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Abstract 

In healthcare institution management, hospital flow control and the prediction of 

overcrowding are major issues. The objective of the present study is to develop a dynamic 

scheduling protocol that minimizes interference between scheduled and unscheduled patients 

arriving at the emergency department (ED) while taking account of disturbances that occur in 

the ED on a daily basis. The ultimate goal is to improve the quality of care and reduce 

waiting times via a two-phase scheduling approach. In the first phase, we used a genetic 

algorithm (based on a three-dimensional cubic chromosome) to manage scheduled patients. 

In the second phase, we took account of the dynamic, uncertain nature of the ED environment 

(the arrival of unscheduled patients) by continuously updating the schedule. 

Keywordsemergency department, dynamic scheduling, scheduled and unscheduled patients, 

genetic algorithm, three-dimensional cubic algorithm. 

 

1 Introduction 

Controlling hospital flows and anticipating overcrowding phenomena are major challenges in 

the management of healthcare production systems. Due to fluctuations in patient flow, 

healthcare stakeholders have to manage congestion and peaks of activity. Long patient 

waiting times now constitute a key problem in healthcare institutions in general and 

emergency departments (EDs) in particular. In France, this is often because the arrival of 

unscheduled patients at the ED interferes with the treatment of scheduled patients (i.e. patients 

to whom a scheduled consultation time has been already given and who are being treated or 

are in the waiting room). These unscheduled, real-time perturbations in the ED mean that 

rescheduling is then required. However, EDs lack procedures and tools for decision-making 

and appropriate rescheduling. 

The present study was performed in the ED at Lille University Medical Centre (Lille, France), 



which is particularly concerned with the issue of scheduling. As elsewhere in France, many 

patients wait in the ED for hours – as many as 10 hours, in some cases - before seeing a 

physician. These delays can even endanger the patient’s life. The problem of long waiting 

times highlights the need to review the ED management process and implement measures to 

improve the quality of patient care. In the present study, we focused on optimizing the care 

process. We had noticed that the unscheduled arrival of patients – particularly those requiring 

emergency treatment - perturbs the treatment process in the ED. If the ED is overcrowded, the 

arrival of unscheduled patients may interrupt the treatment of scheduled patients and/or 

require rescheduling around the more urgent cases. We have developed a novel, dynamic 

approach to patient scheduling based on two complementary processes. The first step 

concerns the management of scheduled patients in the ED, and is based on a genetic algorithm 

(GA) with a three-dimensional, cubic chromosome. The second phase involves updating the 

schedule after the arrival of an unscheduled patient, while taking account of staff availability 

and skills. The priorities here are to save patients’ lives, minimize the overall waiting time for 

both scheduled and unscheduled patients, and optimize resource use. This approach has 

proved its effectiveness in improving healthcare processes. It optimizes patient treatment 

while taking account of the various perturbations that can occur in the ED. Performance 

indicators (such as total workload of medical staff, overall patient waiting time and response 

time for healthcare tasks) are then generated and analyzed as a guide to the effectiveness of 

patient management. 

2 State of the art 

2.1 Optimization of resource allocation and patient scheduling in healthcare 

organizations 

Many studies have focusing on helping health system managers to make decisions and then 

evaluate their choices’ impacts on the system’s efficiency and effectiveness [1] [2]. Managers 

have to make the best possible decisions when faced with the constraints imposed by the 

environment within which they operate. Furthermore, managers must optimize cost and 

performance. To this end, optimization systems [3] [4] [5] have been used to evaluate 

alternatives [6] [7]. The effectiveness of optimization systems is often measured in terms of 

the cost and the quality of services (a reduction in waiting times, the avoidance of a lack of 

resources, etc.). 



Scheduling problems in health facilities are usually linked to the services required by various 

categories of users. Each service involves several types of resource (e.g. physicians, beds, 

instruments, etc.), each of which has its own costs. Hence, a range of different data must be 

gathered, and resources must be assigned to care tasks [8]. In this context, the notion of 

scheduling in healthcare organizations is becoming increasingly complex: (i) staff should 

have the diverse skills required to meet the patients’ needs, (ii) it is not possible to predict a 

patient’s pathway into a healthcare organizations because factors such as the pathology and 

the institution’s management approach are involved, and (iii) the hospital environment is 

highly stochastic, which complicates resource planning. 

2.1.1 Allocation of resources 

A general problem in healthcare is the allocation of scarce medical resources (such as 

operating theatres or medical staff) so that waiting times are as short as possible. A major 

difficulty lies in the fact that this distribution must be implemented several months in advance 

- even when the exact number of patients for each specialty remains uncertain. Another 

problem arises for cyclical schedules, where the allocation is defined over a short period (a 

week, for example) and then repeated over the time horizon. In most cases, however, demand 

varies from week to week: even when the exact demand for each week is known in advance, 

the weekly schedule cannot be adapted accordingly. 

2.1.2 Resource optimization 

Mathematical optimization is increasingly relevant in healthcare management. As Belien 

(2006) pointed out: "In the near future of public health, resources will become insufficient. 

Therefore, we need to find effective ways to plan, prioritize and make decisions" [9]. The 

hospital administration’s main task is therefore to efficiently distribute the available medical 

services and resources. A wide variety of assignment and scheduling problems can arise [10] 

[11]. Resource allocation is directly linked to a planning problem which consists in 

establishing the sequence for patient admission. As a general rule, patients requiring specific 

therapy are first placed on a waiting list and then admitted to hospital. Performance indicators 

related to the length of these lists are used to determine effectiveness. Long queues are to be 

avoided, as they represent an enormous cost to the healthcare system [12] [13]. The cost of 

queuing is a design parameter that must be established by the hospital board for each 

specialty. In a typical case, the cost is represented by a convex function in which marginal 

costs increase as the tail lengthens. Shorter lists are obviously preferred, although it is usually 

impossible (and sometimes perhaps not even desirable) to avoid a certain degree of queueing. 



Indeed, the absence of a queue for certain specialties might reveal the inefficient allocation of 

certain scarce resources. Hence, the basic scheduling problem in healthcare is the allocation of 

resources to medical specialties so as to minimize queuing costs. Clearly, the attribution 

process must be determined in advance, and may involve negotiations. Thus, resources are 

allocated at the beginning of a time horizon which can be quite long, ranging from a few 

months to several years. The number of patients for each specialty is therefore estimated in 

advance, and the actual number may differ considerably from the initial estimate. 

Furthermore, schedules are often created with reference to the planning horizon (e.g. one to 

four weeks), and then repeated cyclically. Actual demand may vary from one period to 

another, even when it is known in advance. A schedule must ensure that queues are as short as 

possible when the demand for care is maximal (relative to the selected schedule). 

2.1.3 Staff assignment 
 

Staff assignment is defined as an optimized construction process for the execution of care 

tasks. It is generally necessary to assign appropriately qualified staff to specific tasks, in order 

to meet the service’s organization demands while complying with work regulations and 

seeking to satisfy individual preferences. This method has been adapted and applied to 

different fields, such as transport systems, healthcare systems, manufacturing, emergency 

services, and public services. Jaumard et al. (1998) presented a generalized linear 

programming model (based on the branch and bound algorithm) for the assignment of nurses 

with different skills [14]. The main problem is to find a set of individual schedules that satisfy 

demand-side constraints while minimizing wage costs and maximizing nursing preferences 

and quality of care. Millar and Kiragu (1998) used a network model for the cyclical and non-

cyclical planning of nurse schedules, in which the network’s nodes represented a feasible 

model of work-stretch and off-stretch patterns [15]. The resulting problem was essentially a 

model of the shortest path with lateral constraints. According to Blöchliger (2004), 

construction of a practical model must provide a detailed analysis and a description of the 

basic elements [16]. Ernst et al. (2004) provided a detailed review of applications, models and 

algorithms for staff assignment, including the assignment of medical residents in hospitals 

[17]. Musa and Saxena (1984) focused on a single-phase algorithm that took account of 

scheduling policies for hospital nurses and their preferences for the weekend [18]. Arthur and 

Ravindran (1981) were the first to use this method with the following four objectives: taking 

account of staff preferences, and decreasing the number of staff, the minimum number of 

employees, and staff dissatisfaction [19]. In the first phase of their approach, a goal-based 



programming model was used to assign days-on and days-off to nurses over the two-week 

planning horizon. The second phase dealt with specific changes to nurse assignment via a 

heuristic procedure. Lastly, Bard and Purnomo (2007) developed a dual heuristic to solve 

nurses’ cyclical preference schedules [20]. 

3 Formulation of the problem 

Emergency services are permanently confronted by interference between the care of 

scheduled patients and the arrival of unscheduled patients (particularly those requiring urgent 

treatment). At present, there is no satisfactory solution to this problem. 

The term "emergency" covers two distinct phenomena: recurring flows and sanitary crises. 

Firstly, recurring flows may be seasonal but the average short- or medium-term trends are 

known (i.e. per month or per year). However, even when the flows are known, the 

establishment of an efficient, effective, short-term management structure is a major challenge 

for healthcare production systems. Secondly, flows due to sanitary crises (flu epidemics, heat 

waves, cold waves, etc.) cannot be foreseen in terms of their magnitude and nature. 

In the present study, we considered that a given patient’s treatment can be “splittable” or 

“non-splittable”. In fact, a patient’s treatment can be interrupted in order to deal with a patient 

requiring treatment more urgently. A patient may be treated at different times in different 

places. 

We next introduce the mathematical model used to formulate the problem, and then assess the 

set of solutions obtained with our approach. 

3.1 Parameters 

NP:  a set of N patients to be treated, NP={P1, P2,…,PN}. 

MS:  a set of M medical staff members, MS={m1, m2,..,mM}. 

Ns:  the number of scheduled patients in the ED. 

Nns:  the expected number of unscheduled patients. 

k:   the medical staff member index mk. 

s

jP :  the subset of patients corresponding to “splittable” treatments. 

ns

jP : the subset of patients corresponding to “non-splittable” treatments. 

klw : the number of patients managed in common by medical staff members mk and ml. 



kW :  the workload of medical staff member mk. 

W:  the workload of all the medical staff members, 
1

M

kk
W W


 . 

Cj,k:  the skill of the medical staff member mk needed to treat patient j. 

jtar :  the arrival time of patient j. 

cj:   the theoretical completion time for patient j’s treatment. 

dj:   the theoretical due date for patient j’s treatment. 

S:  the set of sites at Lille University Medical Centre (radiology facility, MRI facility, 

central laboratory, etc.); sn S , the number of sites in this set. 

R:  the set of all available healthcare rooms. 

R

rS :  the healthcare room’s capacity, r  R. 

H :      The treatment time horizon, which starts at time HD  and ends at the time HF . The 

horizon is divided into several periods p whose lengths are not necessarily the same.  

3.2 Decision variables 

jprX :  Boolean, 1 if a healthcare treatment or a portion of it corresponding to patient j is 

placed at period p in room r, and 0 if not. 

Ajpr:  an integer representing the number of patients Pj, ≤N having splittable healthcare 

treatments placed at period p in room r. 

xy

lkC :  Boolean, set to 1 if medical staff members ml and mk, managing patients in common, 

are placed at two periods x and y back-to-back during the same day, and set to 0 if not. 

SP

lkC : Boolean, set to 1 if medical staff members ml and mk, managing patients in common, 

are placed in two different sites during two periods with a gap between them, and set 

to 0 if not 

jpcU :  Boolean, set to 1 if one or more medical staff members are assigned at period p to 

patient Pj in the corridor c, and set to 0 if not 

T

lkC :   Boolean, set to 1 if medical staff members ml and mk are managing patients in 

common and are placed in healthcare rooms located at different sites during two 

periods with a gap between them, and set to 0 if not. For this, travel T is necessary. 



3.3 Institutional parameters 

Tw :  penalty weighting for patient travel between different sites within the healthcare 

organization. 

cw :  penalty weighting for using the Emergency Department (ED)  corridor c. 

r

pBC :  penalty weighting for exceeding the capacity of room r at the period p. 

k

pMS :  penalty weighting for exceeding medical staff member mk’s workload during period p. 

PSG :  gap of the treatment period spread penalty. 

3.4 The objective function 

Minimize: 

  C w +  TC w  +  cC w  + ( )r

pC BC  + )( k

pC MS  +  PSC G                            (1) 

where 

 C w : the cost generated by the waiting times of both scheduled and unscheduled patients in 

the ED. W is calculated as follows: 

, ,

1 1,

( )
nsNNs

s j ns k

j k k j

W Min W W
  

   , where Ws,j is the scheduled patients’ waiting time and Wns,k is the 

unscheduled patients’ waiting time. 

 TC w : the cost generated by patient travel between the different sites within the healthcare 

organization. 

 cC w : the cost generated by treating a patient in the corridor of the ED. 

( )r

pC BC : the cost generated by exceeding the capacity of room r at the period p. 

)( k

pC MS : the cost generated by exceeding medical staff member mk’s workload at the period p. 

 PSC G : the cost generated by the gap of the treatment period spread penalty. 

The objective function is a sum of penalty terms. Each of the terms refers to a specific, 

flexible constraint (see section 3.6). 

3.5 Strong constraints 

The following strong constraints influence the solution’s feasibility. 

p

rSSPT : the sum of splittable patient treatments (or portions of treatments) allocated to 

treatment room r at period p should not exceed the treatment room’s capacity: 
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Linking the variables jprX  and jprA  related to splittable treatments: 
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The two parts of the above equations are required to check whether jprX  = 1, 0jprA  .  

p

rSPS : the sum of patients with splittable treatments should be equal to:  s

jCard P ,  

∀𝑃𝑗 ∈ 𝑃𝑗
𝑆, ( )s

jpr j

r R p H

A Card P
 

                                             (4)          

p

rNSPT : a non-splittable patient treatment should be assigned to a single treatment room: 

      ns

j jP P  , 1jpr

p H r R

X
 

                                                              (5) 

pq

rRP : a room cannot be used by two patients in two overlapping periods p and q:  

1 2 1 2
1, , ,j pr j qr j jX X P P NP r R                               (6) 

pq

rMSP : two medical staff members managing patients in common cannot be allocated during 

the same period or during two overlapping periods p and q: 

1 2 1 2
1, ,j p j q j jX X P P NP                                 (7) 

3.6 Flexible constraints 

The solution’s quality is determined by the following flexible constraints. 

SP

lkCPP : whenever two medical staff members managing patients in common are placed on 

different sites in two consecutive periods, a patient travel penalty is applied: 

,l k

SPSP T

m

l

m S

k

M

C w C


                                    (8) 

pMPC : whenever a medical staff member is allocated to treat one or more patients in the 

corridor at period p, a corridor penalty is applied: 

,j

c

c jpc

p NP p H

U w U
 

                                       (9) 

r

pCap : whenever at least two patients are treated at the same period p in the same room r 

specially in the overcrowding situation, a capacity penalty is applied: 

,  r R p    R

rS



, ,

r r

p jpr

p NP r R p H

BC BC U
  

                    (10) 

In the following section, we solve the above-described problem while meeting the different 

constraints. To optimize the solution, we decided to adopt an aggregative approach without 

seeking to apply appropriate weightings. In real-life healthcare situations, it is very difficult to 

define suitable weights for these criteria. The present study assessed the results of simulations 

that generated some of these criteria separately or (in some cases) together. 

4 The rolling-horizon approach to scheduling  

4.1 The scheduling environment 

Figure 1 shows the scheduling environment with three kinds of patients: urgent patients 

(UPs), scheduled patients (SPs) and non-scheduled patients (NSPs). 

4.1.1 Assumptions 

 A medical staff member is present in the scheduling horizon in the ED. The number of 

scheduled patients in a scheduling horizon is Ns, whereas the expected number of 

unscheduled patients is Nns. All the unscheduled patients arrive randomly at the ED; 

on arrival, they must be assigned with a theoretical scheduled consultation time. 

 In France, EDs never close. Each arriving patient j should be registered at the 

reception desk at time tarj. None of the patients who arrive at the ED are rejected, and 

all patients should be treated during the current scheduling horizon or the next 

scheduling horizon. 

 Each patient corresponds to a set of healthcare operations to be executed in a parallel 

or in a sequential manner by one or more medical staff members (staff physicians, 

nurses, interns, etc.). 

 Medical staff members are organized into teams. Each team contains at least one 

physician. Some teams contain additional staff members (nurses, paediatricians, etc.), 

depending on the patient’s pathology. 

 The scheduling horizon H starts at time DH and ends at the time FH. In the present 

study, we consider that the duration of the scheduling horizon is 4 hours. 

 The scheduling horizon is divided into several periods whose durations are not 

necessarily equivalent. If two periods have the same duration, the number and the 



duration of slots in each period may differ. In general, a period contains multiple slots. 

A slot is allocated to a scheduled patient. Each period contains at least one slot. A 

slot’s scheduled consultation time is given by the start time of the period to which it 

belongs. Hence, if two or more slots are included in a period, the scheduled patients 

assigned to the same slot have the same scheduled consultation time. 

  

 

Figure 1: the scheduling environment 

 According to the stochastic behaviour of the medical staff’s consultation time, let 

,

j

mC   be the average consultation time of the medical staff member m having the skill 

  to treat patient j. 

 When the medical staff member becomes available, the waiting patient with the 

earliest scheduled consultation time is called. If the waiting room is full and it is not 

possible to call all the patients during the same scheduling horizon, the remaining 

patients and the new arrivals will receive a scheduled consultation time in the next 

scheduling horizon. 

 In the ED, the most urgent cases are given the highest priority. Hence, when patients 

requiring urgent treatment arrive, the current scheduling can be interrupted and 

rescheduling is required because these patients should not have to wait for a 

consultation. 

4.1.2 Performance measures 

Let the waiting time for a scheduled patient j (Ws,j) be the sum of the patients’ waiting times 

between the registration and the theoretically scheduled consultation time War, and the waiting 

time before the first consultation Wfc, where: 

Dynamic 

scheduling 

Arrival 

Waiting 
Consultation 

 



, , ,s j ar j fc jW W W                        (11) 

),0max( ,,, jarjsjar ttW                      (12) 

, , ,max(0, - )fc j fc j s jW t t                      (13) 

where
,ar jt , ,s jt and

,fc jt  are respectively the arrival time, the theoretically scheduled 

consultation time and the first consultation time for the patient j. 

The waiting time for an unscheduled patient kP  ( ,ns kW ) is the sum of the patients’ waiting time 

between the registration and the theoretically assigned scheduled consultation time ,ar kW , and 

the waiting time before the first consultation ,fc kW , where: 

, , ,ns k ar k fc kW W W                       (14) 

),0max( ,,, karkskar ttW                      (15) 

, , ,max(0, )fc k fc k s kW t t                       (16) 

The two equations (11) and (14) are mathematically equivalent but semantically different. In 

fact, the scheduling method developed in the present study assigns a theoretical scheduled 

consultation time to each unscheduled patient at his/her time of arrival and then guides 

him/her to the waiting room at the scheduled consultation time. On the basis of the scheduled 

consultation time, War is calculated for each registered patient. The objective is to comfort 

patients and reduce their stress by keeping them informed of their waiting time prior to the 

first consultation. If the first consultation time is equal to the scheduled consultation time, 

then the waiting times 
,fc jW and

,fc kW are equal to 0. In the event of perturbations 

(overcrowding, a lack of medical staff, worsening in the patient’s health status, etc.), the 

consultation times are rescheduled, the first consultation time increases, and so the patient’s 

waiting time lengthens. 

Most of patients prefer early scheduled consultation times - especially when they arrive. To 

satisfy these preferences, the waiting time (based on the arrival time 
,ar kW ) should be reduced 

by assigning available medical staff with appropriate skills as quickly as possible. 

5 The scheduling procedure 

The sequential treatment of patients is dynamically scheduled, which requires the real-time 

generation of activity plans for each medical staff member. A multidisciplinary medical team 



is formed, and a treatment role is assigned to each team member. The schedule is updated 

whenever the patient input stream changes. 

 

Figure 2: the scheduling approach 

Our approach is based on an offline phase and an online phase. 

The offline phase consists in scheduling the scheduled patients who arrive at the ED. A GA is 

applied in this phase, and the scheduled patients correspond to the constraints of the GA. 

The online phase takes account of a dynamic feature; the arrival of unscheduled patients at the 

ED. These patients are treated with regard to their pathologies and their emergency status. 

Hence, the online phase uses a shifting and insertion method based on the notion of periods 

and horizons. 

5.1 The offline phase: scheduling with a GA 

The treatment plan is generated by applying a dynamic, responsive GA. The algorithm is 

designed to (i) optimize the assignment of patients to medical staff with the skills needed to 

treat them, and (ii) minimize patient waiting times and overall costs while maintaining the 

quality of care. The scheduling algorithm selects the appropriate medical staff member for the 

treatment of a given patient, according to the staff’s availability and skills. An emergency 

alert resulting from the need for a medical staff member triggers an updating process by the 

scheduling algorithm. This situation may lead to the interruption of a patient’s treatment and 

the initiation of treatment of a more urgent case or a shift in one or more treatment processes 

to make space for unscheduled patients requiring urgent treatment. 

The goal is to minimize the overall waiting time that the patient spends in the ED and the 

costs described in the third section of this article.  

The purpose of the GA is to provide an approximate solution to the optimization problem, 



insofar as an exact method cannot solve the problem within a reasonable time. The potential 

solution(s) provided by the GA necessarily requires the involvement of the different medical 

staff members in the ED. In the following section, we will describe our patient scheduling 

approach in detail. 

5.1.1 Definition of the chromosome 

We chose to use a three-dimensional cube chromosome with the following three axes: 

"medical staff", "patients", and "time". The time axis is divided into intervals of different 

sizes. The scheduling horizon is divided into several periods that do not necessarily have the 

same duration. If two periods have the same duration, the number and the duration of slots in 

each period may differ. In general, a period contains more than one slot. 

 

 

Figure 3: a representation of a cubic 

chromosome (a patient/medical staff/time cube) 

 

Figure 4: a single cubic assignment 

 

Figure 5: a sequential cubic assignment  

Figure 6: a multiskill cubic assignment 

In view of the division of the time axis into many slots, each medical staff member is assigned 

to a patient in a specific slot from a specific period. For example, Figure 4 shows a medical 

staff member M1 treating patient P1 in the second slot of period 3. The Figure 5 shows the 

sequential assignment of medical staff members My1 and My2, to patients Pz1 and Pz2 in 

periods 3 and 4, respectively. The Figure 6 shows a multiskill cubic assignment, which is 



made possible by our choice of the type of chromosome. Here, patient PZ1 needs two different 

skill sets for his/her treatment, medical staff members My1 and My3 are assigned to the same 

period 3 and the same slot. Patient PZ2 needs a pair of different skills, and medical staff 

members My2 and My3 are assigned to the same period 4 and the same slot. 

5.1.2 The initial chromosome population 

The first step is the formation of an initial population as the starting point for execution of the 

algorithm. We used two methods to build the initial population: 

 The first method consists in recovering the initial population solutions (IniPopL) 

generated by a list algorithm with dynamic priority rules. 

 The second method consists in generating initial population solutions at random 

(IniPopR) but which are viable because they comply with the strong constraints. 

The details of the GA used in the present study are as follows: 

Algorithm 1: construction of the IniPopL 
Input: Fixed NL, the size of the chromosome population InitPopL 

          Fixed NR, the size of the chromosome population IniPopR 

Output: IniPopL of NL chromosomes generated by applying the list algorithm 

            IniPopR of NR chromosomes generated by applying a random process 

Begin 

i:=0;  

IniPopL = Ø;  

while i<=NL do  

Find a cubic chromosome i as a feasible (or suboptimal) solution of a single objective optimization 

model by applying a list algorithm;  

end while 

IniPopL = IniPopL  {chromosome i};  

i:=i+1;  

end  

Algorithm 2: the cubic GA approach 
Input InitPopL, InitPopR, N is the global size of initial population 

Output: a set of N good scheduling solutions  

Begin 

Construction of IniPopL: find NL feasible cubic chromosomes 

Construction of IniPopR: find NR=N-NL partial feasible solutions at random 

Merging of IniPopL and IniPopR (N cubic chromosomes) 

while (stop criterion are not reached) do 

 Evaluate individuals 

 Select 2 parents P1 and P2 at random 

 Apply a controlled crossover algorithm with a probability pc, in order to obtain offspring1 and 

offspring2 

 Apply a controlled mutation algorithm with a probability pm  

 Select N new individuals and build a new population 

 Update the stopping criterion 

end while 

end  

 

5.1.3 The controlled crossover schema 

This used in order to move the start time of the patient treatment process forward or backward 



for a given medical staff member. It does not change the assignment of patients, i.e. which 

medical staff member treats which patient). Only the “time” and “patient” axes are 

considered. 

Example 

The time axis is divided into 5 min intervals. Each slot in the time axis is a Boolean equal to 1 

if the patient is assigned to the slot, or 0 if not. 

Chromosome A:  

                   

Time 

Patient 
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Patient 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Patient 2 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 

Patient 3 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 

Patient 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

 

 

Chromosome B: 
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Patient 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 

Patient 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

Patient 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Patient 4 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 

 

If the mask is 0110, then the chromosome resulting from the crossover will be as follows: 
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Patient 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Patient 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

Patient 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Patient 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

 

The crossover yields two viable offspring chromosomes, so no correction is needed. The 

viability is checked on the "medical staff" axis. In fact, we need two different medical staff 

members in the slots [10-15], [55-60] and [60-65] on offspring chromosome 2 because the 

same medical staff member cannot treat two different patients at the same time (a constraint 

related to the equation 7). Furthermore, patient 2 and patient 4 in offspring chromosome 2 

must be treated by two different medical staff members in the slot [80-95]. 

This phenomenon shows the value of using a three-dimensional cubic chromosome to check 

compliance with strong constraints. 

5.1.4 The controlled mutation schema 

The mutation is a partially random operation that enables us to modify the solutions and move 

towards an optimum or perhaps move out of a local optimum. In our case, the mutation 

modifies the Booleans present in our chromosomes. Not all chromosomes are mutated; the 

probability of mutation is <1. If the chromosome is selected, it will then go through the slots 

(according to the "medical staff", "patient to treat", "time" axes) and change their values in 

accordance with simple rules. 

The slots are changed at random. Each slot has a predetermined probability of being mutated. 

If the selected slot is to be changed from 1 to 0, there are no additional conditions; only one 

patient is treated at a given time by a medical staff member. If the selected slot is to be 

changed from 0 to 1, we have to check that the medical staff member has the requisite skills 

and is available to treat the patient in the slot. If the condition is checked, the slot is mutated. 

 

 

 

 

 

 

 



 0-5 min 5-10 min 10-15 min 15-20 min 

Patient 1 (treatment duration: 10 minutes) 0 1 1 0 

Patient 2 (treatment duration: 3 minutes) 1 0 0 0 

Patient 3 (treatment duration: 5 minutes) 1 0 0 0 

 

 

 0-5 min 5-10 min 10-15 min 15-20 min 

Patient 1 (treatment duration: 10 minutes) 0 0 1 1 

Patient 2 (treatment duration: 3 minutes) 0 1 0 0 

Patient 3 (treatment duration: 5 minutes) 1 0 0 0 

 

This first phase of the mutation can thus remove patients from a medical staff member or 

assign them to him/her if he has the needed skills and is available. However, the durations of 

the patient treatment processes may be inaccurate, and the treatment is divided into several 

slots. This mutation is controlled by the “medical staff” axis. 

In order to comply with the viability of the final set of generated solutions (resulting from the 

application of the GA with controlled crossover and mutation operators), we set a number of 

constraints to be complied with by these operators. These constraints guide us in the search 

for the optimal solution and accelerate the convergence.  

5.1.5 Selection 

After crossover, our population increases as the offspring chromosomes join the parent 

chromosomes. It is then necessary to select the chromosomes that will be part of the new 

population before rescheduling. 

We first evaluated our set of solutions by calculating the value of the objective function (see 

section 3.3). We calculated its strength of each solution and normalized it as a percentage of 

the total strength. Selecting only the strongest solutions would not guarantee a great diversity 

in our solutions, and selecting solutions at random would perhaps remove good solutions. We 

decided to select a percentage of the best solutions, and then select those that remain on the 

roulette wheel. The probability of selection corresponds to the normalized strength. This 

ensures the selection of varied, strong solutions. 

5.2 The online phase: real-time rescheduling 

This phase deals with the interference between scheduled and unscheduled patients arriving at 

the ED, which prompts real-time rescheduling. The goal is to reduce the waiting time of both 

scheduled and unscheduled patients. The process looks at whether an unscheduled patient can 

be inserted into the schedule generated by the offline phase without affecting his/her 

neighbouring patients. To this end, the process first seeks medical staff members who have 

Mutation: changes are in shown grey 



the appropriate skills for treating the patient to be inserted.  

To take account of interference between scheduled and unscheduled patients, we need to 

consider the inter-period waiting time in each horizon. 

This work assumes that the scheduling horizon which represents consultation time window is 

divided into several periods as already mentioned above. A consultation for an unscheduled 

patient is scheduled in the first empty slot in the period, as shown in Figure 7.  

 

Figure 7: an example in which an unscheduled patient’s consultation time is determined on 

the basis of free slots. 

In principle, the start time of the first empty slot gives the patient’s theoretical scheduled 

consultation time. The maximum acceptable number of unscheduled patients in the period is 

difficult to estimate because slots in the same period can have different lengths. For non-

urgent patients, the real-time rescheduling is performed by the algorithms described below. 

 

 

 

 

 

 



Algorithm: Search-First-Free_Slot (Period p, Horizon H, Patient w, Debp, Finp) 

Inputs: 

Nbsp: Number of slots in the period p. 

TAB [1… Nbsp] a table contains the length of each slot. 

FREE[1… Nbsp] a table contains 1 or 0.  

FREE(i) = 0 if the slot i is free, otherwise the slot i is full. 

Output: Tw the start time of the first free slot 

Begin 
 Calculate HWp,h ; 

  If (HWp,h + 
,

w

mC  <HWp,h,max  ) then 

            Assign-patient w to the period p; 

   End_If 

Tw= Debp: the slot’s start time 

For i=1  to Nbsp do  

     If FREE[i] ==0 then return Tw 

      Else Tw = Tw + TAB[i] 

End_For 

Tw = Finp //the period p is overloaded 

Return Tw 

End_ Search-First-Free_Slot 

 
 
 
 
 

Algorithm: Scheduling_new_arrivals (Patient w, Time t, Horizon H) 
Input: 

DebH: the Start time of the horizon H represents the start time of the consultation; 

We consider that the arrival of unforeseen patient follows poisson distribution 

t: Current arrival time of patients  

FinH: The end of the horizon H; 

NBp,H: Number of periods in the horizon H; 

TABH: Table [1…. NBp,H] contains the different lengths of each period. 

Output: 

Tw the start time of the first consultation specifying the horizon, period and slot. 

Begin 

If Urgent_patient then No-wait-consultation 

If t<= DebH then p = 1 (the first period in the horizon)   

Else 

For (i = 1 to  NBp,H  ) do  

If t<= DebH + TABH [i]  then 

p = i; 

Save the start of the period Debp 

Save the end of the period Finp 

End_If 

End_For 

End_If 

Tw = Search-First-Free_Slot (p, Horizon H, Patient w, Debp, Finp) 

End Scheduling_new_arrivals 

 

The end of the consultation window max,Ht  is used as the scheduled consultation time for 

patients who are not included in any of the periods in the horizon H. 

The present approach assumes that each period p has its own length Δp, and that the start time 

of each period is x minutes behind the start time of its first free slot (Figure 7). The maximum 

workload level per period is , ,maxp HHW . For example, if there are three scheduled patients j 



and two unscheduled patients k in period p, then ,p HHW  is given by 

, , ', '3* 2*j k

p H m mHW C C    

6 Simulations and results 

Prior to our simulations, we collected data in the ED at Jeanne de Flandre Hospital (part of 

Lille University Medical Centre). This ED receives about 24,000 visits per year (an average 

of 458 per week and 66 per day), of which 20% take place in a short-stay hospitalization unit 

(SSHU) and 80% take place in an outpatient unit. It has 10 beds in the SSHU, 10 consultation 

boxes in the outpatient unit, a suturing room, a plaster room, an emergency room, and two 

waiting rooms. In the event of overcrowding, vacant beds in the SSHU can be transformed 

into consultation boxes. 

In the present section, we describe the effectiveness and efficiency of our approach to 

scheduling. We first describe the real data collected in the ED. Next, we generated realistic 

random instances of the real data and studied dynamic, rolling-horizon scheduling in more 

detail. With a view to investigating the interactions between the objective functions and 

determining how the patients’ waiting times affect costs, we carried out several different 

computational experiments. 

6.1 Description of the data 

We analyzed a sample of data collected over a period of almost three years, from January 

2011 to November 2013. 



 

Figure 8: Database from the ED in Jeanne de Flandre Hospital  

 

Figures 9, 10 and 11 respectively show the numbers of patients per month, per week, and per 

day for the three years of the study period. 
 

 
Figure 9: The number of patients per month at the ED in Jeanne de Flandre Hospital  

The monthly variations are almost identical from one year to the next, and depend on certain 

periods of the year. The autocorrelation function is represented graphically (i.e. as a 

correlogram) in Figure 12. It shows a peak with a shift of 12 intervals, reflecting the 

correlation of the data for each 12-month period and thus the seasonality for each 12-month 

period. 



 
Figure 10: the number of patients per week at the ED in Jeanne de Flandre Hospital  

The weekly variations in Figure 10 show troughs for holiday periods and peaks for flu 

epidemics. Outside the summer holidays, the mean data were very similar from one week to 

another. In contrast, we observed regular variations over the seven days of the week; this can 

be seen as recurring peaks in correlogram with a period of 7 (Figure 14). 

 
Figure 11: the number of patients per day at the ED in Jeanne de Flandre Hospital 

 

Figure 11 shows the daily frequencies, where the phenomenon becomes less stable due to the 

appearance of the variations previously absorbed in the broader views. We noted three very 

strong peaks (one per year): 119 patients on November 27th 2011, 97 on February 19th 2012, 

and 100 on February 7th 2013 (compared with a daily of 66 patients). 

 



 
Figure 12: Correlogram related to the 

monthly period. ACF: autocorrelation 

function. 

 

 
Figure 13: Correlogram relating to the daily 

period. ACF: autocorrelation function. 

 

 

 

Figure 14: Correlogram related to the hourly period. ACF: autocorrelation function. 

 

The value of managing overcrowding is emphasized by refining the time horizon. For 

effective decision-making, it is best to adopt a time scale that enables patient rescheduling.  

Following our observations in the ED and interviews with the medical staff, we noted that 

waiting times in the ED could be as long as 5 hours. The ED at Jeanne de Flandre Hospital 

did not have a decision support system or information system capable of managing 

overcrowding. Medical staff members gave the highest consultation priority to the most 

urgent patients and then to previously scheduled patients. Unscheduled patients in the ED had 

to wait in the waiting room and sometimes in corridors without obtaining a scheduled first 

consultation time, which increased their level of anxiety. 

Our approach’s level of performance was compared with that of the conventional method 

used in the ED. A database analysis enabled us to simulate the patients’ waiting times, which 

appeared to be excessive in some cases. 

6.2 Computational results and discussion 

As emphasized in section 4, our two-phase, rolling-horizon patient scheduling is revised 

whenever unscheduled patients requiring urgent treatment arrive in the ED, in order to 

optimize the schedule for patients whose waiting times are longer or shorter than expected. 

The waiting list varies over time as patients arrive and as patients are treated. 

We analyzed our computational results in two main steps. Firstly, we investigated the 

effectiveness of the GA-based algorithm and validated our chromosome model. Secondly, we 

implemented our approach in a real ED, and evaluated its applicability and performance. 



In order to evaluate our approach’s level of performance, extend our computational results 

and generalize our method, we applied our two scheduling phases to solve 10 randomly 

generated problem instances with different numbers of patients. The results were compared 

with those obtained in practice (according to the ED database used by the medical staff) and 

those generated by the list algorithm (implemented in Java). These instances were generated 

from real data. In the ED, emergencies can be treated with the list algorithm in order to find a 

quick (but not necessary optimal) solution. The list algorithm’s dynamic priority rules mean 

that it is particularly suited to the scheduling problem. It is flexible and is easily implemented 

in real time. Our problem is solved by dynamic priority rules: the patients’ arrival time and 

level of urgency. The algorithm maintains a list of all the ready-to-be-scheduled tasks after 

registration at the reception desk. 

Table 1: a comparison of the GA-based approach, the list algorithm and the practical case 

Day Number of patients GA based approach List algorithm Practical Number of 

no-wait 

consultation

s (%) 

 Scheduled 
patients 

Unscheduled 
patients 

W  

(min) 

Medical 

staff’s 

workload 

(%) 

W  
Medical staff’s 

workload (%) 
W  

Medical 

staff’s 

workload 

(%) 

1 8 48 205.3 80.2 242.2 82 245.72 80 0.55 

2 17 50 212.6 71.3 216.4 73.5 218.47 72 0.5 

3 20 44 230.5 67 267.8 65 266.39 65 0.48 

4 28 31 298.5 88.2 358.8 87.2 359.08 85 0.58 

5 6 58 197.5 80.5 215.2 79 215.65 78 0.52 

6 12 105 290.2 88.3 303.4 90.2 305.05 89 0.50 

7 12 70 222.6 75 230.2 76 231.04 76 0.64 

8 14 38 223.5 85 265.4 90 270.18 90 0.68 

9 10 29 278.4 93.2 296.2 92 305.26 92 0.58 

10 18 24 187.6 83.2 198.5 82.5 209.63 81 0.78 

 

Table 1 shows the real ED data related to the test problem scheduling, together with the 

results obtained with the list algorithm, the GA-based approach, and the practical case. The 

gap between the solutions (related to the mean total waiting time per patient per instance (a 

day) is shown in Figure 15.  



 

Figure 15: the waiting time as a function of the number of patients 

 

Table 1 shows that minimization of the waiting time is associated with an increase in the 

medical staff’s workload - especially when using the GA-based approach (see Figure 16). In 

fact, adjusting the physicians’ total idle time minimizes the average total waiting time. 

 

 

Figure 16: the medical staff’s workload on day instances 

 

As can also be seen from Table 1, the solutions obtained with the list algorithm for the first 

seven test instances are close to those obtained by the practical solution. For instances 8, 9 

and 10, the list algorithm is markedly better than the practical solution. The gap between the 
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solutions was low and never exceeded 5.41%. 

In fact, the list algorithm uses dynamic priority rules to schedule the patients. These rules 

depend on the care tasks that have yet to be performed. As the tasks do not have the same care 

pathway, the waiting time can be reduced for some patients (for the same scenario), while the 

workload of the medical staff remains the same. 

  Table 2: Computation time 

Day instance GA-based approach List algorithm 

 W  (min) Computation time (s) W (min) Computation time (s) 

1 205.3 9.3 242.2 10.2 

2 212.6 10.5 216.4 11.4 

3 230.5 77.9 267.8 65.7 

4 298.5 120.6 358.8 119.3 

5 197.5 14.2 215.2 15.2 

6 290.2 120.2 303.4 140.2 

7 222.6 80.9 230.2 76.9 

8 223.5 92.6 265.4 146.7 

9 278.4 70.2 296.2 89.3 

10 187.6 9.6 198.5 10.4 

 

 

 

Figure 17: Execution times using the list algorithm and the GA-based approach 

  

Table 2 shows the computation times for the list algorithm and the GA-based approach. In 

order to avoid the blind aspect of the genetic operators, we designed a controlled genetic 

crossover and mutation operators for the cubic representation of the chromosome. 
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Furthermore, we integrated the solutions found by the list algorithm in the initial population 

into the GA, in order to accelerate convergence on the best solution. As can be seen from 

Table 2, the GA-based approach performs far better than the list algorithm in terms of the 

computation time and performs better than both the current system and the list algorithm in 

terms of the waiting time. The computation time are compared in Figure 17. The GA-based 

approach’s computation time is significantly shorter than that of the other methods. 

In Table 2, the difference in execution time between the GA and the list algorithm is less than 

one minute. If this time difference is sufficient for the GA to generate high-quality solutions 

minimizing the patients’ waiting time, then the solutions are relevant for clinical practice.  

As discussed above, the GA-based method can address real-life scheduling problems in EDs, 

so that the patients’ waiting time can be minimized as a function on the urgency of the 

required treatment. The second phase of our scheduling method reschedules the medical 

staff’s tasks whenever a new patient arrives in the ED; the goal is to minimize the patients’ 

waiting times by optimizing the use of resources (medical staff members) and ensuring that a 

patient with a more severe condition is prioritized. Hence, to better address scheduling in real-

world EDs, the GA-based scheduling approach requires a reliable information system and an 

adequate amount of training for scheduling staff. 

In addition, we have already studied and developed a multi agent system to model the 

communication and the interaction between the different medical staff member and the 

software agents [21]. The scheduled and re-scheduled approaches proposed in this paper are 

integrated in the agent behaviour in order to communicate to the medical staff member, the 

new care tasks to realize. 

7 Conclusion 

In the present study, we developed an innovative GA-based approach for scheduling both 

scheduled and unscheduled patients in an ED. The GA-based method assigns a theoretical 

consultation time to each patient on arrival. The goal of patient scheduling is to minimize the 

total waiting time and the overall cost. The GA-based approach grant a higher priority to the 

most urgent patients, while optimizing the medical staff’s workload. The GA’s performance 

has been enhanced by the incorporation of a cubic chromosome representation with novel, 

controlled genetic operators. In order to demonstrate the superiority of our approach, we 

applied it to a real ED. Simulations revealed that the GA-based approach improves the 

performance of patient scheduling in the ED and makes efficient use of the available 

resources. The computational results of our approach exceeded those of the practical 



approach. In the future, we intend to improve our approach to multiskilled healthcare task 

scheduling in the ED by combining a GA with multi-agent systems. 
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