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Long-wavelength sound propagation in porous materials with annular pores is investigated in this paper. Closed-form

analytical expressions for the effective acoustical properties of this type of material were obtained. These are compared with

both direct numerical calculations of the effective properties and their calculations obtained by using semi-phenomenological

models. Analytical expressions for the input parameters of the latter, i.e., static viscous and thermal permeabilities, vis-cous

and thermal characteristic lengths, and tortuosity, are also provided. The introduced model is successfully validated by

comparing its predictions with measured data taken from literature. A parametric analysis that allows highlighting the

influence of the different geometrical parameters of porous materials with annular pores on their sound absorptive properties is

also presented.

I. INTRODUCTION

The solution of the problem of sound propagation in

tubes of circular cross section saturated with a visco-

thermal fluid has been derived by Kirchhoff1 in the form of

a complicated transcendental equation. This solution is of

difficult application since it could only be solved for the

wave number numerically. An approximated closed-form

solution was presented by Zwikker and Kosten.2 This solu-

tion, which has been obtained by decoupling and solving

the equations of conservation of momentum and energy, is

particularly attractive because of its simplicity when com-

pared with Kirchhoff’s full solution.3,4 The validity of such

a decoupled condition has been later justified using the

two-scale asymptotic homogenization method for periodic

media (see, for example, Ref. 5). Furthermore, the solution

proposed in Ref. 2 provides almost identical result for

broad ranges of frequency and tubes radii. In fact, its con-

vergence to the exact solution derived by Kirchhoff has

been first proven analytically by Weston6 in the so-called

narrow, wide, and very wide tube radius-frequency regions.

The convergence in the intermediate region has been

shown numerically in Ref. 3, using the Newton-Raphson

method and a trapezoidal rule evaluation of the integral rep-

resentation of Bessel function of first type to Kirchhoff’s

solution (see also Ref. 4). Since the assumptions leading to

the decoupling of the equations of conservation of momen-

tum and energy is based on are independent of the tube

cross-section shape, Stinson4 showed that it could be

applied to tubes with arbitrary but constant cross-sectional

shapes and provided a general procedure for calculating the

effective permeability, bulk modulus, wave number, and

characteristic impedance of the media. We will use this pro-

cedure in this paper.

This work investigates sound propagation in porous mate-

rials with annular pores, i.e., materials composed of an array

of cylindrical circular pores with concentric solid cylinders.

The aim of this paper is to provide closed-form analytical

expressions for the long-wavelength effective acoustical prop-

erties, accounting for viscosity and heat transfer effects, of

porous materials with annular pores. To the authors’ knowl-

edge, and as indicated in Ref. 7, these are not readily avail-

able. In addition, we provide analytical expressions for the so-

called macroparameters (i.e., static viscous and thermal per-

meabilities, viscous and thermal characteristic lengths, and

tortuosity8–10) of porous materials with annular pores.

A practical motivation of this study is that useful

improvements in sound absorption of rigidly backed layers

of a porous material with annular pores in comparison with

that of a material with cylindrical pores with the same outer

radius has been reported in Ref. 7. Sakamoto et al.7 also cal-

culated the wave number and characteristic impedance of an

array of annular pores by using a model for an array of slit

pores whose width was set equal to the distance between the

outer and inner radii of the annular pores. They obtained a

fairly good agreement between measured and predicted

sound absorption coefficient. However, this was achieved by

(i) using a model that does not directly correlate with the

geometry of the material and (ii) correcting the layer thick-

ness of the material in a somewhat arbitrary way.

In addition to Ref. 7, studies on oscillatory fluid flow

and sound propagation in materials with annular tubes are

relevant to our work. For example, oscillatory flow of an

incompressible viscous fluid in a straight annular pipe was

investigated in Ref. 11. The same problem but with the annu-

lar duct being saturated with a dusty incompressible fluid ora)Electronic mail: massimiliano.nori.home@gmail.com
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a Darcy-Brinkman medium has been studied in Refs. 12 and

13, respectively. Solute transport during oscillatory flow

through an annular pipe with reactive walls was investigated

in Ref. 14. A numerical investigation of sound propagation

in moving media contained in an annular duct, with hard or

soft walls, filled with an inviscid fluid has been published in

Ref. 15 for mean uniform axial flow and for mean potential

swirling flow in Ref. 16.

The paper is organized as follows. We solve the oscilla-

tory fluid flow and heat conduction problems in an array of

annular pores and calculate its long-wavelength effective

acoustical properties from the respective analytical solutions

in Sec. IIA. The so-called macroparameters determining

the asymptotic behavior of the effective acoustical properties

are introduced in Sec. IIB. The analytically calculated

effective properties are then compared in Sec. III A with both

(i) direct numerical calculations of the effective properties

and (ii) their calculations obtained by using the semi-

phenomenological models proposed in Refs. 8–10 in conjunc-

tion with the macroparameters introduced in this work. The

model is then validated experimentally in Sec. III B using

measured data published in Ref. 7. A parametric analysis of

the model parameters focused on the sound absorptive proper-

ties of the material follows. The main results are summarized

in the conclusions where we also suggest other potential

applications of the results presented in this work.

II. THEORY

A. Model

Figure 1 depicts the geometry of the material investigated

in this work. This corresponds to an array of annular pores of

inner radius Ri and outer radius R. Their ratio is denoted as

R ¼ Ri=R, while the annular pore width is given by w ¼ R

�Ri ¼ Rð1�RÞ. To simplify the presentation, we first

consider a single annular pore. Plane sound waves propagate

in the x-direction in the annular pore [see Fig. 1(c)]. The

equations describing the motion of the fluid saturating the

annular pore are the Navier-Stokes equation with a constant-

value viscosity l [Eqs. (1), (2)], the continuity equation [Eq.

(3)], the equation of state for an ideal gas Eq. (4), and the

energy balance Eq. (5),
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Equations (1)–(5) suffice to obtain the solution for the same

number of unknown quantities, i.e., the velocities in the axial

�u and radial directions �v, density �q, temperature �T , and pres-

sure �p.

The main assumptions involved in sound propagation

through the materials under investigation are those described

in Ref. 17. (a) The wavelength and any local characteristic

size of the material, e.g., w ¼ Ri � R, are larger than the

molecular mean free path ‘. For air at normal pressure and

temperature conditions, this condition breaks down for fre-

quencies in the order of 108 Hz or when w ¼ Oð‘Þ � 60 nm.

(b) No steady flow. (c) Small amplitude sinusoidal perturba-

tions (neither circulation nor turbulence). (d) The length of

the annular pore is long enough so that end effects are

negligible.

Equations (1)–(6) can be linearized and made dimension-

less by following the approach in Ref. 3. First, the variables

are written as follows: �u ¼ c0uðx; rÞejxt; �v ¼ c0vðx; rÞejxt;
�p ¼ P0ð1þ pðx; rÞejxtÞ ¼ ðq0c20=cÞð1þ pðx; rÞejxtÞ; �q¼q0ð1
þqðx;rÞejxtÞ; �T ¼T0ð1þTðx;rÞejxtÞ; g¼ r=R; n¼xx=c0;
s¼xt; k¼xR=c0¼ k0R. Here, x is the angular frequency;

FIG. 1. (a) Geometry of an array of annular pores. (b) Unit cell (front view).

(c) Side section of the unit cell and reference frame. (d) Normalized boundaries.
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c0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cP0=q0

p
is the speed of sound in the saturating fluid;

P0, q0, and T0 are the equilibrium pressure, density, and tem-

perature; and c is the heat capacity ratio.

Replacing the variables into Eqs. (1)–(6) and retaining

only linear terms lead to
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Here the shear sv and thermal st wave numbers are defined

as sv ¼ R=dv and st ¼ R=dt, where dv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=q0x

p
and dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j=q0Cpx

p
are the viscous and thermal boundary layer

thicknesses, respectively. These are related through dv

¼
ffiffiffiffiffi
Pr

p
dt, where Pr ¼ Cpl=j is the Prandtl number and Cp

and j are the isobaric specific heat capacity and the thermal

conductivity of the saturating fluid.

In deriving Eqs. (7)–(11), it has been also assumed that

(i) the annular pore outer radius is smaller than the wave-

length, i.e., k0R � 1, and (ii) the radial velocity component

v is much smaller than the axial velocity component u.

To obtain the solution of Eqs. (7) and (11), the following

boundary conditions and assumptions are considered.

No-slip condition is set on the wall surfaces, i.e.,

uðg¼RÞ¼ uðg¼ 1Þ ¼ vðg¼RÞ¼ vðg¼ 1Þ ¼ 0: (12)

Assuming that the volumetric heat capacity of the satu-

rating fluid is much smaller than that of the walls, the iso-

thermal boundary condition for temperature on the wall

surfaces holds,

Tðg ¼ RÞ ¼ Tðg ¼ 1Þ ¼ 0: (13)

Note that these two boundary conditions are valid as long as

the distance w ¼ R� Ri is much larger than the molecular

mean free path. When w ¼ Oð‘Þ, effects related to the molec-

ular nature of the gas start becoming considerable18–20 and

the boundary conditions (12) and (13) should be replaced by

the slip and temperature-jump boundary conditions, respec-

tively (see, for example, Eqs. 3a and 3b in Ref. 18).

Equation (7) can be solved using the method of separa-

tion of variables. To do so, the axial velocity is written as

u ¼ f ðnÞhðzÞ with z ¼ j3=2gsv. This leads to the following

non-homogeneous Bessel equation of order zero:
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The solution of this equation is given by21
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where J0 and Y0 are Bessel functions of the first and second

kind of order zero. The constants A1 and A2 are determined

by using the no-slip boundary condition (12) and noting that

hðj3=2svÞ ¼ 0 and hðj3=2svRÞ ¼ 0. These are given by
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The velocity is then given by
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When R ¼ Ri=R ! 0, one obtains that HJðsv;R ! 0Þ
¼ J�1

0 ðj3=2svÞ and HYðsv;R ! 0Þ ¼ 0. Hence, the fluid

velocity in a cylindrical pore3 is retrieved.

Equations (11) and (13) are formally identical to Eqs.

(7) and (12). The differences are that sv is replaced by st and

the forcing term is changed from f1 ¼ ð1=cÞð@p=@nÞ to

f2 ¼ j½ðc� 1Þ=c�p. The solutions are therefore related by a

factor f1=f2, i.e., uðv; g; stÞ=Tðv; g; stÞ ¼ f1=f2. The tempera-

ture is given by

T n; gð Þ ¼ c� 1
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The density is now written in terms of pressure and known

temperature using Eq. (4) as q ¼ pð1� T=pÞ. Hence the

mass balance Eq. (9) can be rewritten as
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Here FðnÞ is an integration constant and the integrals on the

right-hand side are given by
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Applying the no-slip boundary condition (12), the mass bal-

ance equations becomes
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Subtracting these equations one obtains the following

equation:

2
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Evaluating Eqs. (24) and (25) at g ¼ R and g¼ 1, replacing

the result into Eq. (28), and reminding that g ¼ xx=c0, lead
to the following wave equation:
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l

@2p

@x2
¼ jxp

bE xð Þ
; (29)

where bKðxÞ and bEðxÞ are the dynamic viscous permeabil-

ity and bulk modulus of a single annular pore. These are

given by

bKðxÞ ¼ vðsvÞ; (30)

bE xð Þ ¼ P0

1� jxq0Cp

c� 1

c
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j

; (31)

where the dynamic thermal permeability bhðxÞ is given by

bhðxÞ ¼ vðstÞ ¼ vðsv
ffiffiffiffiffi
Pr

p
Þ ¼ bKðxPrÞ; (32)

and the function v reads
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(33)

Note that HJ and HY are given Eqs. (17) and (18), respec-

tively [see also Eq. (19)].

For a bulk material with porosity /, defined as the ratio

between the volume occupied by the fluid and the total vol-

ume of the material, the terms bKðxÞ and bEðxÞ in Eq. (29)

are replaced by KðxÞ and EðxÞ, respectively. These are

given by

KðxÞ ¼ /bKðxÞ; (34)

E xð Þ ¼ P0

/ 1� jxq0Cp

c� 1

c

h xð Þ
/j

� � ; (35)

with

hðxÞ ¼ /bhðxÞ: (36)

These expressions are valid for any type of annular pores

arrangement, e.g., square, hexagonal, triangular lattice; pro-

vided that any local characteristic size is much smaller than

the wavelength. One such a local characteristic size can be the

separation distance between the annular pores. For example,

if the annular pores are arranged in a square lattice with cell

size b (see Fig. 1) and porosity / ¼ pR2ð1�R2Þ=b2, the sep-
aration distance is estimated by b� 2R and should be much

smaller than the wavelength.

The speed of sound C in the bulk material, and its

characteristic impedance Zc and wave number kc are given

by22

Zc xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l

jxK xð ÞE xð Þ
r

; (37)

kc xð Þ ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

jxK xð Þ
1

E xð Þ

s

; (38)

C xð Þ ¼ x

kc xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxK xð Þ

l
E xð Þ

s

: (39)

The theory will be validated by comparing the pre-

dictions of the analytical model with measurements of

sound absorption coefficient aðxÞ of a rigidly backed

layer of material with thickness d. The sound absorption

coefficient is related to the pressure reflection coefficient

Re and surface impedance Zw through the following

expressions (with Z0 ¼ q0c0 being the characteristic

impedance of the saturating fluid):22
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a xð Þ ¼ 1� jRej2; Re xð Þ ¼ Zw � Z0

Zw þ Z0
; and

Zw xð Þ ¼ �jZccot kcdð Þ: (40)

B. Macroparameters and semi-phenomenological
models

Analytical expressions for the input parameters of the

semi-phenomenological models proposed in Refs. 8 and 10

are introduced in this section for porous materials with annu-

lar pores. These parameters correspond to the static viscous

K0 and thermal h0 permeabilities, the viscous K and thermal

K
0 characteristic lengths, and tortuosity a1. Their definition

can be found in Refs. 8 and 10.

The static viscous K0 and thermal h0 permeabilities are

calculated from the solution of Eqs. (7) and (12), and Eqs.

(11) and (13) for x¼ 0. These are given by

K0 ¼ h0 ¼ /
R2

8
f Rð Þ; (41)

where the function f satisfies f ðR ! 0Þ ¼ 1 and f ðR ! 1Þ
¼ 0, and is given by

f Rð Þ ¼ 1þR2 � 1�R2

ln 1=Rð Þ : (42)

As discussed in Sec. II A, the distance w can become compa-

rable with the molecular mean free path when R ! 1

and, in such a case, rarefaction effects should be accounted

for. The permeability values given by Eq. (41) when R
approaches unity should be considered as mathematical

instead of physical limiting values.

Since the velocity of an inviscid fluid saturating the

annular pores is constant, one can directly assess the tortuos-

ity of the material from its definition (see Eq. 2.9 in Ref. 8).

Following the same argument, the viscous characteristic

length K is calculated from its definition (see Eq. 2.17 in

Ref. 8) and coincides with the thermal characteristic length

K
0. These parameters read

a1 ¼ 1 and K ¼ K
0 ¼ RgðRÞ; (43)

where the function g tends to 1 whenR ! 0 and is given by

gðRÞ ¼ 1�R: (44)

Note that the macroparameters for an array of cylindrical

pores are retrieved when R ! 0.

The viscous8 and thermal10 characteristic frequencies,

i.e., xv ¼ l/=a1q0K0 and xt ¼ j/=q0Cph0, determining

the transition from viscosity to inertia-dominated and iso-

thermal to adiabatic sound propagation are given by

xv

xv R ¼ 0ð Þ ¼
xt

xt R ¼ 0ð Þ ¼
1

f Rð Þ ; (45)

where xvðR ¼ 0Þ ¼ 8l=q0R
2 and xtðR ¼ 0Þ ¼ 8j=q0CpR

2

correspond to the characteristic frequencies for an array of

cylindrical pores. Since f ðRÞ < 1 8R, one can conclude that

introducing concentric solid cylinders in the pores leads to

higher characteristic frequencies. This is due to the reduction

of the separation distance between the pore walls.

The viscous8 and thermal10 shape factors are, respec-

tively, defined by Mv ¼ 8K0a1=/K2 and Mt ¼ 8h0=/K
02.

For the materials under study, these are given by

Mv

Mv R ¼ 0ð Þ ¼
Mt

Mt R ¼ 0ð Þ ¼
f Rð Þ
g2 Rð Þ ; (46)

whereMvðR ¼ 0Þ ¼ MtðR ¼ 0Þ ¼ 1 are the shape factors for

an array of cylindrical pores. The limiting values of the shape

factors are MvðR ! 0Þ ¼ MtðR ! 0Þ ¼ 1 and MvðR ! 1Þ
¼ MtðR ! 1Þ ¼ 2=3.

These macroparameters can be used to calculate the

dynamic viscous and thermal permeabilities using the fol-

lowing semi-phenomenological models:8,10

KðxÞ¼Xðx;K0;xv;MvÞ and hðxÞ¼Xðx;h0;xt;MtÞ;
(47)

where

X x;X0;-;Mð Þ ¼ X0

jx

-
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jx

-

M
2

r !�1

: (48)

The results obtained with these semi-phenomenological

models will be compared in Sec. III with the analytical mod-

els as well as the respective effective parameters numerically

calculated from the solution of the oscillatory Stokes and

heat conduction problems.

C. Analysis of the characteristic impedance and wave
number

The behavior of K is characterized by the viscous charac-

teristic frequency xv. Considering leading-order terms only,

the dynamic permeability varies from8 Kðx � xvÞ � K0 to

Kðx � xvÞ � �j/d2
v
=a1. Similarly, the low- and high-

frequency asymptotic values of the dynamic thermal perme-

ability are10 hðx�xtÞ�h0 and hðx�xtÞ��j/d2t . Hence

the dynamic bulk modulus varies from Eðx � xtÞ � P0=
/ð1� ðc� 1Þjx=xtcÞ � P0=/ to Eðx�xtÞ� cP0=/. Then,
the characteristic impedance takes the following limiting val-

ues: Zcðx� xvÞ ¼ Zc0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lP0=jx/K0

p
and Zcðx�xvÞ

¼ Zc1�q0c0
ffiffiffiffiffiffi
a1

p
=/. In turn, the wave number tends to

kcðx�xvÞ¼kc0�x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l/=jxK0P0

p
and kcðx�xvÞ¼kc1

�x
ffiffiffiffiffiffi
a1

p
=c0. These general expressions show that the low-

frequency acoustic behavior of single porosity porous materi-

als is determined by the porosity /, static viscous permeabil-

ity K0, equilibrium pressure, and dynamic viscosity. In

particular, materials having pores with constant cross-section

shape (e.g., cylindrical, triangular, slit, annular) and the same

values of / and K0 possess very similar acoustical properties

at low frequencies as well as high frequencies since for this

type of materials a1¼1.

Using Eqs. (41) and (43), one obtains that the character-

istic impedance and wave number of porous materials with

annular pores tend to
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Zc0

Zc0 R ¼ 0ð Þ ¼
kc0

kc0 R ¼ 0ð Þ �
ffiffiffiffiffiffiffiffiffiffi
1

f Rð Þ

s

; (49)

Zc1
Zc1 R ¼ 0ð Þ ¼

kc1
kc1 R ¼ 0ð Þ � 1; (50)

where Zc0ðR¼0Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8lP0=jx/

2R2

q
, Zc1ðR¼0Þ�q0c0=/,

kc0ðR ¼ 0Þ � x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8l=jxP0R2

p
, and kc1ðR ¼ 0Þ � x=c0.

Equation (49) shows that the low-frequency magnitude of

the real and imaginary parts of the characteristic impedance

and wave number of a material with annular pores are larger

than those of a material with cylindrical pores with the same

porosity / and outer radius R. As a consequence, higher sound

attenuation and slower speed of sound in the material with

annular pores 8R is observed at low frequencies. At high fre-

quencies, both type of materials present, to the leading order,

the same acoustical properties, as shown by Eq. (50).

III. RESULTS AND DISCUSSION

A. Comparison between analytical,
semi-phenomenological, and numerical models

Figure 2 compares the analytically calculated function

f ðRÞ and the ratio between the static viscous and thermal

permeability of the array of annular pores and those of an

array of cylindrical pores. In the same figure, the function

gðRÞ is compared to the ratio between the viscous character-

istic length of the array of annular pores and that of an array

of cylindrical pores. The numerical results have been

obtained from the solution of the static fluid flow [Eqs. (7)

and (12) for x¼ 0], heat conduction [Eqs. (11) and (13) for

x¼ 0], and inviscid fluid flow [Eqs. (7), (8), and (12) for

x ! 1] problems. The resolution of the problems was

performed using the finite element method. A good agree-

ment between the analytical and numerical calculations is

observed and the equality between the static permeabilities

is confirmed. Moreover, the equality of the characteristic

lengths [see Eq. (43)] is also verified.

The inset plot shows the permeability ratios K0=Kslit
0 and

K0=Krect
0 . The static viscous permeabilities K0; Kslit

0 , and

Krect
0 , respectively, correspond to that of an array of (i) annu-

lar pores, (ii) slit pores7 with width 2h ¼ w, and (iii) rectangu-

lar pores4 with sides 2a ¼ w and 2b ¼ pR2ð1�R2Þ=2a. All
these arrays have the same porosity and, in particular, the

rectangular pores have the same cross-section area as that of

the annular pores. The static viscous permeability of an array

of annular pores is larger than that of an array of slit or rectan-

gular pores 8R. However, K0 can be well approximated by

either Kslit
0 or Krect

0 when R is larger than approximately 0.5

and 0.95, respectively. Considering the significant influence

of the static viscous permeability on the characteristic imped-

ance and wave number of single porosity materials at low fre-

quencies (see Sec. IIC), one can conclude that the acoustical

properties of an array of annular pores are similar to those of

an array of slit or rectangular pores having the geometrical

parameters discussed in this paragraph only when R is larger

than the quoted values.

Figure 3 shows the normalized dynamic viscous

permeability KðxÞ=K0 of an array of annular pores with

R ¼ 500 lm; R ¼ 0:5, and / ¼ 0:3. The analytical model

for this quantity, i.e., Eq. (34), is compared with both its cal-

culation obtained by using the semi-phenomenological

model Eq. (47) and the parameters derived in Sec. II B, and

its direct numerical calculation obtained from the solution

of Eqs. (7) and (12) for a discrete set of frequencies. An

excellent agreement is observed between the calculations

obtained with the different models. Note that the normalized

dynamic viscous permeability of an array of cylindrical

pores (with R ¼ 500 lm and / ¼ 0:3) is also plotted. It is

clear that its associated viscous characteristic frequency is

smaller than that of the array of annular pores, as predicted

by Eq. (45).

FIG. 2. Dependence of the functions f ðRÞ and gðRÞ on the ratio between the

annular pore radii R ¼ Ri=R. The analytical results are shown in continuous

[Eq. (42)] and dashed [Eq. (44)] black lines. FEM calculations are shown

with markers. Circles: K0=K0ðR ¼ 0Þ. Crosses: h0=h0ðR ¼ 0Þ. Squares:

K=KðR ¼ 0Þ. The inset plot shows the permeability ratios (a) K0=Kslit
0 and

(b) K0=Krect
0 as a function ofR (see the main text for more details).

FIG. 3. Normalized dynamic viscous permeability of an array of annular

pores with R ¼ 500lm; R ¼ 0:5, and / ¼ 0:3. Continuous lines: analytical
model. Circles: semi-phenomenological model. Triangles: direct numerical

simulation (FEM). Dashed lines: analytical model for an array of cylindrical

pores (with R ¼ 500lm and / ¼ 0:3). Black: ReðKðxÞ=K0Þ. Gray:

�ImðKðxÞ=K0Þ.
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Figure 4 shows the normalized bulk modulus of an array

of annular pores with the same parameters as those in Fig. 3.

This has been calculated using Eq. (35) and the analytical

expression for the dynamic thermal permeability given by Eq.

(36). As in Fig. 3, this is compared with both the dynamic

bulk modulus obtained by using the semi-phenomenological

model Eqs. (47) and the parameters derived in Sec. IIB, and

its direct numerical calculation obtained from the solution of

Eqs. (11) and (13) for a discrete set of frequencies. An excel-

lent agreement is observed between the calculations obtained

with the different models. On the other hand, the real part of

the dynamic bulk modulus of the array of annular pores is

smaller than that of an array of cylindrical pores with the

same value of R and /. This, along with the smaller perme-

ability, leads to a slower speed of sound and larger attenuation

at low frequencies, as shown in the inset plots of Fig. 4 and

predicted by Eq. (49).

B. Experimental validation

The analytical model introduced in Sec. IIA is now vali-

dated by comparing its predictions with measured normal inci-

dence sound absorption coefficient data published in Ref. 7.

The measured samples comprises 25-mm-depth brass disks

with multiple cylindrical holes of radius R ranging from 4 down

to 1mm. Annular pores of various width w ¼ Rð1�RÞ were
created by introducing stainless steel round rods in the holes.

The rods have different radius Ri ranging from 0.75 to 2.0mm.

Measurements of materials without the rods (i.e., array of cylin-

drical pores) were also presented in Ref. 7. For both type of

arrays, the measurements were taken in a Br€uel & Kjær type

4206-2 impedance tube with an internal diameter of 29mm by

following the measurement procedure described in Ref. 23 and

spanning the frequency range 500–6400Hz for which any local

characteristic size is much smaller than the wavelength.

Figure 5 shows the normal incidence sound absorption

coefficient a of rigidly backed arrays of annular pores with

parameters R ¼ 1mm; Ri ¼ 0:75mm, and / ¼ 0:1144; and
R ¼ 2mm; Ri ¼ 1:25mm, and / ¼ 0:1623. The porosity

has been calculated as / ¼ NR2ð1�R2Þ=R2
tube, where N is

the number of annular pores and Rtube is the radius of the

impedance tube. The material thickness is 25mm. Note that

a for arrays of cylindrical pores (i.e., Ri¼ 0) is also plotted.

A good agreement between the predictions of the model

introduced in the present work and the experimental data

published in Ref. 7 is obtained. A similar level of agreement

has been found in Ref. 7 using a model for slit pores and a

corrected layer thickness. This is because the radii ratio takes

values R ¼ 0:75 and R ¼ 0:625 for the materials whose a is

displayed in Fig. 5. As discussed in Sec. III A, materials with

annular pores and radii ratio values larger than approxi-

mately 0.5 possess similar acoustical properties than those of

materials with slit pores with width 2h ¼ w and the same

porosity. On the other hand, it is worth mentioning that our

model provides a good agreement between predictions and

data for the other materials tested in Ref. 7. However, this is

not shown for the sake of brevity. The model introduced in

this work can be considered as validated.

C. Parametric analysis

A parametric analysis of the microstructure parameters

influencing the sound absorptive properties of porous materials

with annular pores is presented in this section. Figure 6 shows

the influence of porosity / on normal incidence sound absorp-

tion coefficient a for arrays of annular and cylindrical pores. For

the former, the following parameters are considered R ¼ 0:5
and R ¼ 250lm, while for the latter the same value of R is used

for the cylindrical pore radius. Two porosity values are consid-

ered, i.e., /¼0:3 and /¼0:6, and a layer thickness of 25mm.

The static flow resistivity values are r0ð/¼0:3Þ¼46:6579;
r0ð/¼ 0:6Þ ¼ 23:3290; r0ð/¼ 0:3;R¼ 0Þ ¼ 7:8375, and

r0ð/¼ 0:6;R¼ 0Þ ¼ 3:9188kPas=m2. The sound absorption

FIG. 4. Normalized dynamic bulk modulus of an array of annular pores with

R ¼ 500lm; R ¼ 0:5, and / ¼ 0:3. Continuous lines: analytical model.

Circles: semi-phenomenological model. Triangles: direct numerical simula-

tion (FEM). Dashed lines: analytical model for an array of cylindrical pores

(with R ¼ 500lm and / ¼ 0:3). Main plot—Black: Reð/EðxÞ=P0Þ. Gray:
Imð/EðxÞ=P0Þ. Right inset plot—normalized speed of sound ReðCðxÞ=c0Þ.
Left inset plot—normalized attenuation coefficient �Imðc0kcðxÞ=xÞ.

FIG. 5. Predicted (lines) and measured (markers) normal incidence sound

absorption coefficient of a rigidly backed 25-mm layer of material. Arrays of

annular pores with R ¼ 1mm, Ri ¼ 0:75mm, and / ¼ 0:1144 (continuous

gray line) and R ¼ 2mm; Ri ¼ 1:25mm, and / ¼ 0:1623 (continuous black

line). Array of cylindrical pores (i.e., Ri¼ 0) with R ¼ 1mm and / ¼ 0:2616
(dashed gray line) and with R ¼ 2mm and / ¼ 0:2663 (dashed black line).

The experimental data were taken from Ref. 7.
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coefficient of materials with small porosity values shows a

pronounced peak approximately located at a frequency c0=4d.
For materials with larger porosity, the sound waves can pene-

trate the material further leading to stronger generation of vis-

cous stresses and thermal exchanges between the solid and the

saturating fluid. This results in higher sound attenuation.

Consequently, the sound absorption coefficient can approach its

maximum value and its peak becomes wider. As shown in the

figure, a porous material with annular pores can present higher

sound absorption coefficient values than that of a porous mate-

rial having cylindrical pores with the same porosity / and pore

radius R. This is caused by the larger sound attenuation exhib-

ited by the former type of materials, as illustrated in Fig. 4. In

turn, the larger attenuation is a consequence of the smaller

(respectively, larger) real (respectively, imaginary) part of the

bulk modulus as well as the larger real part of the dynamic flow

resistivity, which is defined as rðxÞ ¼ g=KðxÞ. However, it
must be emphasized that for smaller values of R the opposite

trend can be observed.

Figure 7 shows the influence of the radius ratioR ¼ Ri=R
(or that of the inner radius Ri for a constant outer radius R) on

the normal incidence sound absorption coefficient a of arrays

of annular pores with porosity / ¼ 0:25 and R ¼ 500lm. In

this case, the static flow resistivity of the materials varies from

r0ðR¼ 0Þ¼ 2:3513 up to r0ðR¼ 0:85Þ¼ 156:6818kPas=m2.

For materials with large values ofR the viscous (and thermal)

boundary layer thickness approaches the characteristic size of

the annular pores in the frequency range under consideration.

As a consequence, the sound absorption coefficient displays a

broadband behavior. As R decreases, a transition from the

broadband behavior to one where a pronounced absorptive

peak located approximately at a frequency c0=4d is observed.

This transition for the material considered in Fig. 7 occurs at a

value of approximatelyR¼ 0:6, which corresponds to a static
flow resistivity of 21:9485kPas=m2. For this value, the ampli-

tude of the absorptive peak reaches a maximum value. As

previously, for smaller values of R, an array of cylindrical

pores can exhibit larger sound absorption coefficient than that

of a porous material with annular pores.

Figures 8 shows the influence of the radius R on the

normal incidence sound absorption coefficient a of a rigidly

backed 25-mm-thick layer of a porous material with annu-

lar pores. The porosity and the radius ratio have been set

to / ¼ 0:3 and R ¼ 0:6, respectively. The flow resistivity

varies from r0ðR ¼ 50 lmÞ ¼ 1:829MPa s=m2 down to

r0ðR ¼ 1250lmÞ ¼ 2:9265 kPa s=m2. Two distinctive type

of behavior are observed depending on the values of R. For

small values of R (or large flow resistivity), the sound

absorption coefficient of materials with annular pores does

not present a marked peak but rather a broadband behavior,

while for larger values of R (or small flow resistivity), it

displays a pronounced peak approximately located at a fre-

quency of approximately c0=4d. As mentioned previously,

arrays of annular pores with small values of R can provide

lower sound absorption coefficient values than that of

arrays of cylindrical pores with the same porosity and pore

radius R. The opposite trend is found for larger values of R.

The influence of the sample thickness on the normal

incidence absorption coefficient of porous materials with

annular pores is rather conventional, i.e., thicker materials

provide larger sound absorption coefficient a. This trend is

observed up to a critical thickness value for which a is no

longer substantially increased.20 Such a critical thickness

value is smaller for materials with larger flow resistivity

(i.e., material with small values of R and porosity, and/or

large values of R). In addition, since the first absorptive

peak is characterized by the quarter-wavelength condition

d ¼ k=4, thicker materials display this peak at lower fre-

quencies. Unfortunately, no simple expression relating the

amplitude of this peak to the microstructural parameters of

the materials could be found. The reason for this is that the

acoustical properties of materials with annular pores cannot

FIG. 6. Influence of porosity on normal incidence sound absorption coeffi-

cient of a rigidly backed 25-mm thick array of annular (black lines) and

cylindrical (gray lines) pores with porosity / ¼ 0:6 (continuous lines) and

/ ¼ 0:3 (dashed lines). The other parameters are R ¼ 250lm andR ¼ 0:5.

FIG. 7. Influence of the radius ratio R ¼ Ri=R on normal incidence sound

absorption coefficient a of a rigidly backed 25-mm thick layer of porous

materials with annular pores with porosity / ¼ 0:25 and R ¼ 500lm. The a

values for an array of cylindrical pores (i.e., R ¼ 0) are also plotted for

comparison.
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be approximated by their simple limiting low- or high-

frequency values in the frequency region around the first

absorptive peak.

IV. CONCLUSIONS

This paper investigated long-wavelength sound propa-

gation in porous materials with annular pores. We have

introduced closed-form analytical expressions for the long-

wavelength effective acoustical properties of this type of

material. These have been successfully compared with those

calculated with semi-phenomenological models and direct

numerical simulations. The introduced model has been vali-

dated by comparing its predictions with measured data pub-

lished in Ref. 7.

A parametric analysis of the geometrical descriptors of

the materials have revealed that the sound absorption coeffi-

cient of porous materials with annular pores could show pro-

nounced peak or broadband behavior. This type of materials

can provide higher sound absorption than that achieved by

arrays of cylindrical pores with the same porosity and pore

radius equal to the annular pore outer radius. Such a trend is

particularly strong when the annular pore outer radius is rela-

tively large.

Other potential applications of the results presented in

this work may include (i) the modeling of the acoustical

properties of biomass tubules since their inner geometry

resembles that of annular pores24 and (ii) inverse methods

for pipe monitoring25 where the introduced long-wavelength

effective properties may be used in conjunction with pulse

reflectometry applied in the region of plane wave propaga-

tion to assess pipe blockage. In addition, our model can be

extended to investigate the thermoacoustic properties26 of

porous materials with annular pores.
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