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Existence of mass-conserving weak solutions to the coagulation-fragmentation equation is established when the fragmentation mechanism produces an infinite number of fragments after splitting. The coagulation kernel is assumed to increase at most linearly for large sizes and no assumption is made on the growth of the overall fragmentation rate for large sizes. However, they are both required to vanish for small sizes at a rate which is prescribed by the (non-integrable) singularity of the fragment distribution.

Introduction

A mean-field description of the dynamics of a system of particles varying their sizes by pairwise coalescence and multiple fragmentation is provided by the coagulationfragmentation equation

∂ t f (t, x) = Cf (t, x) + F f (t, x) , (t, x) ∈ (0, ∞) 2 , (1.1a) 
where the coagulation and fragmentation reaction terms are given by Cf (x) := 1 2

x 0 K(x -y, y)f (y)f (x -y) dy - for x ∈ (0, ∞). We supplement (1.1) with an initial condition

f (0, x) = f in (x) , x ∈ (0, ∞) . (1.2) 
In (1.1), f = f (t, x) denotes the size distribution function of the particles of size x ∈ (0, ∞) at time t > 0 and K is the coagulation kernel which describes how likely particles of respective sizes x and y merge. The first term in the coagulation term (1.1b) accounts for the formation of particles of size x resulting from the coalescence of two particles of respective sizes y ∈ (0, x) and x -y, while the second term describes the disappearance of particles of size x as they merge with other particles of arbitrary size. The first term in the fragmentation term (1.1c) involves the overall fragmentation rate a(x) and accounts for the loss of particles of size x due to breakup while the second term describes the contribution to particles of size x of the fragments resulting from the splitting of a particle of arbitrary size y > x, the distribution of fragments being given according to the daughter distribution function b(x, y). Since no matter is lost during fragmentation events, b is required to satisfy y 0 xb(x, y) dx = y , y > 0 .

(1.3)

As the merging of two particles of respective sizes x and y results in a particle of size x + y, it is then expected that conservation of matter holds true during time evolution, that is,

∞ 0 xf (t, x) dx = ̺ := ∞ 0 xf in (x)dx , t ≥ 0 , (1.4) 
provided ̺ is finite. Since the pioneering works by Melzak [START_REF] Melzak | A scalar transport equation[END_REF], McLeod [START_REF] Mcleod | On the scalar transport equation[END_REF], and Stewart [START_REF] Stewart | A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels[END_REF], the existence of weak solutions to (1.1)-(1.2) is investigated in several papers under various assumptions on the coagulation and fragmentation coefficients K, a, and b and the initial condition f in [START_REF] Banasiak | Global strict solutions to continuous coagulation-fragmentation equations with strong fragmentation[END_REF][START_REF]Analytic fragmentation semigroups and continuous coagulation-fragmentation equations with unbounded rates[END_REF][START_REF] Banasiak | Strong fragmentation and coagulation with powerlaw rates[END_REF][START_REF] Dubovskiȋ | Existence, uniqueness and mass conservation for the coagulation-fragmentation equation[END_REF][START_REF] Escobedo | Gelation and mass conservation in coagulation-fragmentation models[END_REF][START_REF] Giri | The continuous coagulation equation with multiple fragmentation[END_REF][START_REF] Giri | Weak solutions to the continuous coagulation equation with multiple fragmentation[END_REF][START_REF] Ph | On a class of continuous coagulation-fragmentation equations[END_REF][START_REF] Laurenc | From the discrete to the continuous coagulationfragmentation equations[END_REF], see also [START_REF] Ball | The discrete coagulation-fragmentation equations: existence, uniqueness, and density conservation[END_REF][START_REF] Da Costa | Existence and uniqueness of density conserving solutions to the coagulationfragmentation equations with strong fragmentation[END_REF][START_REF]The discrete coagulation equations with multiple fragmentation[END_REF][START_REF] Leyvraz | Singularities in the kinetics of coagulation processes[END_REF][START_REF] White | A global existence theorem for Smoluchowski's coagulation equations[END_REF] for the discrete coagulation-fragmentation equation. Assuming in particular the initial condition f in to be a non-negative function in L 1 ((0, ∞), xdx), the solutions to (1.1)-(1.2) constructed in the above mentioned references are either mass-conserving, i.e. satisfy (1.4), or not, according to the growth of the coagulation kernel K for large sizes or the behaviour of the overall fragmentation rate a for small sizes. Indeed, it is by now well-known that, if the growth of the coagulation kernel for large sizes is sufficiently fast (such as K(x, y) ≥ K 0 (xy) λ/2 for some λ > 1 and K 0 ), then a runaway growth takes place in the system of particles and a giant particle (or particle of infinite size) is formed in finite time, a phenomenon usually referred to as gelation [START_REF] Escobedo | Gelation and mass conservation in coagulation-fragmentation models[END_REF][START_REF] Escobedo | Gelation in coagulation and fragmentation models[END_REF][START_REF] Hendriks | Coagulation equations with gelation[END_REF][START_REF] Leyvraz | Existence and properties of post-gel solutions for the kinetic equations of coagulation[END_REF][START_REF] Leyvraz | Singularities in the kinetics of coagulation processes[END_REF]. Since all particles accounted for by the size distribution have finite size, the occurrence of gelation results in a loss of matter in the dynamical behaviour of (1.1). A somewhat opposite phenomenon takes place when the overall fragmentation rate a blows up as x → 0 (such as a(x) = a 0 x γ for some γ < 0 and a 0 > 0). In that case, the smaller the particles, the faster they split, leading to the instantaneous appearance of dust (or particles of size zero) and again a loss of matter takes place, usually referred to as the shattering transition [START_REF] Arlotti | Strictly substochastic semigroups with application to conservative and shattering solutions to fragmentation equations with mass loss[END_REF][START_REF] Filippov | On the distribution of the sizes of particles which undergo splitting[END_REF][START_REF] Mcgrady | Shattering" transition in fragmentation[END_REF]. We shall exclude the occurrence of these phenomena in the forthcoming analysis and focus on a different feature of the fragmentation mechanism, namely the possibility that an infinite number of fragments is produced during breakup. Specifically, a common assumption on the daughter distribution function b in the above mentioned references is its integrability, that is,

n 0 (y) := y 0 b(x, y) dx < ∞ for almost every y > 0 , (1.5) 
which amounts to require that the splitting of a particle of size y produces n 0 (y) daughter particles, a particularly important case being the so-called binary fragmentation corresponding to n 0 (y) = 2 for all y > 0. Clearly, the integrability property (1.5) fails to be true when b is given by [START_REF] Mcgrady | Shattering" transition in fragmentation[END_REF] b ν (x, y) = (ν + 2)

x ν y ν+1 , 0 < x < y , ν ∈ (-2, -1] . (1.6)
Observe that the restriction ν > -2 guarantees that b ν satisfies (1.3).

As far as we know, the existence of weak solutions to the coagulation-fragmentation equation (1.1)-(1.2) when the daughter distribution function b is given by (1.6) and the coagulation kernel is unbounded has not been considered so far, except the particular case K(x, y) = xy, a(x) = x, and ν = -1 which is handled in [START_REF] Laurenc | Absence of gelation and self-similar behavior for a coagulation-fragmentation equation[END_REF] by an approach exploiting fully the specific structure of the coefficients. The purpose of this note is to fill this gap, at least for coagulation kernels growing at most linearly for large sizes. In fact, the main difficulty to be overcome is the following: due to the non-integrability of b ν , the natural functional setting, which is the space L 1 ((0, ∞), (1 + x)dx), can no longer be used. As we shall see below, it might be replaced by the smaller space L 1 ((0, ∞), (x m + x)dx) for some m ∈ (0, 1) such that

y 0 x m b(x, y) dx = (ν + 2)y m 1 0 z m+ν dz < ∞ , y > 0 ,
that is, m > -1 -ν ≥ 0. This choice requires however the coagulation kernel K and the overall fragmentation rate a to vanish in an appropriate way for small sizes. More precisely, we assume that there are K 0 > 0 and m 0 ∈ (-1 -ν, 1) such that

0 ≤ K(x, y) = K(y, x) ≤ K 0 (2 + x + y) , (x, y) ∈ (0, ∞) 2 , (1.7a) 
and, for all R > 0,

L R := sup (x,y)∈(0,R) 2 K(x, y) min{x, y} m 0 < ∞ . (1.7b)
We also assume that, for all R > 0, there is

A R > 0 such that a(x) ≤ A R x m 0 +ν+1 , x ∈ (0, R) . (1.8)
Roughly speaking, K and a are required to vanish faster for small sizes as the singularity of b ν . For instance, the coagulation kernel K and the homogeneous overall fragmentation rate a given by

K(x, y) = x α y β + x β y α , a(x) = x γ , (x, y) ∈ (0, ∞) 2 , (1.9) 
with -1 -ν < α ≤ β ≤ 1 -α and γ > 0 satisfy (1.7) and (1.8), respectively, for any

m 0 ∈ (-1 -ν, max{α, γ -1 -ν}].
Observe in particular that no growth constraint is required on a for large sizes. Before stating our results, let us introduce some notation: given m ∈ R, we define the space X m and its positive cone X + m by X m := L 1 ((0, ∞), x m dx) , X + m := {f ∈ X m : f ≥ 0 a.e. in (0, ∞)} , respectively, and denote the space X m endowed with its weak topology by X m,w . We also put

M m (f ) := ∞ 0 x m f (x) dx , f ∈ X m .
We begin with the existence of mass-conserving weak solutions to (1.1)-(1.2) when the initial condition f in lies in X + m 0 ∩ X 1 for some m 0 ∈ (-ν -1, 1) and decays in a suitable way for large sizes.

Theorem 1.1. Let ν ∈ (-2, -1]. Assume that the coagulation kernel K and the overall fragmentation rate a satisfy (1.7) and (1.8), respectively, and that the daughter distribution function b = b ν is given by (1.6). Given an initial condition

f in ∈ X + m 0 ∩ X 1 such that ∞ 0 x ln(ln(x + 5))f in (x) dx < ∞ , (1.10) 
there exists at least one weak solution

f ∈ C([0, ∞); X m 0 ,w ∩ X 1,w ) on [0, ∞) to (1.1)-(1.2) such that M 1 (f (t)) = M 1 (f in ) , t ≥ 0 . (1.11) Moreover, if f in ∈ X m for some m > 1, then f ∈ L ∞ (0, T ; X m ) for all T > 0.
When b = b ν and ν > -1, the existence of mass-conserving weak solutions on [0, ∞) to (1.1)-(1.2) is already known for f in ∈ X + 0 ∩ X 1 , the assumptions (1.7b) and (1.8) being replaced by the local boundedness of K and a [START_REF] Laurenc | From the discrete to the continuous coagulationfragmentation equations[END_REF][START_REF] Stewart | A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels[END_REF]. In particular, it does not require the additional integrability condition (1.10) on f in and it is yet unclear whether Theorem 1.1 is valid under the sole assumption f in ∈ X + 0 ∩ X 1 . In fact, the condition (1.10) can be replaced by f in ∈ L 1 ((0, ∞), w(x)dx) for any weight function w enjoying the properties listed in Lemma 2.4 below, which includes weights involving multiple iterates of the logarithm function. We nevertheless restrict our analysis to the specific choice of the weight function in (1.10) as we have not yet identified an "optimal" class of initial conditions for which Theorem 1.1 is true.

The proof of Theorem 1.1 proceeds along the lines of the existence proofs performed in [START_REF] Laurenc | From the discrete to the continuous coagulationfragmentation equations[END_REF][START_REF] Stewart | A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels[END_REF], the main differences lying in the control of the behaviour for small sizes and its consequences on the behaviour for large sizes. It relies on a weak compactness method in X m 0 , the starting point being the construction of a truncated version of (1.1) for which well-posedness can be established by a classical Banach fixed point argument. The compactness approach involves five steps: we first show that the additional integrability assumption (1.10) is preserved throughout time evolution and additionally provides a control on the behaviour of the fragmentation term for large sizes whatever the growth of the overall fragmentation rate a. We next turn to the behaviour for small sizes and prove boundedness in X m 0 , the outcome of the previous step being used to control the contribution of the fragmentation gain term. The third and fourth steps are more classical and devoted to the uniform integrability and the time equicontinuity in X m 0 , respectively. In the last step, we gather the outcome of the four previous ones to show the convergence of the solutions of the truncated problem as the truncation parameter increases without bound and that the limit thus obtained is a weak solution on [0, ∞) to (1.1)-(1.2) which satisfies the conservation of matter (1.11). We finally use the same argument as in the first step to prove the stability of X m for m > 1.

Remark 1.2. For simplicity, the analysis carried out in this paper is restricted to the daughter distribution functions given by (1.6). The proof of Theorem 1.1 can however be adapted to encompass a broader class of daughter distribution functions b featuring a non-integrable singularity for small fragment sizes, see [START_REF] Banasiak | Analytic methods for coagulationfragmentation models[END_REF]. In the same vein, existence of weak solutions (not necessarily mass-conserving) can be proved by a similar approach when the coagulation kernel K features a faster growth than (1.7a) and we refer to [START_REF] Banasiak | Analytic methods for coagulationfragmentation models[END_REF] for a more complete account.

We supplement the existence result with a uniqueness result, which is however only valid for a smaller class of coagulation kernels K and initial conditions f in . Theorem 1.3. Let ν ∈ (-2, -1] and δ ∈ (0, 1). Assume that the coagulation kernel K and the overall fragmentation rate a satisfy (1.7) and (1.8), respectively, and that the daughter distribution function b = b ν is given by (1.6). Assume also that there is

K 1 > 0 such that K(x, y) ≤ K 1 x m 0 y , (x, y) ∈ (0, 1) × (1, ∞) .
(1.12)

Given an initial condition f in ∈ X + m 0 ∩ X 2+δ , there is a unique mass-conserving weak solution f on [0, ∞) to (1.1)-(1.2) such that f ∈ L ∞ (0, T ; X 2+δ ) for all T > 0.
Observing that any function f in ∈ X + m 0 ∩ X 2+δ satisfies (1.10), the existence part of Theorem 1.3 readily follows from Theorem 1.1. As Theorem 1.1, Theorem 1.3 applies to (1.1)-(1.2) when the coagulation kernel K and the overall fragmentation rate a are given by (1.9) with -1 -ν < α ≤ β ≤ 1 -α, γ > 0, and m 0 ∈ (-1 -ν, max{α, γ -1 -ν}]. We also mention that, when b = b ν and ν > -1, Theorem 1.3 is valid without the assumption (1.12) on K and for f in ∈ X + 0 ∩ X 2 [START_REF] Laurenc | On coalescence equations and related models[END_REF][START_REF] Norris | Smoluchowski's coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent[END_REF].

As in [START_REF] Escobedo | On self-similarity and stationary problem for fragmentation and coagulation models[END_REF][START_REF] Laurenc | On coalescence equations and related models[END_REF][START_REF] Norris | Smoluchowski's coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent[END_REF][START_REF]A uniqueness theorem for the coagulation-fragmentation equation[END_REF], the uniqueness proof relies on a control of the distance between two solutions in a weighted L 1 -space, the delicate point being the choice of an appropriate weight which turns out to be ξ(x) := max{x m 0 , x 1+δ }, x > 0, here. The superlinearity of ξ for large sizes compensates the sublinearity of ξ for small sizes which gives a positive contribution of the fragmentation term.

Existence

Throughout this section, the parameter ν ∈ (-2, -1] is fixed and we assume that the coagulation kernel K and the overall fragmentation rate a satisfy (1.7) and (1.8), respectively, while the daughter distribution function b = b ν is given by (1.6). Also, f in is a function in X + m 0 ∩ X 1 enjoying the additional integrability property (1.10) and we set ̺ := M 1 (f in ).

Preliminaries. Let us first begin with the definition of a weak solution to

(1.1)-(1.2). Definition 2.1. Let T ∈ (0, T ]. A weak solution on [0, T ) to (1.1)-(1.2) is a non- negative function f ∈ C([0, ∞); X m 0 ,w ∩ X 1,w ) on [0, ∞) such that, for all t ∈ (0, T ) and ϑ ∈ Θ m 0 , ∞ 0 (f (t, x) -f in (x))ϑ(x) dx = 1 2 ∞ 0 ∞ 0 K(x, y)χ ϑ (x, y)f (t, x)f (t, y) dydx - ∞ 0 a(x)N ϑ (x)f (t, x) dx , (2.1) 
where

χ ϑ (x, y) := χ(x + y) -χ(x) -χ(y) , (x, y) ∈ (0, ∞) 2 , N ϑ (y) := ϑ(y) - y 0 ϑ(x)b ν (x, y) dx , y > 0 ,
and

Θ m 0 := {ϑ ∈ C m 0 ([0, ∞)) ∩ L ∞ (0, ∞) : ϑ(0) = 0} . Observe that, for ϑ ∈ Θ m 0 and (x, y) ∈ (0, ∞) 2 , |χ ϑ (x, y)| ≤ 2 ϑ C m 0 min{x, y} m 0 and |N ϑ (y)| ≤ 1 + ν + 2 ν + m 0 + 1 ϑ C m 0 y m 0 ,
so that the right-hand side of (2.1) is well-defined. We next define a particular class of convex functions on [0, ∞) which proves useful in the forthcoming analysis.

Definition 2.2. A non-negative and convex function

ϕ ∈ C ∞ ([0, ∞)) belongs to the class C V P,∞ if it satisfies the following properties: (a) ϕ(0) = ϕ ′ (0) = 0 and ϕ ′ is concave; (b) lim r→∞ ϕ ′ (r) = lim r→∞ ϕ(r)/r = ∞; (c) for p ∈ (1, 2), S p (ϕ) := sup r≥0 ϕ(r) r p < ∞ .
For instance, r → (r + 1) ln(r + 1) -r lies in C V P,∞ . Functions in the class C V P,∞ enjoy several properties which we list now.

Lemma 2.3. Let ϕ ∈ C V P,∞ . Then (a) r → ϕ(r)/r is concave on [0, ∞); (b) for r ≥ 0, 0 ≤ ϕ(r) ≤ rϕ ′ (r) ≤ 2ϕ(r) ; (c) for (r, s) ∈ [0, ∞) 2 , sϕ ′ (r) ≤ ϕ(r) + ϕ(s) , (2.2) 
and

0 ≤ ϕ(r + s) -ϕ(r) -ϕ(s) ≤ 2 sϕ(r) + rϕ(s) r + s , (2.3) 
0 ≤ ϕ(r + s) -ϕ(r) -ϕ(s) ≤ ϕ ′′ (0)rs .

(2.4)

Proof. Since ϕ(r + s) -ϕ(r) -ϕ(s) = r 0 s 0 ϕ ′′ (r * + s * ) ds * dr * , (r, s) ∈ [0, ∞) 2 ,
the inequality (2.4) readily follows from the concavity of ϕ ′ . The other properties listed in Lemma 2.3 are consequences of the convexity of ϕ and the concavity of ϕ ′ and are proved, for instance, in [19, Proposition 14].

We finally collect some properties of the weight involved in the assumption (1.10).

Lemma 2.4. Define W (x) := x ln(ln(x+5))-x ln(ln(5)) for x ≥ 0. Then W ∈ C V P,∞ and, for all m ∈ [0, 1),

lim x→∞ xW ′ (x) -W (x) x m = ∞ .
2.2. Approximation. Let j ≥ 2 be an integer and set

K j (x, y) := K(x, y)1 (0,j) (x + y) , a j (x) := a(x)1 (0,j) (x) , (2.5) 
and

f in j (x) := f in (x)1 (0,j) (x) (2.6)
for (x, y) ∈ (0, ∞) 2 . We denote the coagulation and fragmentation operators with K j and a j instead of K and a by C j and F j , respectively. Simple computations along with (1.7b) and the boundedness of a j resulting from (1.8) show that both C j and F j are locally Lipschitz continuous from L 1 ((0, j), x m 0 dx) into itself [START_REF] Banasiak | Analytic methods for coagulationfragmentation models[END_REF]. Thanks to these properties, we are in a position to apply the Banach fixed point theorem to prove that there is a unique non-negative function

f j ∈ C 1 ([0, ∞), L 1 ((0, j), x m 0 dx)) solving ∂ t f j (t, x) = C j f j (t, x) + F j f j (t, x) , (t, x) ∈ (0, ∞) × (0, j) , (2.7a 
)

f j (0, x) = f in j (x) , x ∈ (0, j) . (2.7b) 
Introducing the space Θ m 0 ,j := {ϑ ∈ C m 0 ([0, j]) : ϑ(0) = 0}, it readily follows from (2.5) and (2.7) that f j satisfies the following weak formulation of (2.7): for all ϑ ∈ Θ m 0 ,j and t > 0, d dt

j 0 ϑ(x)f j (t, x) dx = 1 2 j 0 j-x 0 K(x, y)χ ϑ (x, y)f j (t, x)f j (t, y) dydx - j 0 a(x)N ϑ (x)f j (t, x) dx , (2.8) 
the functions χ ϑ and N ϑ being defined in Definition 2.1. Choosing ϑ(x) = x, x ∈ (0, j), in (2.8) readily gives the conservation of matter

j 0 xf j (t, x) dx = j 0 xf in (x) dx , t ≥ 0 . Extending f j to [0, ∞) × (j, ∞) by zero (i.e. f j (t, x) = 0 for (t, x) ∈ [0, ∞) × (j, ∞)),
the previous identity reads

M 1 (f j (t)) = M 1 (f in j ) ≤ ̺ = M 1 (f in ) , t ≥ 0 .
(2.9)

In addition, introducing

C 0 := M m 0 (f in ) + ∞ 0 W (x)f in (x) dx < ∞ , (2.10) 
which is finite according to the integrability properties of f in and in particular (1.10), we infer from (2.6), (2.10), and the non-negativity of W that

M m 0 (f in j ) + ∞ 0 W (x)f in j (x) dx ≤ C 0 . (2.11) 
We now investigate the weak compactness features of the sequence (f j ) j≥2 . In the sequel, C and C i , i ≥ 1, denote positive constants depending on K, a, ν, m 0 , f in , ̺, and C 0 . Dependence upon additional parameters is indicated explicitly.

Moment Estimates.

We start with a control on the behaviour for large sizes.

Lemma 2.5. Let T > 0. There is C 1 (T ) > 0 depending on T such that, for t ∈ [0, T ], ∞ 0 W (x)f j (t, x) dx + t 0 ∞ 0 a(x)[xW ′ (x) -W (x)]f j (s, x) dxds ≤ C 1 (T ) .
Proof. On the one hand, since W ∈ C V P,∞ by Lemma 2.4, we infer from (1.7a), (2.3), and (2.4) that,

K(x, y)χ W (x, y) ≤ 2K 0 W ′′ (0)xy + 2K 0 [xW (y) + yW (x)]
(2.12)

for (x, y) ∈ (0, ∞) 2 . On the other hand, the function W 1 : x → W (x)/x is concave according to Lemma 2.3 (a) and it follows from (1.6) that, for y > 0,

N W (y) = y 0 [W 1 (y) -W 1 (x)]xb ν (x, y) dx ≥ y 0 W ′ 1 (y)x(y -x)b ν (x, y) dx ≥ yW ′ (y) -W (y) y 2 y 0 x(y -x)b ν (x, y) dx = yW ′ (y) -W (y) ν + 3 . (2.13)
Combining (2.8) with ϑ = W , (2.12), and (2.13) gives, for t > 0,

d dt ∞ 0 W (x)f j (t, x) dx ≤ K 0 j 0 j-x 0 [W ′′ (0)xy + xW (y) + yW (x)] f j (t, x)f j (t, y) dydx - 1 ν + 3 j 0 a(y)[yW ′ (y) -W (y)]f j (t, y) dy .
We further deduce from Lemma 2.3 (b) and (2.9) that d dt

∞ 0 W (x)f j (t, x) dx + 1 2 ∞ 0 a(y)[yW ′ (y) -W (y)]f j (t, y) dy ≤ K 0 W ′′ (0)̺ 2 + 2K 0 ̺ ∞ 0 W (x)f j (t, x) dx ,
Integrating the previous differential inequality and using (2.11) complete the proof.

Exploiting the properties of W for large sizes along with the outcome of Lemma 2.5 provides additional information on the fragmentation term.

Corollary 2.6. Let T > 0 and m ∈ (0, 1). There is C 2 (m, T ) > 0 depending on m and T such that

T 0 P m,j (s)ds ≤ C 2 (m, T ) , P m,j (s) := ∞ 1 x m a(x)f j (s, x) dx , s ∈ [0, T ] .
Proof. Owing to Lemma 2.4, there is x m > 1 such that xW ′ (x) -W (x) ≥ x m for x > x m . Therefore, by (1.8), (2.9), Lemma 2.3 (b), and Lemma 2.5,

T 0 ∞ 1 x m a(x)f j (s, x) dxds ≤ T 0 xm 1 x m a(x)f j (s, x) dxds + T 0 ∞ xm x m a(x)f j (s, x) dxds ≤ A xm x m 0 +ν+1 m T 0 xm 1 x m f j (s, x) dxds + T 0 ∞ xm [xW ′ (x) -W (x)]a(x)f j (s, x) dxds ≤ A xm x m 0 +ν+1 m ̺T + C 1 (T ) ,
and the proof is complete.

We now study the behaviour for small sizes.

Lemma 2.7. Let T > 0. There is C 3 (T ) > 0 depending on T such that

M m 0 (f j (t)) ≤ C 3 (T ) , t ∈ [0, T ] .
Proof. Setting ϑ 0 (x) := min{x, x m 0 } for x > 0, we observe that

χ ϑ 0 (x, y) ≤ 0 , (x, y) ∈ (0, ∞) 2 ,
and

N ϑ 0 (y) = - 1 -m 0 ν + m 0 + 1 y m 0 , y ∈ (0, 1) , N ϑ 0 (y) = - 1 -m 0 ν + m 0 + 1 1 y ν+1 ≥ - 1 -m 0 ν + m 0 + 1 y m 0 , y ∈ (1, ∞) .
We then infer from (1.8) with R = 1 and (2.8) with ϑ = ϑ 0 that

d dt M m 0 (f j (t)) ≤ 1 -m 0 ν + m 0 + 1 ∞ 0 y m 0 a(y)f j (t, y) dy ≤ A 1 ν + m 0 + 1 1 0 y m 0 f j (t, y) dy + P m 0 ,j (t) ν + m 0 + 1 ≤ A 1 ν + m 0 + 1 M m 0 (f j (t)) + P m 0 ,j (t) ν + m 0 + 1 .
We integrate the previous differential inequality and complete the proof with the help of Corollary 2.6.

2.4. Uniform Integrability. The previously established estimates guarantee that there is no unlimited growth for small sizes nor escape towards large sizes during the evolution of (f j ) j≥2 . To achieve weak compactness in X m 0 , it remains to prevent concentration near a finite size. For that purpose, we recall that, since f in ∈ X m 0 , a refined version of the de la Vallée Poussin theorem ensures that there is Φ ∈ C V P,∞ depending only on f in such that

I := ∞ 0 x m 0 Φ(f in (x)) dx < ∞ , (2.14) 
see [START_REF] Banasiak | Analytic methods for coagulationfragmentation models[END_REF][START_REF] De | Sur l'intégrale de Lebesgue[END_REF][START_REF] Hoàn | Etude de la classe des opérateur m-accrétifs de L 1 (Ω) et accrétif dans L ∞ (Ω)[END_REF][START_REF] Ph | Weak compactness techniques and coagulation equations[END_REF].

Lemma 2.8. Let T > 0 and R > 1. There is C 4 (T, R) > 0 depending on T and R such that

R 0 x m 0 Φ(f j (t, x)) dx ≤ C 4 (T, R) , t ∈ [0, T ] ,
the function Φ being defined in (2.14).

Proof. We combine arguments from [START_REF] Laurenc | From the discrete to the continuous coagulationfragmentation equations[END_REF] with the subadditivity of x → x m 0 . Let T > 0, R > 1, and t ∈ [0, T ]. On the one hand,

I 1,j (R, t) := R 0 x m 0 Φ ′ (f j (t, x))C j f j (t, x) dx ≤ 1 2 R 0 x 0 x m 0 K(x -y, y)Φ ′ (f j (t, x))f j (t, x -y)f j (t, y)dydx ,
and, by Fubini's theorem,

I 1,j (R, t) ≤ 1 2 R 0 R-y 0 (x + y) m 0 K(x, y)Φ ′ (f j (t, x + y))f j (t, x)f j (t, y)dxdy .
Owing to the subadditivity of x → x m 0 and the symmetry of K, we further obtain

I 1,j (R, t) ≤ 1 2 R 0 R-y 0 x m 0 K(x, y)Φ ′ (f j (t, x + y))f j (t, x)f j (t, y)dxdy + 1 2 R 0 R-y 0 y m 0 K(x, y)Φ ′ (f j (t, x + y))f j (t, x)f j (t, y)dxdy ≤ 1 2 R 0 R-x 0 y m 0 K(x, y)Φ ′ (f j (t, x + y))f j (t, x)f j (t, y)dydx + 1 2 R 0 R-x 0 y m 0 K(x, y)Φ ′ (f j (t, x + y))f j (t, x)f j (t, y)dydx ≤ R 0 R-x 0 y m 0 K(x, y)Φ ′ (f j (t, x + y))f j (t, x)f j (t, y)dydx .
Since Φ ∈ C V P,∞ , we infer from (2.2) with r = f j (t, x + y) and s = f j (t, y) that

I 1,j (R, t) ≤ R 0 R-x 0 y m 0 K(x, y) [Φ(f j (t, x + y)) + Φ(f j (t, y))] f j (t, x)dydx ≤ R 0 R x (y -x) m 0 K(x, y -x)Φ(f j (t, y))f j (t, x)dydx + R 0 R-x 0 y m 0 K(x, y)Φ(f j (t, y))f j (t, x)dydx .
We finally use (1.7b) to conclude that

I 1,j (R, t) ≤ 2L R M m 0 (f j (t)) R 0 y m 0 Φ(f j (t, y)) dy . (2.15)
On the other hand, we fix p 0 > 1 satisfying

1 < p 0 < m 0 + 1 -ν ≤ 1 + m 0 -ν < 2 ,
which is possible as m 0 + 1 > -ν. Using again Fubini's theorem,

I 2,j (R, t) := R 0 x m 0 Φ ′ (f j (t, x))F j f j (t, x) dx ≤ R 0 ∞ x x m 0 a(y)Φ ′ (f j (t, x))b ν (x, y)f j (t, y)dydx ≤ ∞ 0 a(y)f j (t, y) min{y,R} 0 x m 0 b ν (x, y)Φ ′ (f j (t, x)) dxdy .
Since Φ ∈ C V P,∞ , it follows from (1.6), Definition 2.2 (c) with p = p 0 , and (2.2) with r = f j (t, x) and s = x ν that

I 2,j (R, t) ≤ (ν + 2) ∞ 0 a(y)y -ν-1 f j (t, y) min{y,R} 0 x m 0 [Φ(x ν ) + Φ(f j (t, x))] dxdy ≤ (ν + 2)S p 0 (Φ) ∞ 0 a(y)y -ν-1 f j (t, y) y 0 x m 0 +νp 0 dxdy + (ν + 2) ∞ 0 a(y)y -ν-1 f j (t, y) R 0 x m 0 Φ(f j (t, x)) dxdy ≤ (ν + 2)S p 0 (Φ) m 0 + νp 0 + 1 ∞ 0 a(y)y m 0 +ν(p 0 -1) f j (t, y) dy + (ν + 2) ∞ 0 a(y)y -ν-1 f j (t, y) dy R 0 x m 0 Φ(f j (t, x)) dx .
Since m 0 + ν(p 0 -1) and -ν -1 both belong to [0, 1) and m 0 + νp 0 + 1 > 0, we deduce from (1.8) and Lemma 2.7 that

I 2,j (R, t) ≤ C A 1 1 0 y 2m 0 +1+νp 0 f j (t, y) dy + P m 0 +ν(p 0 -1) (t) + A 1 1 0 y m 0 f j (t, y) dy + P -ν-1,j (t) R 0 x m 0 Φ(f j (t, x)) dx ≤ C A 1 C 3 (T ) + P m 0 +ν(p 0 -1) (t) + [A 1 C 3 (T ) + P -ν-1,j (t)] R 0 x m 0 Φ(f j (t, x)) dx .
Combining the previous inequality with (2.7), (2.15), and Lemma 2.7 gives

d dt R 0 x m 0 Φ(f j (t, x)) dx = I 1,j (R, t) + I 2,j (R, t) ≤ [(2L R + A 1 )C 3 (T ) + (ν + 2)P -ν-1,j (t)] R 0 x m 0 Φ(f j (t, x)) dx + C A 1 C 3 (T ) + P m 0 +ν(p 0 -1) (t) .
Owing to Corollary 2.6, we are in a position to apply Gronwall's lemma to complete the proof.

Owing to (2.9), Lemma 2.8, and the superlinearity of Φ at infinity, see Definition 2.2 (b) , we deduce from Dunford-Pettis' theorem that, for all T > 0, there is a weakly compact subset K(T ) of X m 0 depending on T such that

f j (t) ∈ K(T ) , t ∈ [0, T ] . (2.16) 
2.5. Time Equicontinuity. Having established the (weak) compactness of the sequence (f j ) j≥2 with respect to the size variable x, we now focus on the time variable. Our aim being to apply a variant of Arzelà-Ascoli's theorem, we study time equicontinuity properties of (f j ) j≥2 in the next result.

Lemma 2.9. Let T > 0 and R > 1. There are C 5 (T, R) > 0 depending on T and R and C 6 (T ) > 0 depending on T such that, for t 1 ∈ [0, T ) and

t 2 ∈ (t 1 , T ], R 0 x m 0 |f j (t 2 , x) -f j (t 1 , x)| dx ≤ C 5 (R, T )(t 2 -t 1 ) + C 6 (T )R (m 0 -1)/2 .
Proof. Let t ∈ [0, T ]. First, by Fubini's theorem,

I 3,j (R, t) := R 0 x m 0 |C j f j (t, x)| dx ≤ 1 2 R 0 R-x 0 (x + y) m 0 K(x, y)f j (t, x)f j (t, y) dydx + R 0 R 0 x m 0 K(x, y)f j (t, x)f j (t, y) dydx + R 0 ∞ R x m 0 K(x, y)f j (t, x)f j (t, y) dydx .
Owing to (1.7) and the elementary inequality (x + y) m 0 ≤ 2 max{x, y} m 0 , (x, y) ∈ (0, ∞) 2 , we further obtain

I 3,j (R, t) ≤ 2L R R 0 R 0 x m 0 y m 0 f j (t, x)f j (t, y) dydx + K 0 R 0 ∞ R x m 0 (2 + x + y)f j (t, x)f j (t, y) dydx ≤ 2L R M m 0 (f j (t)) 2 + 4K 0 M m 0 (f j (t))M 1 (f j (t)) ,
hence, thanks to (2.9) and Lemma 2.7,

I 3,j (R, t) ≤ 2L R C 3 (T ) 2 + 4̺K 0 C 3 (T ) .
(2.17)

Next, using once more Fubini's theorem,

I 4,j (R, t) := R 0 x m 0 |F j f j (t, x)| dx ≤ R 0 x m 0 a(x)f j (t, x) dx + R 0 a(y)f j (t, y) y 0 x m 0 b ν (x, y) dxdy + ∞ R a(y)f j (t, y) R 0
x m 0 b ν (x, y) dxdy .

We now infer from (1.6), (1.8), and Lemma 2.7 that

I 4,j (R, t) ≤ A R R m 0 +ν+1 M m 0 (f j (t)) + ν + 2 m 0 + ν + 1 R 0 a(y)y m 0 f j (t, y) dy + ν + 2 m 0 + ν + 1 R m 0 +ν+1 ∞ R a(y)y -ν-1 f j (t, y) dy ≤ CA R R m 0 +ν+1 C 3 (T ) + CR (m 0 -1)/2 ∞ R a(y)y (m 0 +1)/2 f j (t, y) dy , hence I 4,j (R, t) ≤ CA R R m 0 +ν+1 C 3 (T ) + CR (m 0 -1)/2 P (m 0 +1)/2,j (t) .
(2.18) It then follows from (2.7), (2.17), and (2.18) that R 0

x m 0 |∂ t f j (t, x)| dx ≤ I 3,j (R, t) + I 4,j (R, t) ≤ C 5 (R, T ) + CR (m 0 -1)/2 P (m 0 +1)/2,j (t) .
Consequently, since (m 0 + 1)/2 ∈ (0, 1), Corollary 2.6 entails

R 0 x m 0 |f j (t 2 , x) -f j (t 1 , x)| dx ≤ t 2 t 1 R 0 x m 0 |∂ t f j (t, x)| dxdt ≤ C 5 (R, T )(t 2 -t 1 ) + C 6 (T )R (m 0 -1)/2 ,
and the proof is complete.

Combining (2.9) and Lemma 2.9 allows us to improve the equicontinuity with respect to time of the sequence (f j ) j≥2 . and, for t 1 ∈ [0, T ) and

t 2 ∈ (t 1 , T ], ∞ 0 x m 0 |f j (t 2 , x) -f j (t 1 , x)| dx ≤ ω(T, t 2 -t 1 ) .
Proof. Let 0 ≤ t 1 < t 2 ≤ T and R > 1. By (2.9) and Lemma 2.9,

∞ 0 x m 0 |f j (t 2 , x) -f j (t 1 , x)| dx ≤ R 0 x m 0 |f j (t 2 , x) -f j (t 1 , x)| dx + R m 0 -1 ∞ R x[f j (t 1 , x) + f j (t 2 , x)] dx ≤ C 5 (R, T )(t 2 -t 1 ) + C 6 (T )R (m 0 -1)/2 + 2̺R m 0 -1 .
Introducing

ω(T, s) := inf R>1 C 5 (R, T )s + C 6 (T )R (m 0 -1)/2 + 2̺R m 0 -1 , s ≥ 0 ,
we deduce from the previous inequality which is valid for all R > 1 that

∞ 0 x m 0 |f j (t 2 , x) -f j (t 1 , x)| dx ≤ ω(T, t 2 -t 1 )
and observe that ω(T, •) enjoys the property (2.19) as m 0 < 1.

2.6. Convergence. According to a variant of Arzelà-Ascoli's theorem [START_REF] Vrabie | C 0 -semigroups and applications[END_REF]Theorem A.3.1], it readily follows from (2.16) and Corollary 2.10 that the sequence (f j ) j≥2 is relatively compact in C([0, T ]; X m 0 ,w ) for all T > 0. Using a diagonal process, we construct a subsequence of (f j ) j≥2 (not relabeled) and f ∈ C([0, ∞); X m 0 ,w ) such that, for all T > 0,

f j -→ f in C([0, T ]; X m 0 ,w ) .
(2.20) A first consequence of (2.20) is that f (t) is a non-negative function for all t ≥ 0 and that f (0) = f in . It further follows from Lemma 2.5, the superlinearity of W for large sizes, and (2.20) that the latter can be improved to

f j -→ f in C([0, T ]; X 1,w ) . (2.21) 
A straightforward consequence of (2.9) and (2.21) is the mass conservation 

M 1 (f (t)) = M 1 (f in ) , t ≥ 
sup j≥2 T 0 ∞ R a(x)f j (s, x) dxds = 0 ,
and thereby allows us to perform the limit j → ∞ in the fragmentation term. We have thus completed the proof of Theorem 1.1, except for the propagation of moments of higher order which is proved in Proposition 2.11 in the next section.

2.7. Higher Moments. We supplement the above analysis with the study of the evolution of algebraic moments of any order. Let f be the mass-conserving weak solution on [0, ∞) to (1.1) constructed in the previous section.

Proposition 2.11. Consider m > 1 and assume further that f in ∈ X m . Then f ∈ L ∞ (0, T ; X m ) for all T > 0.

Proof. Let T > 0, t ∈ (0, T ), and j ≥ 2. Setting ϑ m (x) := x m for x ∈ (0, ∞), it readily follows from (1.6) that

N ϑm (y) = m -1 m + ν + 1 y m ≥ 0 , y > 0 ,
while there is C 7 (m) > 0 depending only on m such that

(x + y)χ ϑm (x, y) ≤ C 7 (m) (x m y + xy m ) , (x, y) ∈ (0, ∞) 2 , by [7, Lemma 2.3 (ii)]. Consequently, by (1.7), χ ϑm (x, y)K(x, y) ≤ 2L 1 min{x, y} m 0 max{x, y} m ≤ 2L 1 (xy) m 0 , (x, y) ∈ (0, 1) 2 ,
and

χ ϑm (x, y)K(x, y) ≤ K 0 (2 + x + y)χ ϑm (x, y) ≤ 3K 0 (x + y)χ ϑm (x, y) ≤ 3K 0 C 7 (m) (x m y + xy m ) , (x, y) ∈ (0, ∞) 2 \ (0, 1) 2 .
We then infer from (2.8) with ϑ = ϑ m and the previous inequalities that

d dt M m (f j (t)) ≤ L 1 M m 0 (f j (t)) 2 + 3K 0 C 7 (m)M 1 (f j (t))M m (f j (t)) .
Recalling (2.9) and Lemma 2.7, we end up with

d dt M m (f j (t)) ≤ L 1 C 3 (T ) 2 + 3K 0 C 7 (m)̺M m (f j (t)) ,
and integrate the previous differential inequality to deduce that

M m (f j (t)) ≤ e 3K 0 C 7 (m)̺t M m (f in j ) + L 1 C 3 (T ) 2 3K 0 C 7 (m)̺ , t ∈ [0, T ] . (2.22) 
Since M m (f in j ) ≤ M m (f in ) < ∞, Lemma 2.9 readily follows from (2.22) after letting j → ∞ with the help of (2.21) and Fatou's lemma.

Uniqueness

Proof of Theorem 1.3. Consider two weak solutions f 1 and f 2 on [0, ∞) to (1.1)-(1.2) on [0, ∞) enjoying the properties listed in Theorem 1.3. We set F := f 1 -f 2 , σ := sign(f 1 -f 2 ), ξ(x) := max{x m 0 , x 1+δ }, and Ξ(t, x, y) := ξ(x + y)σ(t, x + y) -ξ(x)σ(t, x) -ξ(y)σ(t, y) for (t, x, y) ∈ (0, ∞) 3 . Arguing as in the proof of [13, Theorem 2.9] and [START_REF]A uniqueness theorem for the coagulation-fragmentation equation[END_REF] with Ξ 0 (x, y) := ξ(x + y) -ξ(x) + ξ(y) , (x, y) ∈ (0, ∞) 2 . On the one hand, we infer from (1.7), (1.12), and the subadditivity of x → x m 0 and x → x δ that:

(c1) for (x, y) ∈ (0, 1) 2 , K(x, y)Ξ 0 (x, y) ≤ L 1 min{x, y} m 0 [(x + y) m 0 -x m 0 + y m 0 ] ≤ 2L 1 min{x, y} m 0 y m 0 ≤ 2L 1 ξ(x)y m 0 ;

(c2) for (x, y) ∈ (0, 1) × (1, ∞), K(x, y)Ξ 0 (x, y) ≤ K 1 x m 0 y x 1+δ + (1 + δ)y(x + y) δ -x m 0 + y 1+δ ≤ K 1 x m 0 y (1 + δ)2 δ y 1+δ + y 1+δ Collecting the estimates in (c1)-(c4) and (f1)-(f2), we infer from (3.1) that there is a positive constant κ > 0 depending only on L 1 , K 1 , δ, K 0 , ν, m 0 , and a such that d dt Since M m 0 (f i ) and M 2+δ (f i ) both belong to L ∞ (0, T ) for i ∈ {1, 2} and f 1 (0) = f 2 (0) = f in , we use Gronwall's lemma to complete the proof.

∞ 0 K

 0 (x, y)f (x)f (y) dy (1.1b) and F f (x) := -a(x)f (x) + ∞ x a(y)b(x, y)f (y) dy (1.1c)

Corollary 2 . 10 .

 210 Let T > 0. There is a function ω(T, •) : [0, ∞) → [0, ∞) depending on T such that lim s→0 ω(T, s) = 0 ,(2.19)

  y)Ξ(t, x, y)(f 1 + f 2 )(t, y)F (t, x) dydx+ )σ(t, x)b ν (x, y) dx -ξ(y)σ(t, y) dy . Since Ξ(t, x, y)F (t, x) = ξ(x + y)σ(t, x + y)F (t, x) -ξ(x)|F (t, x)| -ξ(y)σ(t, y)F (t, x) ≤ ξ(x + y)|F (t, x)| -ξ(x)|F (t, x)| + ξ(y)|F (t, x)| and F (t, y) y 0 ξ(x)σ(t, x)b ν (x, y) dx -ξ(y)σ(t, y) ≤ y 0 ξ(x)b ν (x, y) dx|F (t, y)| -ξ(y)|F (t, y)| ≤ -N ξ (y)|F (t, y)| , , y)Ξ 0 (x, y)(f 1 + f 2 )(t, y)|F (t, x)| dydx-∞ 0 a(y)N ξ (y)|F (t, y)| dy , (3.1)

≤ K 1 1 +

 1 (1 + δ)2 δ ξ(x)y 2+δ ;(c3) for (x, y) ∈ (1, ∞) × (0, 1), K(x, y)Ξ 0 (x, y)≤ K 0 (2 + x + y) (1 + δ)y(x + y) δ + y m 0 ≤ 4K 0 x (1 + δ)2 δ x δ y + x δ y m 0 ≤ 4K 0 1 + (1 + δ)2 δ ξ(x)y m 0 ; (c4) for (x, y) ∈ (1, ∞) 2 , K(x, y)Ξ 0 (x, y) ≤ K 0 (2 + x + y) (1 + δ)y(x + y) δ + y 1+δ ≤ 2K 0 (x + y) (1 + δ)yx δ + (2 + δ)y 1+δ ≤ 2(2 + δ)K 0 x 1+δ y + xy 1+δ + x δ y 2 + y 2+δ ≤ 8(2 + δ)K 0 ξ(x)y 2+δ .On the other hand, owing to (1.6) and (1.8), (f1) for y ∈ (0, 1),-a(y)N ξ (y) = 1 -m 0 ν + 1 + m 0 y m 0 a(y) ≤ A 1 ν + 1 + m 0 ξ(y) ; (f2) for y > 1, -N ξ (y) = ν + 2 ν + 1 + m 0 y -ν-1 + ν + 2 ν + 2 + δ y 1+δ -y -ν-1 -y 1+δ = (ν + 2)(1 + δ -m 0 ) (ν + 1 + m 0 )(ν + 2 + δ) y -ν-1 -δ ν + 2 + δ y 1+δ = δ ν + 2 + δ y -ν-1 Y 2+δ+ν -y 2+δ+ν , with Y 2+δ+ν := (ν + 2)(1 + δ -m 0 ) δ(ν + 1 + m 0 ) . Either y ≥ max{1, Y } and -a(y)N ξ (y) ≤ δ ν + 2 + δ a(y)y -ν-1 Y 2+δ+ν -y 2+δ+ν ≤ 0 , or y ∈ (1, max{1, Y }) and -a(y)N ξ (y) ≤ δ ν + 2 + δ a(y)y -ν-1 Y 2+δ+ν ≤ A Y Y 2+δ+ν y m 0 ≤ A Y Y 2+δ+ν ξ(y) .

  ) y m 0 + y 2+δ (f 1 + f 2 )(t, y)|F (t, x)| dydx + κ ∞ 0 ξ(y)|F (t, y)| dy ≤ κ [1 + M m 0 ((f 1 + f 2 )(t)) + M 2+δ ((f 1 + f 2 )(t))] ∞ 0 ξ(y)|F (t, y)| dy .

  0 .

	Owing to (1.7), (1.8), Corollary 2.6, (2.20), and (2.21), it is by now a standard
	argument to pass to the limit in (2.8) and deduce that f is a weak solution on [0, ∞)
	to (1.1) in the sense of Definition 2.1, see [6, 23, 31] for instance. It is worth pointing
	out that the behaviour of the fragmentation term for large sizes is controlled by
	Corollary 2.6 which guarantees that, for all T > 0,
	lim R→∞