemma, the distance d g (x, y) is the inmum of lengths of admissible curves whose range is in X reg except maybe the endpoints.

Consequently, (X, d g ) is a compact length space, thus Ascoli-Arzela's theorem implies it is a geodesic space. 1.2.2. Tangent cones and geometry of small geodesic balls. The local geometry of a singular point x ∈ Σ is also well-understood. Let us start with a result on tangent cones, namely the Gromov-Hausdor limits of the pointed metric spaces (X, ε -1 d g , x) as ε goes to zero. Lemma 1.8. Let x be a point in (X, d g ). Then there exists a unique tangent cone T x X at x. Moreover, when x ∈ Σ j , this cone is isometric to R j × C(Z j ) equipped with the (distance induced by the) product metric dx 2 + dρ 2 + ρ 2 k j . Remark 1.9. By denition of an iterated edge metric, the tangent cone at a regular point is isometric to Euclidean space R n .

For x ∈ Σ j , a change of variables proves that the tangent cone at a singular point is isometric to

(C(S x ), dr 2 + r 2 h x )
where S x is the (j -1)-fold spherical suspension of the link Z j :

0, π 2 × S j-1 × Z j , dϕ 2 + cos 2 ϕg S j-1 + sin 2 ϕk j .
We refer to S x as the tangent sphere at x. Note that S x is a compact stratied space of dimension (n -1).

Note also that 2 implies

|ϕ * x g -g 0,j | ≤ Λr α , on B 0,j (x, r) ∩ X reg ⊂ B j (r) × C (0,r) (Z reg j ) (3) 
the open ball of radius r w.r.t. to the model metric g 0,j centered at x. Note that this ball is homeomorphic to C [0,r) (S x ).

Rescaling the distance by a factor 1/ε around a point x amounts to rescale the iterated edge metric by a factor 1/ε 2 . By denition of this metric around a singular point, it is then not dicult to show existence and uniqueness of the tangent cone at any such point x of a stratied space, see for example Section 2.1 in [START_REF] Akutagawa | The Yamabe problem on stratied spaces[END_REF] for more details about the above properties.

The tangent sphere allows us to give a dierent and useful description of geodesic balls around a point; the idea is that a geodesic ball around a singular point is not far from being a cone over its tangent sphere. We refer to Section 2.2 of [START_REF]Hölder regularity of solutions for Schrödinger operators on stratied spaces[END_REF] for proofs of the following properties.

Namely, for any x ∈ Σ, there exists a suciently small radius ε x , a positive constant κ and an open set Ω x satisfying:

• the geodesic ball B(x, ε x ) is contained in Ω x ,

• Ω x is homeomorphic to the truncated cone C [0,κεx) (S x ), and the homeomorphism ψ x sends the regular part of Ω x to the regular set of C [0,κεx) (S x ); • on the regular part of the ball B(x, ε x ) ∩ X reg we control the dierence between g and the exact cone metric g C = dr 2 + r 2 h x :

|ψ * x g -(dr 2 + r 2 h x )| ≤ Λε α x , (4) 
where Λ is a positive constant, and α is the same exponent appearing in the denition of the iterated edge metric g.

This implies a similar estimate for the distance functions. More precisely, on the cone over (S x , h x ), let us consider the exact cone distance:

d C ((t, y), (s, z)) = t 2 + s 2 -2st cos(d hx (y, z) ∧ π),
where (t, y), (s, z) belong to C(S x ) and a ∧ π is the minimum between a and π. Now, given x ∈ Σ and a radius 0 < ε < ε x , we have, for any point y in B(x, ε) with coordinates (r, z) in C [0,κεx) (S x ), the estimate:

|d g (x, y) -d C (0, (r, z))| ≤ Λε α+1 . (5) 
In other terms, the distance function from a point x in the singular set is not far from being the exact cone distance in C(S x ) in small geodesic balls centred at x. However, it is still quite dicult to say anything about the local behaviour of geodesic at singularities.

Observe that, thanks to the compactness of the stratied space, we can choose a uniform ε 0 such that for any x ∈ X the ball B(x, ε 0 ) satises the previous properties. 1.2.3. Measure on a stratied space. We end this part with the denition of the volume measure on X. We then show that the volume shares properties with the standard Riemannian volume of a smooth Riemannian manifold. Denition 1.10 (Volume measure). The volume measure v g of a compact stratied space endowed with an iterated edge metric g, is the Riemannian measure on X reg induced by the restriction of g to this set. It is denoted as v g while the volume of a measurable set A is denoted by Vol g (A).

Note that the singular set has measure zero: Vol g (Σ) = 0.

We start by observing a local property for the volume measure. Consider a point

x ∈ X and the radius ε 0 > 0 dened as above, so that the geodesic ball B(x, ε 0 ) is contained in an open set homeomorphic to a truncated cone over the tangent sphere S x . Denote by Vol C the volume measure associated to the cone metric g C . Thanks to 4, for any regular point y ∈ C (0,κε0) (S reg x ) and for any vector v such that g C (v, v) = 1 we obtain:

(1 -Λε α 0 ) ≤ ψ * x g(v, v) ≤ (1 + Λε α 0 ).
By choosing an orthonormal basis for the cone metric g C which is orthogonal for ψ * x g, the previous implies the following inequality for the volume forms:

(1

-Λε α 0 ) n 2 dv C ≤ dv ψ * x g ≤ (1 + Λε α 0 ) n 2 dv C .
As a consequence, and thanks to the fact that the singular sets have null measure, for any measurable set U in B(x, ε 0 ) we have:

(1 -Λε α 0 ) n 2 Vol C (ψ -1 x (U)) ≤ Vol g (U) ≤ (1 + Λε α 0 ) n 2 Vol C (ψ -1 x (U)). (6) 
The volume measure on a geodesic ball is close to the volume measure of a cone metric. This local property allows us to deduce that the volume measure of a compact stratied space is nite, n-Ahlfors regular and doubling.

Lemma 1.11. The volume measure v g of a compact stratied space is nite

Proof. The proof is by induction on the dimension; it is clearly true for n = 1.

Assume that any stratied space of dimension k ≤ (n -1) is nite. We can cover X n by nitely many geodesic balls B(x i , ε 0 ) for a uniform ε 0 such that 6 holds on B(x i , ε 0 ). In particular, the volume of B(x i , ε 0 ) with respect to g is smaller than the volume of the truncated cone on the tangent sphere S xi with respect to the cone metric g C . If x i belongs to the regular set, S xi is a sphere of dimension (n -1) and g C is the round metric on an n-dimensional Euclidean ball. As a consequence, Vol g (B(x i , ε 0 )) is nite. If x i is a singular point, then S xi is a stratied space of dimension (n -1), which has nite volume by the induction hypothesis. Therefore the truncated cone over S xi has nite volume with respect to g C , and again Vol g (B(x i , ε 0 )) is nite. We can then cover X n by a nite number of balls of nite volume, thus Vol g (X) is nite.

Proposition 1.12. The measure v g is n-Ahlfors regular: there exists a positive constant C such that for any x ∈ X and for any 0 < r < diam(X)/2, the measure of the ball B(x, r) is bounded as follows:

C -1 r n ≤ Vol g (B(x, r)) ≤ Cr n .
As a consequence, the measure v g is doubling: there exists a constant C 1 such that for any x ∈ X and for any 0 < r < diam(X)/2

Vol g (B(x, 2r)) ≤ C 1 Vol g (B(x, r)).

Proof. The second property is an immediate consequence of the Ahlfors regularity.

Using the compactness of X, it suces to prove, for all x ∈ X, the bounds

C(x) -1 r n ≤ Vol g (B(x, r)) ≤ C(x)r n (7) 
for all 0 < r < R(x) where R(x), C(x) > 0 may depend on x. Indeed, the compactness of X and the property Vol g (X) < +∞ allow us to remove the dependance in x from the constant C(x) and to replace R(x) by diam(X ).

In order to prove 7 we only have to consider the case of a singular point x ∈ Σ. Fix ε 0 as dened above and consider a geodesic ball B(x, ε), for some ε < ε 0 , on which the three estimates 4, 5 and 6 hold. Denote by U the image of B(x, ε) in the truncated cone C [0,κε) (S x ) by the homeomorphism ψ x . Thanks to the estimate on the distance 5, U must be contained in a geodesic ball with respect to the metric g C centered at the tip of the cone, whose radius is not far from ε. More precisely, for δ = Λε α 0 , U satises:

C [0,(1-δ)ε) (S x ) ⊂ U ⊂ C [0,(1+δ)ε) (S x ).
Indeed, geodesic balls centered at the tip of the cone are truncated cone as well.

Thanks to the estimate on the volume measure 6, we obtain for any 0 < ε ≤ ε 0 :

Vol hx (S x )(1 -δ) n ε n ≤ Vol g (B(x, ε)) ≤ Vol hx (S x )(1 + δ) n ε n .
This last inequality allows us to conclude, since the volume of S x is nite.

1.3. Analysis on stratied spaces. We dene the Sobolev space W 1,2 (X) on a compact stratied space (X, d g , v g ) as the completion of Lipschitz functions on X with respect to the usual norm of W 1,2 . More precisely, for a Lipschitz function u, the gradient ∇u is dened almost everywhere on X, and therefore its norm in W 1,2 (X) is given by:

||u|| 2 1,2 = ˆX (u 2 + |∇u| 2 )dv g .
It is possible to show that Lipschitz functions with compact support on the regular set Lip 0 (X reg ), as well as C ∞ 0 (X reg ) smooth functions with compact support on X reg , are dense in W 1,2 (X) (see Chapter 1 of [START_REF] Mondello | The Yamabe problem on stratied spaces[END_REF] for a standard proof ). The Sobolev space W 1,2 (X) is clearly an Hilbert space. Moreover the usual Sobolev embeddings holding for compact smooth manifolds, also hold in the setting of compact stratied spaces, as proven in [START_REF] Akutagawa | The Yamabe problem on stratied spaces[END_REF].

We dene the Dirichlet energy as

E(u) = ˆX |∇u| 2 dv g , for u ∈ C ∞ 0 (X reg ).
Thanks to the density of C ∞ 0 (X reg ), we can then extend E to the whole W 1,2 (X). The Laplacian ∆ g associated to g is then the positive self-adjoint operator obtained as the Friedrichs extension of the operator generating the quadratic form E. The integration by parts formula holds ˆX v∆ g udv g = ˆX (∇u, ∇v) g dv g .

It is proven in [START_REF] Akutagawa | The Yamabe problem on stratied spaces[END_REF] that the spectrum of the Laplacian is discrete and nondecreasing:

0 = λ 0 < λ 1 ≤ λ 2 ≤ . . . ≤ λ n → +∞.
Moreover, in [START_REF]Hölder regularity of solutions for Schrödinger operators on stratied spaces[END_REF] the authors showed a local (2, 2)-Poincaré inequality: there exists constants a > 1, C > 0 and ρ 0 > 0 such that for any x ∈ X and for any

ρ < ρ 0 , if u ∈ W 1,2 (B(x, aρ)) then ˆB(x,ρ) |u -u B(x,ρ) | 2 dv g ≤ C ˆB(x,aρ) |∇u| 2 dv g , where u B(x,ρ) = Vol g (B(x, ρ)) -1
ˆB(x,ρ) u dv g is the average of u over B(x, ρ).

In the following we will need the so-called Sobolev-to-Lipschitz property which, roughly speaking, means that a Sobolev function with bounded gradient admits a Lipschitz representative (see Denition 2.3). This holds on compact stratied spaces thanks to Lemma 1.7. The precise statement is Lemma

1.13. Let u ∈ W 1,2 (X) a function with bounded gradient, ∇u ∈ L 2 (X) ∩ L ∞ (X).
Then u has a Lipschitz representative.

Proof. When we restrict u to X reg , u has a bounded gradient dened almost everywhere. Consider two points x = y in X reg . Thanks to Lemma 1.7, for any ε > 0 there exists an admissible curve γ ε : [0, 1] → X reg which connects x and y such that

L g (γ ε ) ≤ (1 + ε)d g (x, y).
Therefore, since γ ε ([0, 1]) is compact, it can be covered by nitely many geodesically convex balls dieomorphic to open Euclidean subsets. On such a ball, u is locally Lipschitz with Lipchitz constant at most ∇u ∞ . We infer from the fundamental theorem of calculus applied to u • γ:

|u(x) -u(y)| ≤ ||∇u|| ∞ (1 + ε)d g (x, y).
By letting ε go to zero, we obtain that u is a Lipschitz continuous function on X reg with Lipschitz constant smaller than or equal to K = ||∇u|| ∞ . This implies u is uniformly continuous on X reg ; since the regular set is dense in X, u admits a unique Lipschitz continuous extension ū dened on the whole X, with u = ū almost everywhere and the same Lipschitz constant.

Remark 1.14. We can consider another possible metric structure on the stratied space, by dening the distance associated to the Dirichlet energy as follows:

d E (x, y) = sup{|f (x) -f (y)|; f ∈ W 1,2 (X), ||∇f || ∞ ≤ 1}.
Thanks to the previous result, we know that Sobolev functions with bounded gradient are Lipschitz functions, and ||∇f || ∞ ≤ 1 implies they have Lipschitz constant at most one. As a consequence, for any f as in the denition and for any x, y ∈ X we have |f (x) -f (y)| ≤ d g (x, y), which implies d E (x, y) ≤ d g (x, y). Moreover, note that for any x xed, f (y) = d g (x, y) is clearly a Lipschitz function of Lipschitz constant one, belonging to W 1,2 (X). Therefore for any x, y ∈ X we have d E (x, y) ≥ d g (x, y). Then the two distances coincides. 1.3.1. Ultracontractivity. In the proof of Theorem A we will use some properties of the heat semi-group that we recall here. Let X be a compact stratied space, and let g be an iterated edge metric. By denition, E is also a strongly regular Dirichlet form. Let (P t ) t>0 denote the associated heat semi-group. E is strongly local, admits a local (2, 2)-Poincaré inequality, and the measure v g satises a doubling property. Moreover, closed balls w.r.t. d E are compact. Therefore, we can apply results from [START_REF] Sturm | Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and L p -Liouville properties[END_REF][START_REF]II. Upper Gaussian estimates for the fundamental solutions of parabolic Osaka[END_REF][START_REF] Sturm | Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality[END_REF] and, in particular, the following lemma holds. Lemma 1.15. P t is L 1 → L ∞ -ultracontractive. More precisely, for every t ∈ (0, ∞) there exists a constant C(t) > 0 such that

P t L 1 (Volg)→L ∞ (Volg) ≤ C(t).
Proof of the Lemma: The assumptions imply a uniform bound C(t) > 0 on the associated heat kernel (x, y) → p t (x, y) by [Stu95, Theorem 0.2] or by [START_REF] Sturm | Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality[END_REF]Corollary 4.2]. Then, we can rst deduce L 1 → L p -ultra-contractivity for some p > 1 (for instance, compare with [Gri09, Chapter 14.1]), and this property implies our claim (for instance, see again [Gri09, Chapter 14.1] or [AGS14b, Theorem 6.4]).

A minimal introduction to analysis on Metric Measure Spaces

2.1. Calculus on metric measure spaces. In this part, we provide a minimal introduction on the analytical tools used in the theory of RCD-spaces. We follow closely the approach of Ambrosio, Gigli and Savaré [AGS13, AGS14a, AGS14b, AGS15].

Throughout this section (X, d) is a complete and separable metric space, and let m be a locally nite Borel measure. The triple (X, d, m) is then called a metric measure space. Moreover, we assume from now on that the so-called exponential volume growth condition holds

∃x 0 ∈ X, ∃C > 0 : ˆX e -Cd(x,x0) 2 d m < ∞. (8) 
2.1.1. Cheeger energy and Sobolev space. As for a stratied space we denote by Lip(X) the set of Lipschitz functions on (X, d), and for f ∈ Lip(X) we dene the the local slope or the local Lipschitz constant Lip(f ) as

x → Lip(f )(x) = lim sup y→x |f (x) -f (y)| d(x, y) .
Lip 1 (X) denotes the set of Lipschitz functions with local slope bounded from above by 1. Then, the Cheeger energy of (X, d, m) is dened via

Ch : L 2 (m) → [0, ∞], Ch(f ) = 1 2 lim inf Lip(X) fn L 2 →f ˆX Lip(f ) 2 d m .
The Sobolev space D(Ch) of (X, d, m) is given by

D(Ch) = f ∈ L 2 (m) : Ch(f ) < ∞ and equipped with the norm f 2 D(Ch) = f 2 2 + 2 Ch(f )
where in this context f 2 denotes the Lebesgue L 2 -norm w.r.t. m. Note that D(Ch) with • D(Ch) is not a Hilbert space in general. For instance, a Banach space V that is not a Hilbert space, or more general any Finsler manifold that is not Riemannian will generate a space of Sobolev functions that is not a Hilbert space as well.

Minimal relaxed and weak upper

gradient. A function g ∈ L 2 (m) is called a relaxed gradient of f ∈ L 2 (m) if there exists a sequence of Lipschitz functions (f n ) n∈N such that (f n ) converges to f in L 2 (m)
, and there exists g ∈ L 2 (m) such that Lip(f n ) weakly converges to g in L 2 (m) and g ≥ g. We call g the minimal relaxed gradient of f if it is minimal w.r.t. the norm amongst all relaxed gradients. We write |∇f | * for the minimal relaxed gradient of f . Any f ∈ D(Ch) admits a minimal relaxed gradient, and

Ch(f ) = 1 2 ´|∇f | 2 * d m.
An alternative approach is to introduce so-called weak upper gradients for an L 2 -function f . Then one can dene uniquely the so-called minimal weak upper gradient |∇f | w . We will omit any details about the denition. However, let us mention this notion is inspired by Cheeger's work [START_REF] Cheeger | Dierentiability of Lipschitz functions on metric measure spaces[END_REF] where he dened the notion of (minimal) generalised upper gradient |∇f | w . The author proved [Che99, Theorem 5.1] that on a complete length space (X, d, m) that is doubling and which supports a local (2, 2)-Poincaré inequality,

|∇f | w = Lip(f ) (9)
holds m-a.e. space where f is any locally Lipschitz function on X.

We have seen in Section 1 that a stratied space meets these assumptions, thus Cheeger's result applies in our setting. Moreover, by combining [AGS14a, Theorem 6.2] with earlier work by Shanmugalingam [START_REF] Shanmugalingam | Newtonian spaces: an extension of Sobolev spaces to metric measure spaces[END_REF] (see [AGS14a] for more details), it can be proved that

|∇f | * = |∇f | w m -a.e. ( 10 
)
This result holds on any complete separable metric measure space satisfying some mild assumption on m (see [AGS14a]). This set of spaces comprises compact stratied spaces and thus the combination of ( 9) and ( 10 Because none of these results is elementary, we provide another short proof which applies in our particular setting in the appendix, see Proposition 5.11. Remark 2.1. For an L 2 -integrable Lipschitz function the local Lipschitz constant can be strictly bigger than the relaxed gradient. For instance, consider R n equipped with a measure that is the sum of nitely many Dirac measures. Then, the Cheeger energy for any Lipschitz function on R n is 0. 

(f, g) ∈ D(Ch) 2 → ∇f, ∇g := 1 4 |∇(f + g)| 2 * - 1 4 |∇(f -g)| 2 * .
We say f ∈ D(Ch) is in the domain of the Laplace operator if there exists g ∈ L 2 (m)

such that for every h ∈ D(Ch) we have ˆ ∇f, ∇h d m = -ˆhgd m . We say f ∈ D(∆). If f ∈ D(∆), then g ∈ L 2 (m)
as above is uniquely determined, and we write g = ∆f . Note that the denition of D(∆) intrinsically sets Neumann boundary condition. D(∆) is equipped with the so-called operator norm f 2

D(∆) = f 2 2 + ∆f 2 2 . We also dene D D(Ch) (∆) = {f ∈ D(∆) : ∆f ∈ D(Ch)(X)} and similar D L ∞ (m) (∆).
Remark 2.2. We emphasize that in the context of RCD spaces the sign convention for ∆ diers from the one that we chose for the Laplace operator ∆ g on stratied spaces.

2.1.4. Bakry-Émery curvature-dimension condition. Another way to dene curvaturedimension conditions was introduced by D. Bakry (see for example [START_REF] Bakry | L'hypercontractivité et son utilisation en théorie des semigroupes[END_REF]) using the so-called Γ-calculus, based on the Bochner inequality on manifolds with a lower Ricci bound. In the following we mainly refer to [START_REF]Bakry-émery curvature-dimension condition and Riemannian Ricci curvature bounds[END_REF]. Let (X, d, m) be a metric measure space that is innitesimally Hilbertian. For f ∈ D D(Ch) (∆) and φ ∈ D L ∞ (∆) ∩ L ∞ (m) we dene the carré du champ operator as

Γ 2 (f ; φ) = ˆ1 2 |∇f | 2 * ∆φd m - ˆ ∇f, ∇∆f φd m .
Denition 2.3 (Bakry-Émery condition). We say that (X, d, m) satises the Bakry-Émery condition BE(K, N ) for K ∈ R and N ∈ (0, ∞] if it satises the weak Bochner inequality

Γ 2 (f ; φ) ≥ 1 N ˆ(∆f ) 2 φd m +K ˆ|∇f | 2 * φd m . for any f ∈ D D(Ch) (∆) and any test function φ ∈ D L ∞ (∆) ∩ L ∞ (m), φ ≥ 0.
Under some mild assumptions, the Bakry-Émery condition is equivalent to several notions of metric measure space (mms) with "Ricci curvature bounded below". This subject has received a lot of attention over the last fteen years with the introduction of several notions of curvature-dimension conditions on mms.

Among them, we distinguish the RDC(K, N ) spaces and RDC * (K, N ) spaces , [START_REF]On the dierential structure of metric measure spaces and applications[END_REF][START_REF]Metric measure spaces with Riemannian Ricci curvature bounded from below[END_REF][START_REF] Erbar | On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces[END_REF]. These two notions are actually equivalent when the measure of the space is nite, as recently proved by Cavalletti and Milman [START_REF] Cavalletti | The globalization theorem for the Curvature-Dimension condition[END_REF].

In order to state the theorem, we rst dene:

Denition 2.4. We say a metric measure space satises the Sobolev-to-Lipschitz

property [Gig15] if {f ∈ D(Ch) : |∇f | * ≤ 1 m -a.e.} ⊂ Lip 1 (X).
Theorem 2.5 ([EKS15, AMS15]). Let (X, d, m) be a metric measure space satisfying 8. Then, the condition RCD(K, N ) for K ∈ R and N > 1 holds if and only if (X, d, m) is innitesimally Hilbertian, it satises the Sobolev-to-Lipschitz property and it satises the Bakry-Émery condition BE(K, N ).

2.1.5. Cheeger versus Dirichlet energy. Our strategy to prove Theorem A consists in applying the previous theorem to a compact stratied space (X, d g , v g ) endowed with the structure of a metric measure space introduced in the rst section. The assumption 8 is clearly satised since the volume of a compact stratied space is nite. In order to be able to apply Theorem 2.5, we need the Sobolev space as dened in the previous section to agree with the domain of the Cheeger energy, and the dierent notions of gradients to be equivalent for Sobolev functions.

We have proven that for any locally Lipschitz function u, |∇u| * = Lip(u) 11. By density of Lipschitz functions in the domains of both the Dirichlet energy and the Cheeger energy, such domains coincide:

W 1,2 (X) = D(Ch).
As a consequence, since W 1,2 (X) is a Hilbert space, the same is true for D(Ch):

any compact stratied space is innitesimally Hilbertian.

In particular, for any u ∈ W 1,2 (X) we have

2 Ch(u) = ˆX |∇u| 2 * dv g = ˆX |∇u| 2 g dv g = E(u), (12) 
where | • | g is the usual norm with respect to the iterated edge metric g. The density of the Lipschitz functions together with 12 also guarantees that for any Sobolev function u we have |∇u| g = |∇u| * almost everywhere. Therefore, the fact that a Sobolev function has a Lipschitz representative, proven in Lemma 1.13, also proves that the Sobolev-to-Lipschitz property, as stated in 2.4, holds on compact stratied spaces.

Clearly, the Laplace operator ∆ in the sense of a metric measure space is the Laplace operator with Neumann boundary condition in the sense of stratied spaces up to a minus sign: ∆ = -∆ g .

Therefore, we can apply Theorem 2.5: more precisely, establishing the Bakry-Émery curvature dimension condition BE(K, n) for the Dirichlet energy E and its Laplace operator will imply the Riemannian curvature-dimension condition RCD(K, n) for a compact stratied space (X, d g , v g ) with a singular lower Ricci curvature bound.

Examples of stratified spaces with a singular Ricci lower bound

In this section we recall and make more precise the denition of a singular lower Ricci bound presented in the introduction; in the following we also illustrate some examples of stratied spaces with a singular Ricci lower bound.

Denition 3.1 (Singular Ricci lower bound). Let X be a compact stratied space of dimension n endowed with an iterated edge metric g. Let K ∈ R. We say that g has singular Ricci curvature bounded from below by K if (i) Ric g ≥ K on the regular set X reg , (ii) for every x ∈ Σ n-2 we have α x ≤ 2π.

Lemma 1.1 in [START_REF]The local Yamabe constant of Einstein stratied spaces[END_REF] proves that if the Ricci tensor of g is bounded below on the regular set of X, then the regular set of each tangent cone C(S x ) carries a metric with non-negative Ricci tensor. As a consequence, for each link (Z j , k j ) we have Ric kj ≥ (j -1) on Z reg j , where j = n -j -1 is the dimension of the link. Observe that when the codimension of the strata is strictly larger than 2, the previous implies that the link carries a metric with strictly positive Ricci tensor.

Moreover, when we consider the regular set of C(Z j ), that is C(Z reg j ) \ {0}, this is an open manifold with non-negative Ricci tensor, as observed by J. Cheeger and M. Taylor (see [START_REF] Cheeger | Spectral geometry of singular Riemannian spaces[END_REF], [START_REF] Cheeger | On the diraction of waves by conical singularities[END_REF]).

As for the stratum of codimension 2, if we only assume that g has Ricci tensor bounded below, we only get that the Ricci tensor on S 1 is non-negative, and we cannot deduce any positivity for the curvature of the two-dimensional cone C(S 1 ).

In order to have a bound by below for the curvature, in the sense of Alexandrov, or with respect to the curvature-dimension condition CD(0, 2) (see [START_REF]Ricci bounds for Euclidean and spherical cones, Singular phenomena and scaling in mathematical models[END_REF]), we need to assume that the diameter of (S 1 , a 2

x dθ 2 ) is less than or equal to π; equivalently the radius a x need to be smaller than or equal to one, and the angle α x is less than or equal to 2π. Since the angle may depend on the point x ∈ Σ n-2 , we need to assume condition (ii) for all points of the stratum of codimension two. Manifolds with isolated conical singularities. A compact surface with isolated conical singularities of angle less than 2π and non-negative sectional curvature is known to be an Alexandrov space. It is clearly a simple example of a stratied space with Ricci tensor bounded below as in Denition 3.1. More generally, if we add isolated conical singularities of angle less than 2π to a compact smooth manifold with Ricci tensor bounded below, we obtain a stratied space satisfying 3.1.

A construction of a singular stratum. Consider a sphere S 3 with round metric g 0 , and a closed circle c in S 3 . By using Fermi coordinates in a tubular neighbourhood U ε of c of size ε, it is possible to write the metric in U ε as a perturbation of the following product metric:

dr 2 + r 2 dϕ 2 + a 2 dθ 2 ,
where a is the radius of the circle. More precisely, there exists a positive constant Λ such that:

|g 0 -(dr 2 + r 2 dϕ 2 + a 2 dθ 2 )| ≤ Λr γ ,
where γ = 1 if c is not totally geodesic, γ = 2 otherwise. We refer to the appendix for the details. Now, we can choose α ∈ [0, 2π] and modify the metric in U ε so that the new metric does not change outside of U ε and it is a perturbation of the singular metric:

g α = dr 2 + α 2π 2 r 2 dϕ 2 + a 2 dθ 2 ;
This makes the circle c a singular stratum of codimension two and angle equal to α. Moreover, this construction leaves the Ricci tensor of g 0 bounded below away from c; therefore we constructed a simple stratied space with Ricci tensor bounded below as in Denition 3.1. The same construction can be done along a codimension two submanifold in any compact smooth manifold with Ricci tensor bounded below.

Singular space associated to a static triple. A static triple is a triple (M n , g, V )

where (M n , g) is a complete manifold with boundary ∂M and V a static potential, that is a non trivial solution V ∈ C ∞ (M ) to the equation

∇ 2 V -(∆ g V )g -V Ric g = 0.
Static triples have been studied in general relativity and in dierential geometry, in the context of prescribing scalar curvature; in the following we mainly refer to [START_REF] Ambrozio | On static three-manifolds with positive scalar curvature[END_REF]. A static triple always has constant scalar curvature, which can be renormalized to be equal to εn(n -1) with ε ∈ {+1, 0, -1}, the boundary ∂M is totally geodesic and |∇V | is constant on each connected component of ∂M (Lemma 3 in [START_REF] Ambrozio | On static three-manifolds with positive scalar curvature[END_REF]).

Starting from a static triple, it is possible to construct an associated singular space, which turns out to be an Einstein stratied space. This construction has long been known in the setting of general relativity (for example [START_REF] Gibbons | Classication of gravitational instanton symmetries[END_REF]); we refer here to Section 6 in [START_REF] Ambrozio | On static three-manifolds with positive scalar curvature[END_REF] for the precise details and only recall the main features of the singular space. For any static triple (M n , g, V ) there exists a stratied space (N n+1 , h) with one singular stratum Σ of codimension 2 which can be identied with ∂M , thus can be disconnected. The regular set X reg of (N n+1 , h) is isometric to the product S 1 × (M \ ∂M ) and the metric h on X reg is Einstein with Ric h = εnh. The angles along each connected component of Σ are determined by the value of |∇V |. Observe that the stratied space (N n+1 , h) is compact if and only if (M n , g) is compact; in this case, the static potential V can be renormalized so that |∇V | ≤ 1 on each connected component of ∂M : this implies that the angles along the stratum are smaller than 2π. As a consequence, in the compact case (N n+1 , h) is a stratied space with Ricci tensor bounded below in the sense of Denition 3.1.

Kähler-Einstein manifolds with a divisor. In [JMR16], T. Jeres, R. Mazzeo and Y. Rubinstein considered compact Khäler manifolds with a smooth divisor D, carrying a metric with angle α ∈ (0, 2π] along D. The divisor is a singularity of codimension two, and such manifolds belong to the setting of stratied spaces.

The authors proved the existence of a Kähler-Einstein metric g on M \ D, whose asymptotic along D has angle β ∈ (0, 2π). Therefore, M endowed with the Kähler-Einstein metric g is a stratied space with Ricci tensor bounded below as in 3.1.

Note that the existence of a Kähler-Einstein metric with edge singularity has been an important step towards the proof that any smooth K-stable Fano manifold carries a Kähler-Einstein metric (see [START_REF] Chen | Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities[END_REF][START_REF]Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2π[END_REF][START_REF]Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof[END_REF] and [START_REF] Tian | K-stability and Kähler-Einstein metrics[END_REF]).

Orbifolds Any compact Riemannian n-orbifold without boundary is a stratied space (see [START_REF] Mondello | The Yamabe problem on stratied spaces[END_REF]). If the regular set of the orbifold has Ricci tensor bounded below, then the orbifold satises Denition 3.1. In fact, all the links are quotients of a sphere S k , for 1 ≤ k ≤ (n-1) by a nite group of isometries; even in the case of the stratum of codimension two, and k = 1, the link is a circle of diameter less than or equal to π, without any further assumption. Theorem A applied to compact orbifolds without boundary partially recovers Theorem 7.10 in [START_REF] Galaz-Garcia | On quotients of spaces with Ricci curvature bounded below[END_REF] Spherical suspension. Consider a circle (S 1 , a 2 dθ 2 ) of radius a smaller than one, and the following spherical suspension:

S n α = [0, π 2 ] × S n-2 × S 1 g α = dϕ 2 + cos 2 (ϕ)g S n-2 + α 2π 2 sin 2 ϕdθ 2 ,
where g S n-2 is the round metric of the unit sphere S n-2 and α = 2πa. Then (S n α , g α ) is a compact stratied space with singular set of codimension 2 and angle α ≤ 2π. Moreover, it is easy to check that g α is an Einstein metric with Ric gα = (n -1). Therefore (S n α , g α ) is a compact stratied space with Ricci tensor bounded below.

More generally, if we consider a compact smooth manifold (M n , g) of dimension n ≥ 2 and with Ric g ≥ (n -1), the spherical suspension ([0, π] × M, dt 2 + sin 2 (t)g) is a compact stratied space satisfying Denition 3.1. Therefore, Theorem A agrees with previous results of [START_REF]Ricci bounds for Euclidean and spherical cones, Singular phenomena and scaling in mathematical models[END_REF]. Moreover, the spherical suspension of a compact stratied space satisfying Denition 3.1 is also a compact stratied space with a singular Ricci lower bound.

Geometric consequences of the curvature-dimension condition

Thanks to Theorem A we know that a compact stratied space (X n , g) with singular Ricci curvature bounded below by K is a RCD(K, n) metric measure space. This allows us to apply to stratied spaces several geometric results that are known in the setting of RCD(K, n) metric measure spaces and of smooth Riemannian manifolds, but are new in the case of stratied spaces. Moreover, the RCD(K, N ) condition can be used to obtain a characterization of compact stratied spaces with curvature bounded below in the sense of Alexandrov.

4.1. Essential non-branching. The rst consequence of the RCD(K, n) condition is that (X n , g) is essentially non-branching. A metric measure space (X, d, m) is said to be essentially non-branching if for any two measures µ 0 , µ 1 in the Wasserstein space P 2 (X, m), absolutely continuous with respect to m, any optimal plan π between µ 0 and µ 1 is concentrated on a set of non-branching geodesics. The fact that a RCD(K, ∞) space is essentially non-branching has been proven in [START_REF] Rajala | Non-branching geodesics and optimal maps in strong CD(K, ∞)-spaces[END_REF].

Thus a stratied space with singular Ricci curvature bounded below is essentially non-branching. We point out that essential non-branching does not exclude the existence of branching geodesics, which may occur in the setting of stratied spaces.

Nevertheless, examples of branching RCD(K, N ) spaces are not known. 

v k (r) = nω n ˆr 0 sin k (t) n-1 dt,
that is the volume of a ball of radius r in the n-dimensional space form of constant curvature k. Then the following holds:

Corollary 4.1 (Bishop-Gromov volume estimate). Let (X n , d g , v g ) be a stratied with singular Ricci curvature bounded below by K and n > 1. Then for any 0 < r < R < diam(X) we have:

vol g (B(x, r)) vol g (B(x, R)) ≤ v K/(n-1) (r) v K/(n-1) (R) .
Observe that if x is a point in the regular set, the Bishop-Gromov volume estimate holds for a suciently small radius due to the fact that the Ricci tensor is bounded below on X reg . The result is new when we consider a point x in a singular stratum or when the radii are large.

4.3. Laplacian comparisons. We refer to N. Gigli's proof of Laplace comparisons for CD(K, N ) spaces, in Theorem 5.14 and Corollary 5.15 of [START_REF]On the dierential structure of metric measure spaces and applications[END_REF]. Note that both of these results need the metric measure space (X, d, m) to be compact and q-innitesimally strictly convex for some real q. When (X, d, m) is innitesimally Hilbertian, it is 2-innitesimally strictly convex, as proven in [START_REF]Metric measure spaces with Riemannian Ricci curvature bounded from below[END_REF]; therefore, Laplace comparisons as given in [START_REF]On the dierential structure of metric measure spaces and applications[END_REF] hold in any compact RCD(K, N ) space.

We point out that F. Cavalletti and A. Mondino [START_REF]New formulas for the Laplacian of distance functions and applications[END_REF] recently proved Laplacian comparisons for the distance function removing the assumptions of innitesimal strict convexity and compactness of the space.

For the sake of completeness, we state the result in the setting of compact stratied spaces for the distance function. As in the case of the Bishop-Gromov volume estimate, the interest of the result is for the distance function to a point in the singular set or because the estimate also holds far away from the base point.

We dene the measure valued Laplacian as follows:

Denition 4.2. Let E ⊂ X be an open set in (X n , g), µ a Radon measure concentrated on E, and f a locally Lipschitz function on E. We say that f has distributional Laplacian bounded from above by µ on E if for any nonnegative ϕ ∈ Lip 0 (E), the following holds: ˆX (∇f, ∇ϕ) g dv g ≤ ˆX ϕ dµ.

In this case, we write ∆ g f ≤ µ on E.

Corollary 4.3. Let (X n , g) be a compact stratied space with singular curvature bounded from below by k(n -1) ∈ R. For x ∈ X, let d x be the distance function from x, namely d x (y) = d g (x, y). Then the following inequalities hold:

∆ g d x ≤ (n -1) sin k (d x ) sin k (d x ) dv g on X \ {x}, ∆ g d 2 x 2 ≤ n d x sin k (d x ) sin k (d x )
dv g on X.

This clearly corresponds to the situation in the smooth setting.

4.4. Lévy-Gromov isoperimetric inequality. A classical and well known isoperimetric inequality for smooth manifolds is the Lévy-Gromov isoperimetric inequality.

Let (M n , g) be a compact smooth manifold with Ricci tensor bounded below by (n -1), and consider a domain Ω in M with smooth boundary and volume

Vol g (Ω) = β.

Denote by B β a geodesic ball in the standard sphere S n with volume equal to β Vol(S n ).

If equality Vol g (Ω) Vol g (M ) = Vol(B β ) Vol(S n )
holds, then we have:

Vol g (∂Ω) Vol g (M ) ≥ Vol(∂B β ) Vol(S n ) , (13) 
where we denote by Vol the Riemannian volume in the round sphere S n . Moreover, the equality in 13 holds if and only if (M n , g) is isometric to the standard sphere and Ω is isometric to the geodesic ball B β .

In [START_REF]Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds[END_REF] the authors proved an analog result in the setting of RCD * (K, N ) spaces for K > 0 and N ≥ 2. We state it in the setting of compact stratied spaces. We consider (X n , g, m) a compact stratied space with the renormalized measure m = Vol g (X) -1 dv g , so that m(X) = 1. The outer Minkowski content of an open set E ⊂ X is used to measure the size of the boundary. It is dened by:

m + (E) = lim inf ε→0 + m(E ε ) -m(E) ε ,
where E ε is the tubular neighbourhood of size ε of E with respect to the distance d g .

Then, thanks to Theorem 1.1 in [START_REF]Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds[END_REF] we have:

Corollary 4.4 (Lévy-Gromov isoperimetric inequality). Let (X n , g, m) be a compact stratied space with singular Ricci curvature bounded below by n -1 > 0.

Then for every open set E ⊂ X the following inequality holds:

m + (E) ≥ Vol(∂B β ) Vol(S n ) ,
where β = m(E) and B β is a geodesic ball in S n of volume Vol(B β ) = β Vol(S n ).

We also obtain the following rigidity result:

Corollary 4.5 (Rigidity in Lévy-Gromov). Let (X n , g, m) be a compact stratied space with singular Ricci curvature bounded below by (n -1). If there exists an open domain E in X satisfying:

m + (E) = Vol(∂B β ) Vol(S n ) ,
then there exists a compact stratied space (Y n-1 , h) with singular Ricci curvature bounded below by (n -2) such that (X n , g) is isometric to the spherical suspension

([0, π] × Y, dt 2 + sin 2 (t)h).
Proof. In [START_REF]Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds[END_REF], the authors prove that if equality holds in the Lévy-Gromov isoperimetric inequality, then X must have diameter equal to π. Therefore, by Theorem 2.3 and 3.1 in [START_REF]An Obata singular theorem for stratied spaces[END_REF], (X n , g) must be isometric to a spherical suspension of a stratied space satisfying the analog bound on the singular Ricci curvature.

Another way to prove the same, is by using Theorem 1.4 in [START_REF]Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds[END_REF], which tells us that the stratied space is isometric to a spherical suspension of a RCD(n-2, n-1) space Y . In particular, the spherical suspension is a stratied space and tangent cones at all points are metric cones over a stratied space of dimension (n -1). Now, then tangent cone at the points {0} × Y and {π} × Y is the metric cone over Y . As a consequence, Y is also a stratied space.

4.5. Weyl law. Let {λ i } i∈N be the sequence of eigenvalues of the Laplacian ∆ g .

For any λ > 0 we dene:

N (λ) = {λ i , such that λ i ≤ λ}.
A well-known result on smooth manifolds states that the asymptotics of N (λ) as λ tends to innity is given by λ -n/2 times a constant which depends on the volume and on the dimension of the manifold. An analog result has been proven in [AHT17, Corollary 4.8] in the setting of RCD * (K, N ) spaces, when the measure is Ahlfors n-regular for some n ∈ N; the Riemannian volume is replaced by the n-dimensional

Hausdor measure of the space. This result clearly applies to stratied spaces with singular Ricci curvature bounded from below:

Corollary 4.6. Let (X n , d g , v g ) be a stratied space with singular Ricci curvature bounded from below. Then we have:

lim λ→+∞ N (λ) λ n 2 = ω n (2π) n Vol g (X).
Observe that in the smooth setting the Weyl law holds without any assumption on the Ricci curvature. It is then reasonable to believe that on stratied spaces too, the hypothesis of singular Ricci curvature bounded from below could be dropped. 4.6. Further properties of geodesics and CBB stratied spaces. The applications of Theorem A described in this subsection were pointed to us by V.

Kapovitch.

The RCD(K, N ) property can be used to gain further knowledge on the behavior of geodesics: we will be able to show that the regular set X reg of a stratied space (X, g) with singular Ricci curvature bounded below is almost everywhere convex. This will in turn allow us to use a theorem of N. Li to prove the analogue of Theorem A in the presence of lower bounds on the sectional curvature. Besides the work of N. Li [START_REF] Li | Globalization with probabilistic convexity[END_REF] which considers such probabilistic convexity properties in the context of Alexandrov geometry, these have also been investigated for Ricci limit spaces, see [START_REF] Holck | Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications[END_REF] and the references therein.

The proof of the almost everywhere convexity of X reg relies on the measure contraction property M CP (K, N ), which is a consequence of the RCD(K, N ) property, see [START_REF] Cavalletti | Optimal maps in essentially non-branching spaces[END_REF], end of section 5.

A subset U of a geodesic metric measure space (X, d, m) is said to be m-almost everywhere convex if for every x ∈ U : m ({y ∈ X|no minimizing geodesic from x to y is included in U }) = 0.

Proposition 4.7. Let (X, g) be a compact stratied space with singular Ricci curvature bounded below by some K ∈ R, then X reg is v g -almost everywhere convex.

Proof. Without loss of generality we assume that (X, g) has volume 1, so that v g is a probability measure.

Let G(X) denote the set of constant speed geodesics γ : [0, 1] → X and Σ denote the singular set of X.

Since (X, d g ) is RCD(K, N ), it is essentially non branching and CD(K, N ), and will satisfy a measure contraction property which we state in the following form (see Theorem 1.1 of [START_REF] Cavalletti | Optimal maps in essentially non-branching spaces[END_REF]) :

Let µ 0 ∈ P(X) be the Dirac mass at some point x 0 and µ 1 = vg vg(A) | A for some measurable A ⊂ X. There exists a unique optimal dynamical transport plan Π ∈ P(G(X)) such that (e 0 ) * Π = µ 0 and (e 1 ) * Π = µ 1 . Moreover, for every t ∈ (0, 1], (e t ) * Π is v g -absolutely continuous and satisfy:

(e t ) * Π ≤ C t N v g v g (A)
.

where C is a constant depending only on K, N and diam(X) and e t : G(X) → X maps γ to γ(t).

Let us x µ 0 = δ x0 with x 0 ∈ X reg , µ 1 = vg vg(X) and Π ∈ P(G(X)) the optimal dynamical transport plan dened above. Set Γ = {γ ∈ G(X )|∃t ∈ [0, 1] γ(t) ∈ Σ}. To show that X reg is v g -almost everywhere convex, we need to show that v g (e 1 (Γ)) = 0.

We rst show that Π(Γ) = 0. Pick l ∈ N big enough such that ε diam(X) ≤ d g (x 0 , Σ) = δ with ε = 2 -k and set, for every integer i between 0 and 2 l -1 :

Γ i = γ ∈ G(X) γ [ i 2 l , i+1 2 l ] ∩ Σ = ∅ .
We have that Γ = ∪ 2 l -1 i=1 γ i . Note that Γ i = ∅ as long as i 2 l ≤ δ. If Π(Γ) > 0, then there are some i such that Π(Γ i ) > 0. For every such i, let

Π i = Π Π(Γi) | Γi .
Being the restriction of Π, Π i is an optimal dynamical dynamical transport plan between δ x0 and the borel set B i = e 1 (Γ i ), thus we can apply the measure contraction property to Π i and get :

(e t ) * (Π i ) ≤ C t N v g v g (B i ) = C t N v g Π(Γ i ) . Now we notice that if γ ∈ Γ i and t ∈ [ i 2 l , i+1 2 
l ], then d(γ(t), Σ) ≤ Dε which can be rephrased as e t (Γ i ) ⊂ Σ ε where Σ εD is the εD tubular neighborhood around Σ.

Hence, for t ∈ [ i 2 l , i+1 2 l ] : 1 = (e t ) * Π i (X) = (e t ) * (Π i (Σ εD )) ≤ C t N v g (Σ εD ) Π(Γ i ) ≤ C ( δ D ) N v g (Σ εD ) Π(Γ i ) since t ≥ δ D if Γ i = ∅.
Thus :

Π(Γ i ) ≤ Cδ -N D N v g (Σ εD ).
We can now estimate :

Π(Γ) ≤ i Π(Γ i ) ≤ 2 l Cδ -N D N v g (Σ εD ) ≤ 2 l Cδ -N D N A(εD) 2 ≤ 2 -l CAδ -N D N +2
since the volume of Σ ε can be bounded from above by Aε 2 for some constant A > 0.

This comes from the fact that Σ has codimension at least 2 using the same ideas as section 1.2.3.

Since l can be chosen to be arbitrarily large, we have shown that Π(Γ) = 0. Now v g (e 1 (Γ)) = Π(Γ) and thus (X, d g ) is v g -almost everywhere convex.

Remark 4.8. We actually proved here that for any subset Y of an RCD(K, N )

space (X, d, m) such that m(Y ε ) ε goes to 0 as ε goes to 0, X\Y is m-almost every-
where convex. This applies in particular for a stratied space with singular Ricci curvature bounded below and Y = Σ its singular set, thanks to the fact that the singular set has codimension smaller or equal than two.

We can now use the previous result together with the theorem of N. Li [START_REF] Li | Globalization with probabilistic convexity[END_REF] to characterize stratied spaces with curvature bounded from below in the sense of Alexandrov (Corollary B in the introduction). Recall that a geodesic space (X, d) is said to be an Alexandrov space with curvature bounded from below by k (CBB(k) in short) if geodesic triangles in (X, d) are larger than their couterparts in the simply connected surface of constant curvature k. For a precise denition we refer to [START_REF] Burago | A course in metric geometry[END_REF], Chapters 4 and 10.

Corollary 4.9. Let (X, g) be a compact stratied space. Then (X, d g ) is CBB(k) if and only if the following two conditions are satised : (i) The sectional curvature of g is larger than or equal to k on X reg . (ii) The angle α along the codimension 2 stratum Σ n-2 is at most 2π. Proof. The only if part is proven along the same lines as the RCD(K, N ) case, see section 5.1. The condition on the regular set comes from the existence of convex neighborhoods and the Riemannian Toponogov Theorem. The angle condition on the codimension 2 stratum comes the fact that tangent cones to CBB(k) spaces are CBB(0) spaces and that a 2 dimensional metric cone is CBB(0) if and only if its angle is at most 2π.

For the if part, we use Corollary 0.1 of [START_REF] Li | Globalization with probabilistic convexity[END_REF]. It states that if in a geodesic metric space (X, d) of Hausdor dimension n, one can nd an open dense set Y which is H n -almost everywhere convex and such that any point in Y has a convex neighborhood which is CBB(k), then (X, d) is CBB(k). In our case, X reg is open and dense in (X, d), and is almost everywhere convex by the previous proposition. Furthermore every point in X reg has a convex neighborhood by section 5.1 which is CBB(k) by the classical Toponogov Theorem.

Hence (X, d g ) has curvature bounded from below by k in the sense of Alexandrov.

Proof of the main theorem

This section is devoted to the proof of our main theorem:

Theorem A. A compact stratied space (X, d g , v g ) endowed with an iterated edge metric g satises the RCD(K, N ) condition if and only if its dimension is smaller than or equal to N and the iterated edge metric g has singular Ricci curvature bounded below by K in the sense of Denition 3.1.

The proof is divided in two parts. In the rst we prove that a compact stratied spaces which is also RCD(K, N ) has a singular Ricci lower bound. In the second part, we prove the reverse implication, by showing the Barky-Émery inequality. At the end of Section 2, we observed that a compact stratied space meets the assumption of Theorem 2.5, and as a consequence the Bakry-Émery inequality implies that the space is an RCD * (K, N ) space. The equivalence between RCD * (K, N ) and RCD(K, N ) proven in [START_REF] Cavalletti | The globalization theorem for the Curvature-Dimension condition[END_REF] allows us to conclude.

5.1. RCD implies singular Ricci curvature bounded below. Proposition 5.1. Let X be an n-dimensional stratied space, and let g be an iterated edge metric. Assume (X, d g , v g ) satises the condition CD(K, N ) (or the condition

CD * (K, N )) with K ∈ R and N ∈ [1, ∞).
Then, g has singular Ricci curvature bounded from below by K (in the sense of a stratied space) and n ≤ N .

Proof. 1. First, the condition CD(K, N ) (or the condition

CD * (K, N )) implies that dim H ≤ N by [Stu06b, Corollary 2.5]. Hence, dim X reg = n ≤ N .
2. Moreover, consider x ∈ X reg . Recall that g is a Riemannian metric on 

X

Claim: We have d|

Bη(x)×Bη(x) = d g | Bη(x)×Bη(x) .
Indeed, if γ is a minimizing d g -geodesic between y, z ∈ B η (x), by the triangle inequality we have that Imγ ⊂ B (x). Therefore, d(y, z) ≤ d g (y, z) since γ is an admissible competitor for d. The other inequality already holds, and therefore the claim follows.

Hence, (Y, d = d g | Y , v g | Y ) with Y = B η (x)
is a geodesically convex subspace with positive measure of a metric measure space (X, d g , v g ) satisfying the condition CD(K, N ), and therefore satises the condition CD(K, N ) as well (or the condition

CD * (K, N )) by [Stu06b, Proposition 1.4].
Then, we can procede with similar arguments as in the proofs of Theorem 1.7 in [START_REF]On the geometry of metric measure spaces[END_REF], Theorem 1.1 in [START_REF] Von Renesse | Transport inequalities, gradient estimates, entropy, and Ricci curvature[END_REF], or Theorem 7.11 in [START_REF] Ambrosio | A user's guide to optimal transport, Modelling and optimisation of ows on networks[END_REF]. We note that one usually assumes the context of a closed Riemannian manifold without boundary that is dierent from ours. But it is clear that the arguments adapt to the case of an open, geodesically convex domain. For instance, let us briey outline the argument from [START_REF] Ambrosio | A user's guide to optimal transport, Modelling and optimisation of ows on networks[END_REF] (compare also with the proof Theorem 6.1 in [START_REF] Ketterer | Sectional and intermediate Ricci curvature lower bounds via Optimal Transport[END_REF]).

Assume the condition CD(K, N ) holds but there exists a regular point x ∈ X and a tangent vector v at x such that Ric g | x (v) ≤ (K -4 )|v| 2 . Then, one can pick η as above, and one nds a smooth function φ with compact support in B η (x)

such that ∇φ| x = v & ∇ 2 φ(x) = 0.
We can replace φ and v by δφ and δv such that the previous remains true and φ becomes a smooth Kantorovich potential. If we dene T t (y) = exp y (-t∇φ| y ) for t ∈ [0, 1] and

µ t = T µ 0 with µ 0 = v g (B θ (x)) -1 v g | B θ (x).
then t ∈ [0, 1] → µ t becomes a smooth L 2 -Wasserstein geodesic. Note that by choice of B η (x) and φ each transport geodesic t ∈ [0, 1] → T t (y) is contained in B η (x). By choosing δ and θ suciently small one can achieve that no transport geodesic meets a cut point and σ y :

t ∈ [0, 1] → log det DT t (x) satises σ y + 1 n σ y 2 + K -≥ 0 on [0, 1].
for any y ∈ B η (x). The previous Riccatti-type inequality in particular follows from smooth Jacobi eld compuations for geodesic variations in B η (x). From this one can deduce an inequality for S n along (µ t ) t∈[0,1] like in the denition of CD(K, N ) but with reverse inequalities and K replaced by K -(again compare with [START_REF] Ketterer | Sectional and intermediate Ricci curvature lower bounds via Optimal Transport[END_REF]).

This gives a contradiction.

3. Pick a point x ∈ Σ n-2 . Note that the corresponding Z 1

x satises Z n-2 x = Z n-2,reg
x S 1 with h = c 2 (dθ) 2 for some c ∈ (0, +∞) and the standard metric (dθ) 2 . From the exposition in subsection 1.2.2 we have that

(B 1/n (x), nd g ) con- verges in Gromov-Hausdor sense to (C(S n-1 x ), d C ) that is the metric euclidean cone over S n-1 x which is the (n -2)-fold spherical suspension of the link Z n-2 x . Hence, since (C(S n-1 x ), d C ) is the (measured) Gromov-Hausdor limit of a sequence of CD( 1 n K, N )-spaces (C D * ( 1 n K, N )-spaces respectively), it is an CD(0, N )-space itself.
Finally, we can apply [BS14, Corollary 2.6] that yields diam S n-1 x ≤ π. Note that Corollary 2.6 in [START_REF]Ricci bounds for Euclidean and spherical cones, Singular phenomena and scaling in mathematical models[END_REF] is a result about the euclidean cone over some one dimensional manifold but it is clear from the proof that the statement holds as well in our context. Since by denition of n-fold spherical suspensions a copy of Z n-2

x is isometrically embedded into S n-1

x , the link Z n-2

x has bounded diameter by π as well.

5.2. Singular Ricci curvature bounded below implies RCD. For the second implication, we are going to prove that a compact stratied space with a singular lower Ricci curvature bound satises the Bakry-Émery condition given in Denition 2.3. As illustrated in Subsection 2.1.5, we can then apply Theorem 2.5 and conclude.

For the sake of clarity, we state here the weak Bochner inequality of Denition 2.3 in the setting of a compact stratied space.

A compact stratied space (X, d g , v g ) satises the BE(K, N ) condition for K ∈ R and N ∈ N if for any function u ∈ W 1,2 (X) such that ∆ g u ∈ W 1,2 (X) and for any

test function ψ ∈ W 1,2 (X) ∩ L ∞ (X) such that ∆ g ψ ∈ L ∞ (X), ψ ≥ 0 we have: - 1 2 ˆX ∆ g ψ|du| 2 dv g + ˆX ψ(∇(∆ g u), ∇u) g dv g ≥ ˆX ψ K|du| 2 + (∆ g u) 2 N dv g . (14) 
5.2.1. Proof of the Bochner inequality on stratied spaces. We are going to prove the weak Bochner inequality rst for an eigenfunction ϕ of the Laplacian, then for nite linear combinations of eigenfunctions. Since eigenfunctions are dense in the domain of the Laplacian, we will get a rst Bochner inquality with the further assumption that the test function ψ has bounded gradient. We will be able to drop this assumption and get the inequality 14 by using the ultracontractivity of the heat semigroup.

We recall here some regularity properties of eigenfunctions. First of all, we know that an eigenfunction ϕ belongs to W 1,2 (X) ∩ L ∞ (X); moreover, when we have singular Ricci curvature bounded below by a constant K ∈ R as in Denition 3.1, it is possible to show that an eigenfunction belongs to W 2,2 (X) and that it's gradient is bounded. This is proven in [START_REF]The local Yamabe constant of Einstein stratied spaces[END_REF] when K = (n -1), but actually does not depend on K being positive. We sketch briey the main lines of the proof without the assumption that K is positive. Corollary 2.4 in [START_REF] Mondello | The Yamabe problem on stratied spaces[END_REF] states the following:

Proposition 5.2. Let X be a compact stratied space of dimension n, endowed with an iterated edge metric g. Let ϕ be an eigenfunction for the Laplacian and Σ ε a tubular neighbourhood of the singular set Σ of size ε > 0. Assume that for any x ∈ X, the tangent sphere S x is such that λ 1 (S x ) ≥ (n -1). Then there exists a positive constant C such that

∇ϕ L ∞ (X\Σ ε ) ≤ C | ln(ε)|.
If the iterated edge metric g is such that the singular Ricci curvature is bounded below by K ∈ R, as in Denition 3.1, then the assumption of the previous Proposition holds. Indeed, we know that Ric g ≥ K on X reg implies that the singular Ricci curvature of each link (Z j , k j ) is bounded below by (dim(Z j ) -1). As a consequence, when x belongs to a stratum of codimension larger than two, the tangent sphere (S x , h x ) has singular Ricci curvature bounded below by (n -2). Then the Lichnerowicz theorem in [START_REF]The local Yamabe constant of Einstein stratied spaces[END_REF] implies that λ 1 (S x ) ≥ (n -1). Since we also assumed that the angles along the stratum of codimension 2 are smaller than 2π, we have the same lower bound for λ 1 (S x ) when x belongs to Σ n-2 . Therefore, we can apply Proposition 5.2 and get the estimate on the gradient of eigenfunctions.

In the proof of Lichnerowicz theorem in [START_REF]The local Yamabe constant of Einstein stratied spaces[END_REF], we also deduce that |∇ϕ| belongs to W 1,2 (X) ∩ L ∞ (X). This is done by using the Bochner inequality on the regular set and by constructing the appropriate family of cut-o functions: Lemma 5.3. Let X be a stratied space and g an iterated edge metric with singular Ricci curvature bounded below by K ∈ R.

Then for any ε > 0 there exists a family of cut-o functions

ρ ε ∈ C ∞ 0 (X reg ),
which satisfy the following properties:

1. 0 ≤ ρ ε ≤ 1 and ρ ε vanishes on a tubular neighbourhood of the singular set; 2. The norm in L 2 (X) of |∇ρ ε | and the norm in L 1 (X) of |∆ g ρ ε | converge to zero when ε tends to zero.

This argument does not depend on K being positive. For the details of the construction, see [START_REF]The local Yamabe constant of Einstein stratied spaces[END_REF] or [START_REF] Mondello | The Yamabe problem on stratied spaces[END_REF]. We summarize in the following:

Proposition 5.4. Let X be an n-dimensional stratied space endowed with the iterated edge metric g. Assume that g has singular Ricci curvature bounded below by K ∈ R. Then any eigenfunction ϕ of the Laplacian belongs to W 2,2 (X)∩L ∞ (X) and the gradient ∇ϕ has bounded norm on X.

In particular, eigenfunctions are Lipschitz functions for a compact stratied space satisfying Denition 3.1. Note that this approach does not apply in presence of angles larger than 2π along the stratum of codimension two. Indeed, when the angles are larger than 2π, Theorem A in [START_REF]Hölder regularity of solutions for Schrödinger operators on stratied spaces[END_REF] implies that eigenfunctions are at most β-Hölder continuous with β < 1.

The regularity of eigenfunctions and the existence of an appropriate family of cut-o functions allows us to prove the Bochner inequality for an eigenfunction φ:

Proposition 5.5 (Bochner inequality for eigenfunctions). Let (X n , g) be a stratied space, whose iterated edge metric g has singular Ricci curvature bounded below by

K ∈ R.
Then for any ϕ eigenfunction of the Laplacian ∆ g and ψ ∈ D(∆ g )∩L ∞ (X) such that ∆ g ψ ∈ L ∞ (X) we have:

- 1 2 ˆX ∆ g ψ|dϕ| 2 dv g + ˆX ψ(∇(∆ g ϕ), ∇ϕ) g dv g ≥ ˆX ψ K|dϕ| 2 + (∆ g ϕ) 2 n dv g . (15) 
Proof. Since ∆ g ϕ = λϕ, and since the Bochner formula holds on the regular set X reg we have:

-

1 2 ∆ g |dϕ| 2 + λ|dϕ| 2 = Ric g (dϕ, dϕ) + |∇dϕ| 2 on X reg .
Note that ϕ is smooth on the regular set X reg , and therefore ∆ g |dϕ| 2 is well-dened on X reg . Now consider ψ ∈ D(∆ g ) ∩ L ∞ (X) such that ∆ g ψ ∈ L ∞ (X) and for ε > 0 choose a cut-o function ρ ε , 0 ≤ ρ ε ≤ 1, vanishing on a tubular neighbourhood of the singular set, as in Lemma 5.3. We multiply the previous equality by ρ ε ψ and then integrate on X:

- 1 2 ˆX ρ ε ψ∆ g |dϕ| 2 dv g + ˆX ρ ε ψλ|dϕ| 2 dv g = ˆX ρ ε ψ(Ric g (dϕ, dϕ) + |∇dϕ| 2 )dv g .
As for the right-hand side, we use-Cauchy-Schwarz inequality and and the fact that Ric g ≥ K on the regular set in order to get: ˆX ρ ε ψ(Ric g (dϕ, dϕ)

+ |∇dϕ| 2 )dv g ≥ ˆX ρ ε ψ K|dϕ| 2 + (∆ g ϕ) 2 n dv g .
This converges to the right-hand side of 15 when ε goes to zero. As for the second term in the left-hand side, we have:

ˆX ρ ε ψλ|dϕ| 2 dv g = ˆX ρ ε ψ(∇(∆ g ϕ), ∇ϕ) g dv g ,
which also converges to the second term in the left-hand side of the Bochner inequality 15. It remains to study the rst term in the left-hand side. By integrating by parts we obtain:

ˆX ρ ε ψ∆ g |dϕ| 2 dv g = ˆX ρ ε ∆ g ψ|dϕ| 2 dv g + ˆX ψ∆ g ρ ε |dϕ| 2 (16) 
-2 ˆX (dψ, dρ ε ) g |dϕ| 2 dv g .

The rst term in the right hand side in this last identity converges to the rst term in the right-hand side of 15 when ε goes to zero, then we need to show that the other two terms tend to zero as ε goes to zero. Consider the second term in the right-hand side of 16. Since ψ and |dϕ| belong to L ∞ (X) we have:

ˆX ψ∆ g ρ ε |dϕ| 2 dv g ≤ c ˆX |∆ g ρ ε ||dϕ| 2 dv g ≤ c 1 ˆX |∆ g ρ ε |dv g .
Now, ρ ε is constructed in such a way that this last integral converges to zero as ε goes to zero. As for the last term in 16 we can again use that |dϕ| is bounded and the Cauchy-Schwarz inequality in order to get:

ˆX (dψ, dρ ε ) g |dϕ| 2 dv g ≤ c 1 ˆX |dψ| 2 dv g 1 2 ˆX |dρ ε | 2 dv g 1 2
, and ρ ε is chosen in such a way that the norm of its gradient in L 2 (X) tends to zero as ε goes to zero. As a consequence, we get the desired Bochner inequality.

Proposition 5.6 (Finite linear combinations). Under the same assumptions on X, g and ψ, consider a nite linear combination of eigenfunctions:

ϕ = N k=1 a k ϕ k .
Then the Bochner inequality 15 holds for ϕ.

Proof. Observe that ϕ has the same regularity as an eigenfunction, meaning that ϕ belongs to D(∆ g ) ∩ L ∞ (X), its Laplacian ∆ g ϕ and gradient |dϕ| are bounded, and it is smooth on X reg . Moreover, the Bochner formula holds on the regular set X reg ; we have then:

-1 2 ∆ g |dϕ| 2 + (∇(∆ g ϕ), ∇ϕ) g = Ric g (dϕ, dϕ) + |∇dϕ| 2 on X reg .

As we did before, we multiply this equality by ρ ε ψ and integrate on X:

- 1 2 ˆX ρ ε ψ∆ g |dϕ| 2 dv g + ˆX ρ ε ψ(∇(∆ g ϕ), ∇ϕ) g dv g = ˆX ρ ε ψ Ric g (dϕ, dϕ) + |∇dϕ| 2 dv g (17) 
The right-hand side of this equality is bounded by below by:

ˆX ρ ε ψ K|dϕ| 2 + (∆ g ϕ) 2 n dv g ,
which converges to the right-hand side of the desired Bochner inequality when ε tends to zero. The second term in the left-hand side of 17 also converges to the corresponding term in the Bochner inequality, since all the quantities playing here are bounded. It remains to study the rst term in the left-hand side of 17. We decompose it as before by integrating by parts; since |dϕ| is bounded, we can apply the same argument as before to get that, when ε goes to zero, the rst term in the left-hand side of 17 tends to:

ˆX ∆ g ψ|dϕ| 2 dv g .

This concludes the proof and proves that the Bochner inequality holds for nite linear combinations of eigenfunctions.

Proposition 5.7. Let X be a compact stratied space of dimension n, endowed with iterated edge metric g with singular Ricci curvature bounded below by K ∈ R.

Then for all functions φ ∈ D(∆ g ) with ∆ g φ ∈ W 1,2 (X) and all ψ ∈ D(∆ g )∩L ∞ (X), with ψ ≥ 0, bounded gradient |∇ψ| and Laplacian ∆ g ψ, we have

- 1 2 ˆX ∆ g ψ|dφ| 2 dv g + ˆX ψ(∇(∆ g φ), ∇φ) g dv g ≥ ˆX ψ K|dφ| 2 dv g + (∆ g φ) 2 n dv g .
Proof. Denote by {λ i } i∈N the sequence of eigenvalues of the Laplacian ∆ g , dene V = span{ϕ i } i∈N and the multiplication operators L i on V by:

L i u = a i λ i ϕ i , u = k∈N a k ϕ k . Consider the operator L = i∈N L i ,
which is essentially self-adjoint and closable (see Problem 1(a) in Chapter X, [START_REF] Reed | Methods of modern mathematical physics[END_REF]).

Observe that the Laplacian ∆ g is a self-adjoint extension of L, thus it is its unique self-ajdoint extension.

We can also construct self-adjoint extensions by considering the Friedrichs extenstion L F and the closure L of L. The rst is obtained as the self-adjoint operator whose domain is the closure of V with the norm:

||u|| 2 F = ||u|| 2 2 + (Lu, u) = ||u|| 2 2 + ˆX u∆ g udv g = ||u|| 2 1,2 .
As for the second, one needs to close V with respect to the graph norm:

||u|| 2 L = ||u|| 2 2 + ||Lu|| 2 2 = ||u|| 2 2 + ˆX (∆ g u) 2 dv g . ( 18 
)
Since L is essentially self-adjoint and its extension is the Laplacian, these two extensions coincides and V is dense in D(∆ g ) with respect to both the norm of W 1,2 (X) and the graph norm 18. Therefore, for each function φ in the domain of the Laplacian, there exists a sequence {u i } i∈N ⊂ V which converges to φ in W 1,2 (X) and such that {∆ g u i } i∈N converges to ∆ g φ. Since the Bochner inequality holds for any u i ∈ V , we have:

- 1 2 ˆX ∆ g ψ|du i | 2 dv g + ˆX ψ(∇(∆ g u i ), ∇u i ) g dv g ≥ ˆX ψ K|du i | 2 dv g + (∆ g u i ) 2 n dv g .
We can pass to the limit as i goes to innity in the right-hand side and in the rst term of the left-hand side, since both ψ and its Laplacian are bounded. As for the second term in the left-hand side, we can rewrite it in the following way:

ˆX ψ(∇(∆ g u i ), ∇u i ) g dv g = ˆX ψ(∆ g u i ) 2 dv g -ˆX ∆ g u i (∇u i , ∇ψ) g dv g .
Since |∇ψ| is bounded we can use Cauchy-Schwarz inequality twice to get:

ˆX ∆ g u i (∇u i , ∇ψ) g dv g ≤ C||∆ g u i || 2 ||∇u i || 2 .
Therefore, when we pass to the limit as i goes to innity we get: ˆX ψ(∆ g u i ) 2 dv g -ˆX ∆ g u i (∇u i , ∇ψ) g dv g → ˆX ψ(∆ g φ) 2 dv g -ˆX ∆ g φ(∇φ, ∇ψ) g dv g .

As a consequence we can pass to the limit in the second term of the left-hand side of the Bochner inequality, and we get the desired inequality.

In order to have the integral Bochner inequality 14 implying RCD(K, n), for the right set of test functions, we need to drop the assumption that the test function has bounded gradient. In order to do that, we are going to use the properties of the heat semigroup that we recalled in the rst section.

We are now in position to prove:

Theorem 5.8. Let X be an n-dimensional stratied space endowed with an iterated edge metric g with singular Ricci curvature bounded below by K ∈ R. Then X satises the Bakry-Émery condition BE(K, n).

Proof. Consider ψ a test function such that ψ ∈ D(∆ g ) ∩ L ∞ (X), ψ ≥ 0 and ∆ g ψ is bounded. Up to adding a positive constant to ψ, we can assume that ψ is strictly positive. Let P t be the heat semigroup associated to the Laplacian; since V , the span of eigenfunctions, is dense in the domain of the Laplacian, let ψ i a sequence in V converging to ψ in W 1,2 (X) with ∆ g ψ i converging in L 2 (X) to ∆ g ψ. For xed t > 0, consider P t ψ i . Because of ultracontractivity of the heat semigroup in Lemma 1.15, we have

||P t (ψ -ψ i )|| ∞ ≤ C t ||ψ -ψ i || 2
Remark 5.10. For x ∈ X reg , the last two items can be proven using the existence of arbitrary small geodesically convex neighbourhoods (see for instance [dC92,

Chapter 3]) and Gauss' lemma.

Proof. To prove item (1), take any continuous curve γ from x to y contained in the open connected set X reg ; observe that any regular point admits a neighbourhood where the iterated edge metric is locally Lipschitz equivalent to the standard Euclidean metric, the compactness of the image of γ then guarantees γ has nite length.

To prove item (2), take r so small that

|ψ * x g( ρ, ρ) -g C ( ρ, ρ)| ≤ Λr α g C ( ρ, ρ) (19) holds on B 0,j (x, r) reg ∼ C [0,r) (S reg x ), thanks to 4. Note that g C ( ρ, ρ) = 1 since ρ(t) = (t, y) ∈ C [0,r) (S reg
x ) and g C is a cone metric. The proof of item (3) also builds on 19. One can assume that r is so small that γ(t) = (r(t), y(t)) ∈ C [0,r) (S reg x ) for t = 0. Then, the above equation gives us

ψ * x g( γ, γ) ≥ (1 -Λr α )g C ( γ, γ) ≥ (1 -ε) ṙ2 (t).
The result follows by integrating this inequality.

Lemma B. Let (X, g) be a compact stratied space of dimension n endowed with the iterated edge metric g. Let γ : [0, 1] → X be an admissible curve. For any ε there exists an admissible curve γ ε with the same endpoints as γ and such that γ ε ((0, 1)) is contained in the regular set X reg and:

L g (γ ε ) ≤ L g (γ) + ε.
The proof is done by induction on the dimension of the stratied space; note that in one dimension, the only compact stratied space is the circle whose singular set is empty. Therefore, from now on we assume:

Induction hypothesis: For some n > 1, and for any compact stratied space of dimension (n -1), the previous proposition holds.

By denition of an admissible curve, γ meets the singular set Σ at most nitely many times. Therefore by additivity of the length, it suces to prove the result in the case where γ meets Σ in exactly one point. The proof of this fact is in two steps. First, we prove this result in the case of an exact cone metric on a truncated cone, for a curve that only intersects the singular set at the tip of the cone. Then we will use the description of geodesic balls given in the rst section: in a small ball around a singular point the iterated edge metric is close to the exact cone metric on a truncated cone over the tangent sphere, therefore we can apply a similar construction to the one given in the case of an exact cone metric. Let us start with:

Lemma C. Let (S, h) be a stratied space of dimension (n -1) and consider the metric cone (C(S), dρ 2 + ρ 2 h) over S; denote by o the vertex of the cone. Let x, y be two regular points in S, r ∈ (0, 1) and γ : [-a, a] → C(S) an admissible curve connecting (r, x) and (r, y) such that γ(0) = o and γ(t) ∈ C(S reg ) \ {o} for any t = 0. Then for any ε > 0, there exists γ ε : [-a, a] → C(S) such that:

(i) γ ε (t) belongs to C(S reg ) \ {o} for all t ∈ [-a, a]; (ii) L C (γ ε ) ≤ L C (γ) + ε
, where L C is the length with respect to the exact cone metric dρ 2 + ρ 2 h.

Proof. Fix ε > 0, let δ ∈ (0, r) to be chosen later. By continuity of γ, there exists t 0 , t 1 such that t 0 < 0 < t 1 , γ(t 0 ) = (δ, x), γ(t 1 ) = (δ, y), and the radial coordinate ρ(γ(t)) ≤ δ for t ∈ [t 0 , t 1 ]; let us set c 1 = γ| [-a,t0] and c 2 = γ| [t1,a] , by hypothesis on γ, both c 1 and c 2 lie in the regular set of the cone C(S). Now consider an admissible curve in the (n -1)-dimensional stratied space S connecting x and y.

Thanks to the induction hypothesis, there exists an admissible curve c ε from x to y, lying in the regular set of S, and whose length in S with respect to the metric h satises L h (c ε ) ≤ L h (c) + ε. Dene γ ε to be the concatenation of c 1 , c ε and c 2 . Its length therefore satises:

L C (γ ε ) ≤ L C (γ) + δL h (c ε ),
where we used that the length of c ε with respect to the exact cone metric of C(S) is L C (c ε ) = L δ 2 h (c ε ). We can choose δ small enough so that L C (γ ε ) ≤ L C (γ) + ε.

Now consider a general compact stratied space (X n , g). We recall that any x ∈ X admits an open neighbourdood homeomorphic to the truncated cone C(S x ) over the tangent sphere S x . Moreover, if we denote by g C = dρ 2 + ρ 2 h the cone metric on C [0,r0) (S x ), we know thanks to 4 that in C [0,r0) (S x ) the metric g is not far from g C : there exists positive constants Λ and α such that |ψ *

x g -g C | < Λr α 0 .

(20)

Consider an admissible curve γ of nite length L g (γ). We use the same notation and apply the same construction as the one in the proof of Lemma C. The point is to estimate the length L g (c ε ). Since c ε is contained in S reg , we can further assume the curve has constant speed L h with respect to the metric h. Thus, 20 yields |ψ * x g( ċε , ċε ) -δ 2 L 2 h | ≤ Λδ α+2 L h .

As a consequence, we get L g (c ε ) ≤ ε provided δ is chosen small enough. By construction of γ ε , we obtain L g (γ ε ) ≤ L g (γ) + ε.

A construction of a singular stratum. We are going to illustrate one of the examples in Section 3. Consider a round sphere S 3 with round metric g 0 and a closed circle S 1 β in S 3 . We are going to show that we can write the metric g 0 in a tubular neighbourhood U ε of S 1 β of size ε small enough so that g 0 is a perturbation of the product metric dr 2 + r 2 dϕ 2 + a 2 dθ 2 (for a the radius of S 1 β ). More precisely, we show that there exists a positive constant Λ such that:

|g 0 -(dr 2 + r 2 dϕ 2 + a 2 dθ 2 )| ≤ Λr γ + o(r γ ), (21) 
with γ = 1 if the circle S 1 β is not totally geodesic and γ = 2 otherwise. We look at the sphere S 3 in R 4 = R 2 × C with coordinates (x 1 , x 2 , ρe iθ ). Up to changing the coordinate system in R 4 , we can parameterize the circle S 1 Observe that S 1 β is a circle of radius a = sin(β) contained in the totally geodesic sphere S 2 in S 3 , obtained as the intersection of S 3 with the plane {x 2 = 0}. Moreover, the case β = π 2 corresponds to a great circle in this S 2 . Then for β = π/2, c is totally geodesic in S 3 . We aim to write the metric on a tubular neighbourhood U ε of S 1 α as an admissible metric for a stratied space; we start by parameterizing the coordinates of a point in a tubular neighbourhood of S 1 β . We can think of the tubular neigbourhood of S 1 β as the product of a disk orthogonal to c and an appropriate interval (-ε, ε). Therefore, in order to give the coordinates of a point in U ε , we start by constructing the ones of a point in a unit sphere orthogonal to c(θ). We consider the following two vectors orthogonal to c and to the tangent vector ċ: As for a point in a tubular neighbourhood of c(θ), we then get: F (r, θ, ϕ) = cos(r)c(θ) + sin(r)w, where r varies in a small interval (-ε, ε) in (0, π), for some ε depending on β. We are going to write the metric in these new coordinates. Observe that we have: Note that all the mixed terms vanish. Therefore, in U ε the metric can be written in the following form: g 0 = dr 2 + sin 2 (r)dϕ 2 + [cos 2 (r) sin 2 (β) + sin 2 (r) cos 2 (β) sin 2 (ϕ) + cos(r) sin(r) sin(2β) sin(ϕ)]dθ 2 .

Observe that when β = π 2 , then g 0 is the round metric on S 3 written as a doubly warped product on (0, π) × S 1 × S 1 . When we consider ε and r going to zero, we get the following asymptotic expansion: g 0 -(dr 2 +r 2 dϕ 2 +sin 2 (β)dθ 2 ) = r sin(2β) sin(ϕ)dθ 2 +r 2 cos 2 (β) sin 2 (ϕ)dθ 2 +o(r 3 ).

When β = π 2 and thus the circle is totally geodesic, the term with factor r vanishes, so that we can estimate the term on the right by some constant Λ times r 2 . When β = π 2 , we estimate the term on the right by Λr + o(r). This proves the desired inequality 21.

Weak gradients. In this part, we prove the following proposition Proposition 5.11. Let (X, g) be a n-dimensional stratied space and m be the corresponding Riemannian measure. Then, for any compactly supported Lipschitz function f , the following equality holds m-a.e.

|∇f | * = Lip(f )

where the term on the l.h.s. is the minimal relaxed gradient while the term on the other side is the local Lipschitz constant.

Proof. Our argument is mainly based on the fact that the Liouville measure L on the unit bundle of a Riemannian manifold is preserved by the geodesic ow.

Let f be a compactly supported Lipschitz function on X and let f n ∈ L 2 (X, m) be a sequence of Lipschitz functions converging to f in L 2 (X, m) such that |Df n | weakly converge to |Df | * in L 2 (X, m). Let B(o, R) be a ball on which f is supported, note that by denition of |Df | * , we can assume that the functions f n are supported in B(o, 2R) (just replace f n by f n h where h is a Lipschitz function such that 1 ≥ h ≥ 0, h equals 1 on B(o, R) and is supported on B(o, 2R), and conclude by minimality of the relaxed gradient). Moreover, up to mollify the f n , we can further assume that f n are C 1 functions on the regular subset X reg of X. Since we look for an equality that may fail on a negligible subset, we shall restrict our attention to X reg .

In what follows, the notation ffl A f dµ means ´A f dµ/µ(A). Let z ∈ X reg be a point where f is dierentiable and D z f be the dierential of f at z, then Lip(f )(z) dv(z).

Thus, using Rademacher's theorem, we infer from ( 22) that for m -a.e. x ∈ X, 

Lip(f )(x) = lim
where the second inequality follows again from the invariance of L w.r.t. the geodesic ow and the last one from the weak convergence of Lip(f n ) to |∇f | * in
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  ) gives a proof of |∇f | * = Lip(f ) m -a.e.

  any locally Lipschitz function f on X.

  We present some examples of stratied spaces carrying a metric with a singular lower Ricci bound. Thanks to Theorem A, all of these examples are RCD(K, N ) spaces. Most of them are previously unknown examples and some of them recover the known examples of orbifolds and spherical suspension over smooth manifolds with a Ricci lower bound.We point out that, except for the case of orbifolds, all the examples in the following can be constructed in order to have a Ricci lower bound on the regular set and angles α x along the stratum of codimension two larger than 2π. For such examples, having a lower Ricci bound on the regular set does not suce to satisfy the RCD(K, N ) condition.

4. 2 .

 2 Bishop-Gromov. A direct consequence of the RCD(K, N ) condition is the Bishop-Gromov volume estimate. This has been proven for CD(K, N ) spaces by K.-T. Sturm in [Stu06b, Theorem 2.3]. Let ω n be the volume of the unit ball in the Euclidean space and dene:



  For xed θ, v 1 and v 2 span a plane in R 4 which is orthogonal to c at c(θ). Therefore a point in the unit sphere normal to c(θ) can be written in the following coordinates:w = sin(ϕ)v 1 + cos(ϕ)v 2 =   -sin(β) sin(ϕ) cos(ϕ) cos(β) sin(ϕ)e iθ   , for ϕ ∈ [0, 2π).

∂

  r F = -sin(r)c(θ) + cos(r)w, |∂ r F | 2 = 1. ∂ ϕ F = sin(r)   -sin(β) cos(ϕ) -sin(ϕ) cos(ϕ) cos(β)e iθ .   , |∂ ϕ F | 2 = sin 2 (r).

  β) sin(ϕ)e iθ   |∂ θ F | 2 = cos 2 (r) sin 2 (β) + sin 2 (r) cos 2 (β) sin 2 (ϕ) + cos(r) sin(r) sin(2β) sin(ϕ).

  Lip(f )(z) = |D z f | = 1 c n lim η↓0 S n-1 |f (exp z (ηu)) -f (z)| η du (22)where c n = 2/ (n -1) ´π 0 sin n-2 (s) ds . Acccording to Lebesgue's theorem, for m -a.e. x ∈ X, it holds Lip(f )(x) = lim r↓0 B(x,r)

  z (ηu)) -f (z)| η dL(z, u). (23)By combining the invariance of L under the geodesic ow with the L 2 -convergence of f n to f , we getlim n→+∞ B(x,r)×S n-1 |f (exp z (ηu)) -f n (exp z (ηu))| dL(z, u) = lim n→+∞ B(x,r)×S n-1 |f (z) -f n (z)| dL(z, u) = 0.The above equality allows us to rewrite (23) asB(x,r) |D z f | dv(z) = lim η↓0 lim n→+∞ B(x,r)×S n-1 1 c n |f n (exp z (ηu)) -f n (z)| η dL(z, u) ≤ lim η↓0 lim n→+∞ B(x,r)×S n-1 1 c n ˆ1 0 |D exp z (sηu) f n ( ∂ ∂s )| ds dL(z, u) ≤ lim η↓0 lim n→+∞ ˆ1 0 B(x,r)×S n-1 1 c n |D z f n (u)| dL(z, u)ds ≤ lim η↓0 lim n→+∞ B(x,r) |D z f n | dv(z) ≤ lim η↓0 B(x,r) |∇f | * (z) dv(z) = B(x,r) |∇f | * (z) dv(z)

  2.1.3. Innitesimally Hilbertian metric measure spaces. If D(Ch) is in fact a Hilbert space, we say that (X, d, m) is innitesimally Hilbertian. In this case we can dene a pointwise inner product between minimal relaxed gradients by

  reg that induces a distance function d on X reg . In general, it is clear that d ≥ d g | X reg ×X reg , and -balls w.r.t. d g coincide with -balls w.r.t. d provided > 0

	is suciently small. Moreover, by [dC92, Chapter 3] for any such	we can nd

η ∈ (0, /4) such that B η (x) is geodesically convex w.r.t. d.

for any t > 0, and therefore P t ψ i uniformly converges to P t ψ; since ψ is positive, so is P t ψ, and then for i large enough P t ψ i is positive too. Moreover, ψ i is a nite linear combination of eigenfunctions, then P t ψ i , ∇P t ψ i and ∆ g P t ψ i all belongs to L ∞ (X). As a consequence, P t ψ i satises the assumptions of the previous theorem and we can use it as a test function in the Bochner inequality: for all u ∈ D(∆ g ) with ∆ g u ∈ W 1,2 (X) we have

Using the uniform convergence, we can pass to the limit as i goes to innity and get:

-

Now if we consider the limit as t goes to zero, we know that for any bounded function f , P t f converges to f w.r.t. weak-*-topology in (L 1 (X)) * . We can use this with f = ψ and since in the previous inequality P t ψ is multiplied by functions belonging to L 1 (X), we can pass to the limit for t going to zero and obtain:

-

as we wished.

Corollary 5.9. Let X be an n-dimensional stratied space endowed with an iterated edge metric g with singular Ricci curvature bounded below by K ∈ R. Then X satises RCD(K, N ) for any N ≥ n.

Indeed, Proposition 4.9 and Theorem 4.19 in [START_REF] Erbar | On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces[END_REF] state that the Bakry-Émery condition BE(K, N ) implies RCD * (K, N ). Then X is essentially non-branching, and [START_REF] Cavalletti | The globalization theorem for the Curvature-Dimension condition[END_REF] proved that for an essentially non-branching metric measure space of nite measure, RCD * (K, N ) is equivalent to RCD(K, N ). This concludes our proof.

Appendix

Distance on a stratied space. In this part, we provide some technical facts needed to check that the length structure introduced in Section 1.2.1 meets the assumptions described in [BBI01, Section 2.1], by using the local description of geodesic balls given in the rst section. We also prove Lemma 1.7.

Lemma A. Let (X, g) be a compact stratied space of dimension n endowed with the iterated edge metric g.

(1) For x, y ∈ X reg , there exists an admissible curve γ between x and y of nite length: L g (γ) < +∞. (2) For x ∈ Σ, there exists C > 0 such that for any r > 0 small enough, any radial curve ρ : [0, r) → B 0,j (x, r) ∼ C [0,r) (S x ) (where ∼ means the sets are homeomorphic) with respect to the cone metric g C = ds 2 + s 2 h x satises L g (ρ) ≤ Cr.

(3) For x ∈ Σ, r > 0 small enough, there exists ε = ε(r) such that for any admissible curve γ ⊂ B 0,j (x, r) ∼ C [0,r] (S x ) from x to a point (r, y) ∈ C [0,r] (S x ) satises L g (γ) ≥ (1 -ε)r.