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Abstract 

 

Regardless of the coordination of its activities, a healthcare system is composed of a large 

number of distributed components that are interrelated by complex processes. Understanding 

the behavior of the overall system is becoming a major concern among healthcare managers 

and decision makers. This paper presents a modeling and simulation framework to support a 

holistic analysis of healthcare systems through a stratification of the levels of abstraction into 

multiple perspectives and their integration in a common simulation framework. In each of the 

perspectives, models of different components of healthcare system can be developed and 

coupled together. Concerns from other perspectives are abstracted as parameters, i.e., we reflect 

the parameter values of other perspectives through explicit assumptions and simplifications in 

such models. Consequently, the resulting top model within each perspective can be coupled 

with its experimental frame to run simulations and derive results. Components of the various 

perspectives are integrated to provide a holistic view of the healthcare problem and system 

under study. The resulting global model can be coupled with a holistic experimental frame to 

derive results that cannot be accurately addressed in any of the perspective taken alone. 

Furthermore, as we endeavored to allow perspective-specific experts contribute to the modeling 

process, we took benefit of results originating from research efforts that Norbert Giambiasi 

initiated in the 2000's, which his PhD students further developed with their own PhD students. 

 

Keywords: value-based healthcare system, healthcare modeling and simulation, holistic 

analysis, model integration, experimental frame 

 

 

1. Introduction 
 

The objectives of value-based healthcare can be broadly stated by the following equation: 

 

Objectives = low Cost + high Quality + wide Accessibility  [1] 

 

The exact meaning of the attributes, Cost, Quality, and Accessibility can vary, as can their 

priority, or even applicability, in different contexts. Nevertheless, when we refer to measuring 

value we mean some concrete formulation of increase in quality, while reducing cost, and 

increasing access. The importance of equation [1] becomes evident when we recognize that a 

healthcare service system is composed of a large number of distributed components that are 

interrelated by complex processes. Understanding the behavior of the overall system is 

becoming a major concern among healthcare managers and decision-makers intent on 

increasing value for their systems. 

 

Most of the work concerning healthcare system modeling and simulation (M&S) in the 

literature is unit or facility specific. This is revealed in numerous research efforts published 

over many decades seeking to provide support for healthcare system management in efficient 



use of resources for healthcare delivery. Indeed, literature review shows a huge number of 

research papers in the area of M&S applied to Healthcare management. Many of these efforts 

concentrate on one of the 4 generic perspectives we’ve identified in the framework proposed. 

Some of them integrate 2 or 3 of these perspectives. To our knowledge, none of them integrates 

all 4 perspectives in one global view. Therefore, such efforts cannot provide the necessary big 

picture for a fine-grained understanding of issues. 

 

This paper takes a holistic approach to healthcare. It presents a framework that encompasses 

common perspectives taken in the research literature but also goes beyond them toward their 

integration with additional perspectives that are becoming critical in today’s environment. It 

proposes a stratification of the levels of abstraction into multiple perspectives. In each of these 

perspectives, models of different components of healthcare systems can be developed and 

coupled together. Concerns from other perspectives are abstracted as parameters in such 

models. An important element of this approach is that we attempt to reflect the parameter values 

of other perspectives through explicit assumptions and simplifications. Consequently, the 

resulting top model within each perspective can be coupled with its experimental frame to run 

simulations and derive predictions of value outcomes for various alternatives tried. Components 

of the various perspectives are integrated to provide a holistic view of the healthcare problem 

and system under study. The resulting global model can be coupled with a holistic experimental 

frame to derive results that cannot be accurately addressed in any of the perspectives if taken 

alone. Moreover, the entire modeling effort is made easier by the integration, on top of our 

framework, of a workflow-based M&S approach that emanates from research works, which 

were initiated by Norbert Giambiasi and were furtherly developed by members of his team (1-

3). This approach consists in the disciplined design of a workflow model and its systematic 

transformation into a DEVS-based simulation model according to well-defined rules. Such an 

approach, when integrated to our framework, allows perspective-specific experts bring their 

knowledge at the conceptual level, while the transformation of the corresponding workflow 

model turns them into components of the framework. 

 

The remaining of this paper is organized as follows. Section 2 presents the ontology that lays 

down the basis for our framework. Section 3 introduces the framework proposed. By connecting 

to research results previously established by Giambiasi’s team members, section 4 illustrates 

how this framework can support an effective model-driven M&S engineering methodology. 

Section 5 discusses related research works and section 6 concludes the paper. 

 

 

2. Ontology for healthcare systems simulation 
 

Modeling healthcare systems is a quite challenging task, and especially knowing where to start 

and where to end. There is a wide variety of healthcare systems around the world, and every 

country's healthcare system reflects its own history, politics, economy and national values, that 

all vary to some degree. Nevertheless, some common levels of details can be considered when 

modeling the entire domain of healthcare. This is where ontology comes into play. 

 

In the field of healthcare, Okhmatovskaia et al. (4) introduced ontology for simulation modeling 

of population health (SimPHO), an explicit machine-readable specification of a domain of 

knowledge integrating both aspects of taxonomy and vocabulary in a form of logical axioms. 

Silver et al. (5) developed an ontology-driven simulation model that promotes relationship 

between domain ontology and simulation ontology. The resulting models are then translated 

into executable simulation models that can be used by simulation tools. Zeshan & Mohamad 



(6) presented domain ontology for Information Technology (IT)-based healthcare systems that 

support knowledge sharing between devices and actors during the diagnostic process of patients 

in emergency departments. Puri et al. (7) proposed ontology mapping and alignment to integrate 

ontologies from heterogeneous sources together and to support data integration and analysis. 

Literature review teaches two major lessons: [1] healthcare modeling and simulation covers 

more than one system perspective; [2] the entire domain suffers from the lack of standards and 

formal specification of agreed-upon concepts and their relationships to derive holistic 

simulation models. 

 

We propose the Ontology for Healthcare Systems Simulation (O4HCS), a formal specification 

of relevant concepts and their relationships in healthcare domain designed to build holistic 

healthcare simulation models (Figure 1). When developing O4HCS, it is essential that we 

provide, at some general level, a formal framework that captures all the knowledge that might 

be in the range of healthcare M&S that the ontology is likely to be used for (8). For this reason, 

we use the System Entity Structure (SES) framework (9). 

 

 

2.1. SES Ontological Framework 

 

SES enables fundamental representation of hierarchical modular model providing a design 

space via the elements of a system and their relationships in hierarchical and axiomatic manner. 

It is a declarative knowledge representation scheme that characterizes the structure of a family 

of models in terms of decompositions, component taxonomies, and coupling specifications and 

constraints. SES supports development, pruning, and generation of a family of hierarchical 

simulation models. It is a formal ontology framework, axiomatically defined, to represent the 

elements of a system (or world) and their relationships in hierarchical manner. 

 

Figure 1 provides a quick overview of the nodes and relationship involved in a SES. Entities 

represent things that have existence in a certain domain. They can have variables which can be 

assigned a value within given range. An Aspect expresses a way of decomposing an object into 

more detailed parts and is a labeled decomposition relation between the parent and the children. 

Multi-Aspects are aspects for which the components are all of the one kind. A Specialization 

represents a category or family of specific forms that a thing can assume. It is a labeled relation 

that expresses alternative choices that a system entity can take on. 

 

 
Figure 1. Basic SES Construction 

 

SES has six axioms (10): uniformity, strict hierarchy, alternating mode, valid brothers, attached 

variables and inheritance.  Uniformity forces that any two nodes with the same labels have 
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isomorphic subtrees. Strict hierarchy prohibits a label from appearing more than once down any 

path of the tree. Alternating mode states that, if a node is an Entity, then the successor is either 

Aspect or Specialization, and vice versa. Valid brothers forbids having two brothers with the 

same label. Attached variables constraints that variable types attached to the same item shall 

have distinct names. Inheritance asserts that Specialization inherits all variables and Aspects 

from the parent Entity to the children Entities. Zeigler & Hammond (11) provide a formal set-

theoretic characterization of the SES that shows how the axioms are satisfied. 

 

SES is targeted to support the plan-generate-evaluate process in simulation-based systems 

design. The plan phase recaptures all the intended objectives of the modeler while the generate 

phase reproduces a candidate design model that will meet the initial objectives. The evaluate 

phase assesses the performance of the generated model through simulation. As such, SES 

organizes a family of alternative models from which a candidate model can be generated, 

selected and evaluated through system design repeatedly until the model meets an acceptable 

objective. While complex systems are composed of large components and their structural 

knowledge can be broken down and systematically represented in SES, their behaviors can be 

specified in either atomic or coupled models and saved in model base (an organized library) for 

later use. Once the models are saved they can be retrieved from their repository and reused to 

design complex systems. 

 

 

2.2. O4HCS Model 

 

We adopted a useful way to begin building O4HCS by surveying existing taxonomies of 

healthcare models as offered by (12-14). Consequently, O4HCS is built based on an extensive 

literature review of healthcare simulation and the use of expert knowledge. Contrary to the 

existing ontologies, the purpose of O4HCS is not to address the lack of unified vocabulary in 

health or clinical medicine. Instead, the development of O4HCS is an attempt to share among 

simulation experts and domain experts, a common understanding of the abstractions 

necessary/used for the simulation of the entire healthcare domain (beyond unit specific and 

facility specific modeling), as well as to serve as a support for the plan-generate-evaluate 

process mentioned earlier. 

 

The following are expressed by Figure 2: 

 Healthcare is often treated in literature at different levels of care including primary care 

level, secondary care level, tertiary care level, and home (& community) care level.  

- Primary care is a first point of consultation for patients, where professionals are 

general practitioners, family physicians, nurses and assistants, who operate in 

multiple settings like primary care centers, provider offices, clinics, schools, 

colleges, prisons, and worksites. 

- Secondary care more often is referred to as hospital units, like emergency 

department or medical imaging block, where specialists like cardiologists, 

urologists and dermatologists provide acute care, i.e., necessary treatments for a 

brief but serious illness, injury or other health condition.  

- Tertiary care addresses specialized consultative health care in advanced medical 

investigation and treatment, like cancer management, advanced neonatology 

services, and complex medical and surgical interventions.  

- Home care (often associated to community care) is concerned with public health 

interest, such as food safety surveillance, distribution of condoms, or needle-



exchange campaign, usually outside of health facilities. It also includes support 

to self-care, assisted living, and other types of social care services. 

 A healthcare system is made of one or various organizations, each of which being a 

production system, a consumption system, or a coordinating system between production 

and consumption. As noticed in (15), literature contains a vast number of models for the 

demand and the supply of health care services, although these models have mainly 

focused on specific conditions (and in some cases on specific locations). More recent 

works have focused on the coordination dimension (16-17). 

 Healthcare production has two facets: 

- The first one deals with how resources are transformed into services. Resources 

include physical resources (e.g., buildings, rooms, beds, drugs, vaccines or 

equipment), human resources (e.g., physicians, nurses, or assisting personnel), 

financial resources (e.g., donations, taxes, or out-of-pocket payments), and 

information (e.g., medical records, training documents, or advertisement 

materials). Models of such transformation explicitly describe the dynamics of 

the provider (e.g., the economic model of health funding, which can be tax/out-

of-pocket/insurance-based, or the information system as the health data 

provider), or the provision (e.g., the clinician as a human resource), or both. 

Examples are (18-27). 

- The second facet deals with the generation of health phenomena, whether 

positive or negative. Positive phenomena (like vaccination campaign) produce 

ease, while negative phenomena (like disease spreading) produce disease. 

Diffusion processes are classically described as either spatial or functional 

phenomena. The former explicitly describe space (e.g., cellular automata-based 

models), and the resources involved (e.g., attributes of the cellular automata’s 

cells can be models in their turn), while the latter formulate the dynamics of the 

diffusion process in the form of mathematical equations (e.g., compartmental 

models such as SIR, SEIRD…). Producer systems models focus on health 

producers and their provision of health services, and abstracts processes from 

any other aspect by parameters. Illustrative examples are disease outbreak 

models (28-29). 

 The demand for health is generated by a population or individuals who seek for care in 

times of need. Hence, M&S models of consumption systems focus on those health 

consumers and the dynamics of their demands, and abstract by parameters all processes 

from any other aspect. 

- A Population dynamics model is related to births, deaths and demographic flows 

such as immigration and emigration. It is either expressed as equations, i.e., 

functional dynamics (30), or considered as an emerging phenomenon composed 

of individuals geographically located in a space model, i.e., spatial dynamics. 

- An individual can be modeled as an autonomous entity with specific attributes, 

and a behavior driven by goals, including social dimensions. Typical examples 

are agent-based models (31-34). An alternative modeling approach is to describe 

the flow of activities that captures scenarios the individual can undergo (such as 

patient flow models). 

 Care coordination can be seen as cross-organization coordination managing the entities 

and resources of existing ones. It is needed to the extent that existing organization is 

lacking. Pathways are means to do that coordination (35). 

 



 
Figure 2. Ontology for Healthcare Systems Simulation (O4HCS) 

 

 

3. Ontology-driven M&S framework 
 

More often, modelers are confronted with the challenge of developing simulation models for 

efficient design and analysis of healthcare systems. As it turns out, the underlying components 

are studied in isolation focusing on either unit specific or facility specific. O4HCS ontology 

reflects a disciplined stratification of concerns and a systematic description of the interactions 

that exist between them, from which we derive a 4-layered framework for multi-perspective 

modeling and holistic simulation of healthcare systems (as depicted by Figure 3). 

 

This way, we distinguish 4 fundamental perspectives that simulation models develop, either, 

one at a time, or by combining two or more of them. The layers of our framework cover the full 

set of healthcare concerns, which, thought interrelated, are often treated separately and the 

impact of other concerns on any one of them being approximated by parameters. We place this 

stratification of abstractions in the context of the hierarchy of systems specification introduced 

by (36). That way, each perspective can be seen as encompassing a family of questions that can 

be formulated through dedicated experimental frames (9). Consequently, models can be 

developed within each perspective and coupled together. The resulting top model in each 

perspective can be coupled with its experimental frame to derive results specific to this 

perspective: 



 The Resource Allocation (RA) perspective encompasses all scheduling and planning 

problems, mostly in the context of limited resource provisions, to meet the healthcare 

demand. RA models are used to answer questions formulated through RA-specific 

experimental frames. Examples of such questions are the occupancy rate of beds in a 

surgical unit, the average waiting time in an emergency department, or the optimal 

scheduling of health care activities (23, 25-26, 37-41). 

 The Health Diffusion (HD) perspective covers simulation studies of ease/disease 

spreading. HD-specific experimental frames are coupled to HD models, in order to 

derive answers for questions such as the forecasted proportion of individuals in a 

population according to their health status, or the patterns of contamination areas from 

given initial conditions (4, 42-44). 

 The Population Dynamics (PD) perspective comprises all studies of the dynamics in 

the population of a community (immigration, emigration, birth, death…). PD-specific 

experimental frames formulate summary mappings to answer questions like the 

forecasted distribution of a population by gender, social status or age range, or the 

impact of a species strategy on the encapsulating ecosystem (30, 45-48). 

 The Individual Behavior (IB) perspective covers the studies of social behavior in 

relation to how its components (such as educational level, physical state, emotion, 

cognition, decision…) affect the willingness/ability of an individual to effectively 

access available healthcare services. IB-specific experimental frames address questions 

such as the relationship between socio-cultural decisions and health status of 

individuals, or the evaluation of life strategies in the context of competition/selection 

and scarcity of resources (28, 31, 33). 

 

 
Figure 3. Multi-perspective approach to healthcare systems M&S 

 

While this feature provides multiple levels of explanation for the same system, there is also the 

need to encompass the influences of perspectives on one another. While the dashed boxes in 

Figure 3 depict independent simulations in the different perspectives, the double arrows 

represent the live exchanges of information between them. The idea is to allow for the 

transmissions of the outputs of the simulations in one perspective to provide live feedbacks to 

the simulation parameters in other perspectives where required. We have defined an integration 

mechanism to enable such exchange as detailed in the next sub-section. 

 

 

3.1. Holistic approach 

 



In practice, M&S processes in each of the identified perspectives are executed in isolation; i.e. 

without recourse to the processes from other perspectives. In reality, however, processes usually 

have mutual influences. For instance, when there is an epidemic in a community (HD 

perspective), it will naturally affect the provisions and allocations of the human and 

infrastructural healthcare resources in the health centers within the community (RA 

perspective) and the migrations of people into and out of the community (PD perspective). To 

allow a holistic simulation, which encompasses isolated perspective-specific simulations and 

their mutual influences, we suggest an integration mechanism to enable live exchanges of 

information between models from the different perspectives. 

 

However, while models within the same perspective are coupled the classic way (i.e., outputs 

to inputs) to form larger models within the same perspective, models from distinct perspectives 

relate in a different way. Indeed, the parameters of a focused model in a given perspective are 

fed by the outputs of models from other perspectives. In other words, these outputs provide a 

disaggregated understanding of the phenomena approximated by the parameters of the focused 

model. Technically, this is realized by creating a model which activity is to translate outputs 

received from the other models into new values for the parameters of the focused model. 

 

Our approach is very comparable to the one introduced in (49), where the model used to realize 

the integration is called a bridging model. However, there is a major difference in that we don’t 

allow the output of a model in a given perspective to feed the input of another model in a 

different perspective. The reason is that inputs and outputs of models are defined based on the 

perspective envisioned, which also set the family of objectives of the corresponding M&S 

study. Any process, which output can feed such inputs or which input can be fed by such 

outputs, is an abstraction within that perspective. Abstractions from other perspectives are 

solely captured by model parameters. 

 

Figure 4 schematizes the technical difference between “coupling” and “integration” in the 

context of this work. By coupling the output of a disease-spreading model to the input of an 

integrator, we create a coupled model in the HD perspective. The role of this integrator is to 

interpret the outputs received from the disease model and translate it into new values for the 

parameters of a population dynamics model. The integrator will then call the method of the PD 

model to modify its parameters. Similarly, the population dynamics model is coupled to an 

integrator that translates its output to values for the parameters of the disease-spreading model. 

A holistic model of the healthcare system is obtained by introducing appropriate integrators 

between perspective-specific models. 

 

 
Figure 4. Holistic approach to healthcare systems M&S 

 

 



3.2. Formalization of the framework 

 

Contrary to (49), we see a significant difference between the receipt of input by a model and 

the modification of its parameter. Viewing a simulation model as a transition system (as done 

in DEVS), the semantics of the first one is that stimuli coming from the model’s environment 

provoke a change of the model’s internal state, and this change is governed by the model’s 

transition rules (external transition, in the case of DEVS). The semantics of parameter 

modification is that knowledge revealed from another reality of the system modeled provokes 

a change of the model’s internal rules (instead of its state). Let us clarify this, in the framework 

of DEVS M&S. 

 

The DEVS M&S framework (36) suggests a specification hierarchy to capture the knowledge 

specific to systems structure and behavior. Each level has an associated set-theoretic structure 

(n-tuple) that allow to describe a system. Going up the hierarchy (from behavior to structure) 

adds more elements to the n-tuple, since we know more about the system as levels increase. 

There are corresponding morphisms at each level, i.e., how to tell whether two descriptions of 

the same system at a level are equivalent or related at that level. Also, the morphisms at one 

level are consistent with those below, i.e., if two descriptions are equivalent at a higher level, 

then they are also equivalent at every lower level. Going down the levels is computationally 

done by simulation, while going up the levels (also known as structural inference) is much 

harder and can be realized under justifying conditions. On top of the hierarchy is the Coupled 

Network (CN) level, below which is the Input Output System (IOS) level. Models expressed at 

the CN level are called coupled models, while the ones expressed at the IOS level are called 

atomic models. Simulation modelers usually describe their models at those levels using code 

equivalents (depending on the programming language) of the set-theoretic specifications given 

below.  These levels are often the most convenient to describe the structure of the system under 

study, while the well-defined DEVS simulation algorithms generate the behavior of these 

models which is described lower levels of the hierarchy. 

 

An atomic model is defined by the n-uple X, Y, S, int, ext, conf, , ta where : 

 X, Y and S are respectively the input set, output set, and state set (at any time, the system 

modeled is in one of the possible states) 

 ta : S  0
+ is the time advance function (i.e., it gives the lifespan of each state), with 

0
+ designating the set of non-negative real numbers, including + 

 int : S  S is the internal transition function (i.e., it is triggered only when the elapsed 

time in the system’s current state scurr has reached ta(scurr) without the system being 

disturbed by any receipt of input) 

  : S  Y is the output function (i.e., it computes the output of the system, each time 

an internal transition is occurring) 

 ext : Q  X  S is the external transition function (i.e., it is triggered only when the 

system receives an input, while the elapsed time in the system’s current state scurr has 

not reached ta(scurr)), and Q = {(s,e) / s  S, 0  e < ta(s)} is called the total state 

 conf : S  X  S is the confluent transition function (i.e., it is triggered only when the 

system receives an input at exactly the time that the elapsed time in the system’s current 

state scurr has reached ta(scurr)) 

 

If an atomic model is parameterized, its parameters are disjoint from its state variables. 

Parameters are constant values the model will refer to when triggering its transition functions 

or when computing its outputs, or even when determining its time advance. Therefore, any 

change of value of a parameter results in a change of the model’s internal rules (and not a state 



transition). This is akin to dynamic structure change – See (50) for a recent review of dynamic 

structure DEVS. It takes us away from the multi-perspective formalization proposed in (49) and 

calls for another formalization approach. 

 

We define a parameterized atomic DEVS as an atomic DEVS model deriving from an existing 

atomic DEVS model. It is defined by XP, YP, SP, int
P, ext

P, conf
P, P, taP, where: 

 P is the parameters set (each element of P is a vector of values of parameters) 

 X, Y, S, intP, extP, confP, P, taP is an atomic model whose governing functions depend 

on P (i.e., they compute their values, using the values of P), called the strain model. 

 XP = XP 

 YP = Y 

 SP = SP0
+ 

 taP : SP  0
+ 

taP(s, p, ) =  

 int
P : SP  SP 

int
P(s, p, ) = (intP(s), p, taP(s)) 

 P : SP  YP 

P(s, p, ) = P(s) 

 ext
P : QP  XP  SY, with QP = {(s,p,,e) / (s,p,)  SP, 0  e< } 

ext
P(s, p, , e, , q) = (s, q, -e) 

ext
P(s, p, , e, x, ) = (extP(s, e, x), p, taP(extP(s, e, x))) 

ext
P(s, p, , e, x, q) = (extP(s, e, x), q, taq(extP(s, e, x))) 

 conf
P : SP  XP  SP 

conf
P(s, p, , x, ) = (confP(s, x), p, taP(confP(s, x))) 

conf
P(s, p, , x, q) = (confP(s, x), q, taq(confP(s, x))) 

 

The parameterized model is an embedding structure for a strain atomic model. It distinguishes 

inputs that impact on the strain model’s state from inputs that only modify the values of 

parameters. A variable is defined () to memorize the remaining time in any current state of the 

strain model (i.e., time before the lifespan expires). Hence, this variable gives the time advance 

function of the parameterized model. The internal transition of the parameterized model 

changes the state of the strain model according to its internal transition function, but does not 

affect the parameters. The output sent at that time is the one computed by the strain model. 

When only new values for parameters are received by the parameterized model, the state of the 

strain model is kept unchanged, and only the remaining time is updated. When only input values 

impacting the strain model’s state are received (without input for modification of parameters), 

the new situation is defined by the strain model’s external transition and time advance function. 

When both input values impacting the strain model’s state, and input for modification of 

parameters are received, the new situation is defined by the strain model’s external transition 

and time advance function; the new state of the strain model is computed based on the current 

values of parameters, but the lifespan of this new state is computed using the new values of 

parameters. The same rules apply for confluent transition. 

 

With such a formalization, a multi-perspective model (i.e., resulting from the holistic approach 

presented) can be given at the CN level of the systems specification hierarchy. A coupled model 

is defined by Xself, Yself, D, {Md}dD, {Id}dD, {Zi,j
P}iD{self},jIi  where: 

 Xself and Yself are respectively the input set and the output set 

 D is the set of references of the model’s components 



 Md is a model component, an atomic or a coupled model, with Xd and Yd as respectively 

its input and output set 

 Id is the influence set of component d, i.e., all other models sending input to d 

 Zself,d : Xself  Xd is the external input transfer function (which indicates how input 

received by the coupled model are transferred to its component models) 

 Zd,self : Yd  Yself is the external output transfer function (which indicates how output 

generated by the component models are transferred to the coupled model) 

 ZiD,jD-{i} : Yi  Xj is the internal transfer function (which indicates how output 

generated by the component models are transferred to other component models) 

 

We similarly define a parameterized coupled model as a coupled DEVS model deriving from a 

strain coupled model, by Xself
P, Yself

P, DP, {Md
Pd}dD, {Id

Pd}dD, {Zi,j
P}iD{self},jIi  where: 

 Xself
P = Xself(Pd)dD 

 Yself
P = Yself 

 DP = D 

 Md
Pd is a parameterized DEVS model if Pd  (with Xd

Pd = XdPd as its input set), and 

a “regular” DEVS model if Pd=  (with Xd
Pd = Xd as its input set) 

 Id
P includes all components models sending input to d, whether for parameter 

modification or internal state change 

 Zself,d
P : Xself

P  XdPd 

Zself,d
P(x, p) = ((Zself,d(x), pd) 

 Zd,self
P = Zd,self 

 ZiD,jD-{i}
P : Yi  XjPj 

ZiD,jD-{i]
P(y) = (x, ) for a “regular” coupling 

ZiD,jD-{i]
P(y) = (, pj) for an “integration” (or a bridging) 

 

 

3.3. Illustrative Application 

 

In order to illustrate the proposed framework, we now present a study of the Nigerian healthcare 

system done in a holistic way. We applied our framework in the context of the Ebola outbreak 

and built models in each of its perspectives, i.e.: 

 a model of the Ebola outbreak and its experimental frame (HD perspective), 

 a model of migrations between Nigerian states and its experimental frame (PD 

perspective), 

 a model of daily workers strategy and its experimental frame (IB perspective), and 

 a model of hospital resource allocation in Lagos and its experimental frame (RA 

perspective). 

 

We studied each model in isolation and derived perspective-specific results, and then integrated 

all the models together to produce a holistic view of the situation. Interested readers will find a 

description of these models in the appendix (in their initial forms, which have later been 

transformed into their DEVS counterparts). 

 

Figure 5 top shows the four perspective-specific models with rough indications of their 

parameters (input arrows) and state variables (output arrows.) Each of these models can be 

given default parameters which remain constant and generate dynamics of their state variables. 

These can be taken as characterizing normal endogenous activity unperturbed by an exogenous 

event such as an Ebola outbreak. Figure 5 bottom gives more detail in the form of a causal loop 



diagram of the influence of state variables on parameters. For example, the transmission rate of 

Ebola virus is negatively impacted by more hospital admissions and positively increased as the 

population of a state or locality is increased. 

 

 
Figure 5. Holistic Multi-perspective Model of Ebola Outbreak 

 

The experimental frame built to experiment with the resulting holistic model allows us to see 

how all models impact on each other simultaneously, and in various scenarios of influence. 

 

Figure 6 shows results for the case where the influence relations of Figure 5 are treated as linear 

functions mapping from state variable values to parameter values: 

 Top left curves show the distribution of population over a period of 100 days, depending 

on the health status of individuals (S curve for susceptible individuals, E curve for 

exposed individuals, I curve for infected individuals, R curve for recovered individuals, 

and D curve for dead individuals). 

 Top right curves show, during the same period of time, the impact of daily workers 

decision on their job performances (the lower level curve indicates the frequency of 

relocations of the worker, from a working area to another one, while the upper level 

curve indicates the ratio of worked days over the total number of days spent). 

 Bottom left curve shows the daily evolution of the population in Lagos state at the time 

of the outbreak, while bottom right curve shows the ratio of bed occupancy in proportion 

of the population in the focused Lagos hospital, at the same time. 

 

Interestingly, although not illustrated here, the movement of health care workers between 

locations which is guided by their perception of available jobs may not result in optimal 



assignments. Such results of holistic modeling point to aspects where coordination as supported 

by pathways (17) may result in improved performance. 

 

 

 

Figure 6. Holistic simulation results 

 

 

4. Collaborative Modeling to Multi-perspective Holistic Simulation 
 

In the context of multi-perspective modeling to holistic simulation, a key issue is how to 

effectively capture the concerns of the various stakeholders involved and among whom the 

entire knowledge is broken down into partial information. For example, the Collaborative, 

Participative, Interactive Modeling (aka CPI Modeling) approach proposed in (51) advocates 

for models being designed collaboratively with participation of the users and business process 

owners. This section connects our framework to a feature that support such an approach. 

 

As shown by Figure 7, at the top-most level, a process-oriented model (called the workflow 

model) is used by collaborating domain experts to specify the bridge between various models 

built from the different perspectives. At lower levels, transformation rules are defined to 

generate the DEVS-based multi-perspective model. Each perspective-specific model is turned 

into its DEVS counterpart, or directly selected in a DEVS-oriented model base. The integration 

relations are translated into DEVS bridging models as indicated previously. 

 



 
Figure 7. Collaborative modeling approach to holistic simulation 

 

The design of the workflow model, as well as its transformation into DEVS models to serve as 

components of the framework, are based on research works initiated by Norbert Giambiasi with 

one of his PhD student and further developed by the latter and PhD students of his own. As 

detailed subsequently, this research effort started with classical workflow-based M&S, and then 

got matured with BPMN-based M&S. 

 

 

4.1. Workflow Modeling and Simulation 

 

Workflows have been developed in several domains such as production science, information 

systems, scientific protocols, etc. As a major investigator since the middle of the 90's, the 

Workflow Management Coalition (WfMC) has developed an XML-based language to represent 

workflows (XML Process Definition Language, XPDL), which became a standard in the 

community (52-53). Workflows have been coupled with simulation features (54). In works led 

by Norbert Giambiasi (2), XPDL models describe composite items (e.g. patient cases) passing 

over a sequence of treatments, task components that treat items, and controller components that 

route items between tasks. These models are transformed into coupled G-DEVS models (1) in 

a three-step method (2). Each basic component of an XPDL model is translated into a GDEVS 

atomic model. G-DEVS was chosen for its capacity to handle in one event a list of values. This 

list was smartly carrying information about the product or flow and it was used to route the flow 

and track information. All the G-DEVS atomic models are then coupled together to form the 

DEVS-based simulation model of the entire XPDL model. This method has successfully been 

applied to the industrial manufacturing processes of electronic components. 

 

 

4.2. BPMN Modeling and Simulation 

 



After a decade of maturity, workflow modelers started looking for a more comprehensive and 

user friendly language. The combined efforts of working groups such as Business Process 

Initiative (BPI) and the Object Management Group (OMG), led to BPMN (Business Process 

Modeling Notation), a graphical, high level, and user friendly process description language 

(55). BPMN is associated to BPEL (Business Process Execution Language) for its execution. 

In the context of M&S, authors in (56-57) presented a Model Driven Development framework 

(called MDD4MS) for BPMN to DEVS transformation. BPMN is used at the conceptual 

modeling level and DEVS is used at the simulation modeling level. BPMN and DEVS Meta-

models are defined and the former mapped onto the latter through a set of transformation rules. 

Basic concepts in BPMN, such as Task, Event, and Gateway, are transformed into DEVS 

atomic models, while more advanced concepts, such as Pool, Lane, and Sub Process, are 

transformed into DEVS coupled models. An alumnus from Giambiasi’s research group, in 

association with his own students and colleagues extended this approach to BPMN 2.0 (3). 

 

 

4.3. Illustrated example 

 

This simple example is to show intuitively how the process-oriented M&S approach developed 

in (2) and matured in (3) can easily connect to the M&S framework for value-based healthcare 

systems proposed. The BPMN model presented in Figure 8 describes a simple medical practice 

workflow and focuses on 3 different generic entities: Patient, Emergency Practitioner, and 

Medical Specialist. The two latter belong to a same Hospital. Figure 8 encompasses, in the form 

of a workflow, two perspectives of the framework proposed: the Patient entity is viewed from 

the IB perspective, while the pair, made of the Emergency practitioner and the Medical 

Specialist, are seen from the RA perspective. According to transformation rules defined in (3), 

the IB entity will turn into a DEVS atomic model, while the RA pair of entities will turn into a 

DEVS coupled model. Bazoun et al. (3) defines an approach to transforming BPMN models 

into DEVS simulation models based on the metamodel approach. XML and ATL 

transformation mechanisms (58) are used to obtain DEVS models, then the obtained DEVS are 

enriched by performance indicators (time and costs). Each patient model in Figure 8 represents 

an individual in the population, who is affected by a health issue. The model stresses the BPMN 

tasks (colored in orange) and the intermediate event that trigger the search for medical resources 

according to health regulation recommendations or procedures, and based on the type of health 

issue experienced. In the scenario described here, the patient is selecting the hospital emergency 

department (H) rather than a general practitioner (GP). The criteria used to do this selection are 

based on population dynamics-related knowledge (including geographical location, social 

status, etc.) abstracted by parameters. The outcome of the selection will, in its turn, feed 

parameters of RA-specific models. This feeding and the feedback received are materialized by 

the events sent between the Patient and the Emergency practitioner model. The result is 

affecting the patient health status both in IM and PD perspectives. Interested readers to detailed 

transformation rules are invited to refer to (3). 

 



 
Figure 8. BPMN model of a medical practice workflow 

 

 

5. Related works 
 

Literature review shows a huge number of research papers in the area of M&S applied to 

Healthcare management. Many of these efforts concentrate on one of the 4 generic perspectives 

we have identified (Resource Allocation, Health Diffusion, Individual behavior, and Population 

Dynamics). Some of them integrate 2 or 3 of these perspectives. Table 1 shows a representative 

sample of such contributions. To our knowledge, none of them integrates the 4 perspectives in 

one holistic approach as does our framework. 

 

Some previous works are close to our effort to propose a stratification of levels of abstraction 

and their integration into a holistic framework, though not identical. In (31), the authors 

introduced a conceptual agent-based framework for modeling and simulation of distributed 

healthcare delivery systems, which is structured into a three-level categorization, with a 

simulation engine as the integration platform. The first layer includes Agents, Objects, 

Environment and Experience. In the second and the third layer, each component is broken down 

into two or more subcomponents with more details. 

 

Table 1. Benchmark of integrated healthcare M&S frameworks 

Integrated Healthcare M&S 

Frameworks 

Resource 

Allocation 

Health 

Diffusion 

Population 

Dynamics 

Individual 

Behavior 

(38)        

(26)         

(39)       

(42)        

(43)       

(37)       

(4)       

(44)       



(40)       

(23)       

(30)      

(25)       

(59)       

(41)       

(60)     

(61)        

 

While seeking to provide methods to model an ideal healthcare delivery system viewed as 

loosely coupled distributed system of systems, (62) presented a methodology and modeling 

environment for simulating national health care based on multi-level modeling and families of 

models applicable to coordinated care architectures. The authors follow the approach of 

Aumann for the formulation of a hierarchical design in terms of a linearly ordered set of three 

levels, to define the primary (focal) level of model development and those levels immediately 

above and below together with their experimental frames. The authors developed a stratification 

of healthcare in four levels of Modeling Framework focused on coordination. Among the four 

levels, the level 2 which is the coordination of Individual’s Care in a Provider Group was the 

focal level for the immediately lower level that represents the patient adherence to provider’s 

care plan, and the next level up which is the coordinated care architectures of populations of 

patients and groups of providers. The upper fourth level represents the Healthcare Environment. 

 

A taxonomy of healthcare models based on two simulation approaches, discrete-event 

simulation and system dynamics, was presented by (12) classifying models into three levels. At 

level 1 are models of the human body also called disease models, at level 2 are operational and 

tactical models of healthcare units, and at level 3 are strategic models. 

 

Seck & Honig (49) introduced a multi-perspective modeling approach that can be applied to 

any domain (and not in healthcare M&S only). Therefore, perspectives are not specifically 

identified, but a generic conceptual framework is proposed and formalized by adding to the 

DEVS systems specification hierarchy, a top layer to represent multi-perspective models. 

 

An integration approach, very similar to ours, is proposed in (61), and though not formalized. 

The common denominator chosen to specify models is System Dynamics. 

 

A key issue in developing multi-perspective models is the validity of the bridging components, 

i.e., the way parameters of a model are disaggregated using outputs of other models. Authors 

in (63) first asserted the need of awareness for such a legitimacy issue. If a parameter in one 

component varies in time according to the output of another component, then the status of the 

parameter change, becoming a new type of state variable. The assumptions made in the former 

component should stay valid. For instance, if the former component is a differential equation, 

by varying one of its parameter at runtime, we should insure that the numerical integration 

scheme we use to compute the equation is still stable. 

 

The SES extension to integrate abstraction hierarchies and time granularity, as proposed in (64), 

provides a convenient ontological framework that will allow us to extend the multi-perspective 

modeling approach beyond healthcare systems, towards a more generic framework. 

 



 

6. Conclusion 

 

We have proposed a framework for multi-perspective modelling and holistic simulation of 

healthcare systems. Furthermore, we have developed an integrative approach for the 

interactions between models of different perspectives through dynamic update of models 

output-to-parameter integration during concurrent simulations. Such an approach provides 

multiple levels of explanation for the same system, while offering, at the same time, an 

integrated view of the whole. The novelty of our approach is that notable components of the 

healthcare system are modeled as autonomous systems that can influence and be influenced by 

their environments. The resulting global model can be coupled with a holistic experimental 

frame to derive results that couldn’t be accurately addressed in any of the perspective taken 

alone. 

 

Furthermore, we have connected this framework to process-based M&S results previously 

established, to allow domain experts bring their knowledge at the conceptual modeling level, 

while model transformation can turn the abstractions described into their DEVS counterparts. 

Our future direction is to expand on the coordination dimension, towards M&S for value-based 

learning healthcare systems. 
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Appendix 
 

A1. Ebola spreading model (compartmental model) 

 
𝑑𝑆

𝑑𝑡
= -SI-SD 

𝑑𝐸

𝑑𝑡
= SI+SD -E 

𝑑𝐼

𝑑𝑡
=  E-I 

𝑑𝑅

𝑑𝑡
= (1-f)I 

𝑑𝐷

𝑑𝑡
=  𝑓I 

where 

 S is the number of susceptible individuals in the population 

 E the number of exposed individuals (susceptible individuals become 

exposed before being infected) 

 I is the number of infectious individuals I 

 R is the number of recovered individuals 

 D is the number of dead individuals 

 β is the transmission rate with infected individuals 

  is the transmission rate with dead individuals 

 σ is the incubation rate 

 γ is the “recovery or death” rate 

 f is the case fatality rate 

 

 

A2. Daily worker model (Agent-based model)) 

 

 
 r is the probability for a primo entering (i.e., a daily worker in a new working area) to 

get a job daily 

 p is the probability for a worker to keep the same job for the next day 

 q is the probability for a jobless to find a new job 

 x is the number of days after which a jobless will relocate 

 it takes 3 days to a primo entering to establish and understand how the local market 

works 

 

 



A3. Interstate migrations model (Cellular Automata) 

 

ni(t+1) = gini(t) + ij(i-j)|ni-nj|e
-dij 

where 

 ni(t) is the population of state i at time t 

 gi is the net growth rate (i.e., birth – death +/- migrations from/towards 

outside the country) of state i 

 i is the relative attractivity of state i (i.e., the GDP per capita of state i over 

the GDP per capita of the country) 

 dij is the distance between capital cities of states i and j 

  is a constant positive number 

 

 

A4. Hospital beds allocation model (Forrester System Dynamics model) 

 

 


