
HAL Id: hal-01773636
https://hal.science/hal-01773636

Submitted on 8 Aug 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generalized Discrete EVent System specification
(G-DEVS): A State of the Art

Grégory Zacharewicz

To cite this version:
Grégory Zacharewicz. Generalized Discrete EVent System specification (G-DEVS): A State of the
Art. SIMULATION: Transactions of The Society for Modeling and Simulation International, In press,
�10.1177/0037549718777626�. �hal-01773636�

https://hal.science/hal-01773636
https://hal.archives-ouvertes.fr

Preprint of DOI: 10.1177/0037549718777626 journals.sagepub.com/home/sim

To appear in Sage Simulation Journal

Generalized Discrete Event System specification (G-DEVS)

A State of the Art Study

Greg Zacharewicz*

* Univ. Bordeaux, IMS, UMR 5218, F-33400 Talence, France

(e-mail: gregory.zacharewicz@ims-bordeaux.fr)

Abstract: The Generalized Discrete Event System specification (G-DEVS) language was introduced by

Norbert Giambiasi in the 1990s. This paper first examines the specification of G-DEVS and gives an

historical view of N. Giambiasi’s works that contributed to this concept. The paper particularly focuses on

the extension of G-DEVS to distributed simulation. An example of a G-DEVS model of a ski chairlift

system with chair and skier is proposed to show the accuracy gained by using G-DEVS instead of other

classical discrete event modeling formalisms. Then, the paper presents how G-DEVS has been extended

for interoperability with other components in the context of supply chain M&S coping, with the possibility

to compose different model formats at simulation time. Next, the focus is on a G–DEVS editor tool and its

extensions: LSIS_DME. The distributed simulation and the HLA standard were used to support the

interoperability of various models and simulators.

Keywords: Discrete Event Modeling and Simulation, G-DEVS, DEVS, Distributed Simulation, HLA.

1. INTRODUCTION

The Generalized Discrete Event System specification (G-

DEVS) language was proposed by N. Giambiasi in the middle

of the 1990s (Giambiasi 2000). He created G-DEVS to more

accurately capture the signals and states of complex systems

using polynomial approximations of real data. This formalism

has been used in several works. It has been originally discussed

in B. Escude’s PhD thesis. Section 2 presents an overview the

G-DEVS formalism from a theoretical point of view. This

includes a recall of the formalism, compiled with different

contributions. Section 3 presents an historical perspective

situating various contributions to G-DEVS. In Section 4, these

contributions are illustrated by developing a simple case study

of a ski chairlift that exposes the interest of G-DEVS. This

academic example shows the accuracy gains regarding the data

handled by the model in a real system. Section 5 focuses on

the use of G-DEVS and HLA in the context of interoperability

demand with other tools. Section 6 presents the LSIS_DME

modelling and simulation tool. This tool is compliant with the

HLA standard. Finally, the paper presents the interoperability

between G-DEVS modelling and simulation with other

modelling languages and simulators in reference to model

transformation and distributed simulation standards.

2. G-DEVS OVERVIEW

2.1. Formal description of G-DEVS

Traditional abstraction with discrete events approximates

input-output signals as a piecewise-constant trajectory.

Nevertheless, this abstraction seems limited when data

relationships are not constantly linear and even more complex.

In the middle of the 1990s, Norbert Giambiasi proposed

extending DEVS to deal with more complex information using

polynomial approximation. In detail, G-DEVS defines the

abstraction of a signal with a piecewise-polynomial trajectory

(Giambiasi, 2000). Fig. 1 illustrates a comparison between a

piecewise-constant segment and a piecewise-polynomial

segment. Giambiasi’s idea was to transmit not the unique value

of an event, but rather the coefficient values that describe the

polynomial that approximates real information.

Fig. 1. Piecewise constant vs. polynomial Trajectories

Vi

t

t1 t2t ’ t ’’ t ’’’

Vi

t

t1 t2t ’ t ’’ t ’’’

Basically, in G-DEVS an input event is a list of coefficient

values of the polynomial describing the continuous signal. The

degree of the polynomial is the degree of the event. Therefore,

when modeling a signal, DEVS can be considered as a

particular case of G-DEVS, i.e., a 0-order G-DEVS. The

representation of an original continuous signal is thus more

accurate with G-DEVS, since many mathematical functions

can be approximated with the Taylor function into polynomial

functions. Then, to recreate as an output a continuous

information, it can be used, with a sensible amount of data,

mathematical methods such as Lagrange-Hermite

interpolation approaches in order to recreate an appropriate

polynomial level. However, this kind of methodology is

beyond this paper’s scope and are not developed here.

We recall in this section the G-DEVS formalism. As

introduced previously, it finds its main interest by the fact that,

from a mathematical point of view, classical discrete event

abstraction approximates observe input-output signals as a

piecewise-constant trajectory. As presented earlier, G-DEVS

defines abstractions of signals with piecewise-polynomial

trajectories. Thus, G-DEVS defines an event as a list of values.

These values represent the polynomial coefficients that

approximate the input-output trajectory. Formally, G-DEVS

represents a dynamic system as an n-order discrete event

model with:

DESN = <XM, YM, S, δint, δext, , D>

The following mappings are required:

XM = An+1, where A is a subset of integers or real numbers

YM = An+1

S = Q x (An+1)

For a total state S defined by the following set of state variables

(q, (an, an-1,......, a0), 0) and a continuous polynomial input

segment w : <t1, t2> X, are defined:

The internal transition function:

int (q, (an, an-1,......, a0)) =

(Straj q, x ((t1+D((q, (an, an-1,......, a0)), x))))

with x =antn+an-1tn-1+…….+a1t+a0 and Straj model state

trajectory

q de Q et w : <t1, t2> X,

Straj q,w : <t1, t2> Q

The external transition function:

ext (q, (an, an-1,......, a0), e, (an’, an-1’,......, a’0)) =

(Straj q, x(t1+e), x’)

with: Coef (x) = (an, an-1,......, a0)

and Coef (x’) = (an’, an-1’,......, a’0)

Coef: function to associate n-coefficients of all continuous

polynomial function segments over a time interval <ti, tj>

to the constant (n+1) values (an, an-1,......, a0), such as:

w(t) = antn+an-1tn-1+…….+a1t+a0

InCoef: (q, (an, an-1,......, a0)) = (q, x)

The output function:

 : S An+1

The function defining the life time of the states:

D(q, (an, an-1,......, a0)) =

MIN(e/Coef (Otraj q, x(t1))

Coef (Otraj q, x(t1 + e))

with Otraj model output trajectory:

Otraj q,w:<t1, t2> Y

2.2. DEVS Coupled model

Zeigler (1976) introduced the concept of the coupled model.

Each basic model of a coupled model interacts with the other

models to produce global behavior. The basic models are

either atomic models or coupled models stored in a library. G-

DEVS model coupling is using same hierarchical approach as

DEVS. In consequence, a G-DEVS coupled model is defined

by the following structure (reused from DEVS):

MC = < X, Y, D, {Md/dD}, EIC, EOC, IC, Select>

X: set of external events.

Y: set of output events.

D: set of components names.

Md: DEVS models.

EIC: External Input Coupling relations.

EOC: External Output Coupling relations.

IC: Internal Coupling relations.

Select: defines priorities between simultaneous events

intended for different components.

2.3. DEVS and G-DEVS Simulator

Ziegler (2000) proposed the concept of a DEVS abstract

simulator to define the simulation semantics of a formalism.

The architecture of the simulator was based on the hierarchical

model structure. G-DEVS respects and uses the concepts of the

DEVS abstract simulator.

The processors involved in a hierarchical simulation are:

Simulators, which ensure the simulation of the atomic models;

Coordinators, which ensure the routing of messages between

coupled models; and the Root Coordinator, which ensures the

global management of the simulation (Fig. 2).

The simulation runs due to the exchange of specific messages

between the different processors:

XMessage: Represents an external event (e.g.,

coefficient-event vector in G-DEVS).

*message: Represents an internal event.

Ymessage: Represents an output event.

Imessage: Initializes the model with all the default

values chosen by the user.

Fig. 2. From model to simulation

3. CHAIRLIFT EXAMPLE

This section presents the example of a detachable 1-seater

chairlift system in which a skier is moved on a suspended chair

along a cable sustained by pylons. This example is attempting

to continue the series of academic examples to illustrate

GDEVS, such as the bottling chain system, introduced by

Giambiasi (2001), in which barrels were moved horizontally

on a conveyor belt. Here, a chairlift loads and unloads skiers

on a chair. Then chair moves skier from starting point to the

top of a ski track, it is released by a commanded system. Fig.

3 schematically describes this system. For educational

purpose, it is assumed that chairs are detachable and released

one by one and we consider in this example that only one at a

time can be on the route. We use a chair speed input value to

command the speed of the chairlift. The chair can be stopped

in case the skier falls down at departure or arrival step, slowed

down if the skier is in a difficult situation or speeded up to

reduce the lost time due to previous situations. The system

precisely situates the skier trough the chair position computed

as a continuous value. Localizing the skier can be useful for

restarting the system after a breakdown, carefully handling

skier arrival or in case of emergency.

The model here was realized using the G-DEVS formalism,

with the goal of showing accuracy gains compared to other

formalisms like classical DEVS.

A hybrid system is one in which the model specification

includes both continuous descriptions in the form of

differential equations and discrete events. Praehofer (1991)

developed a formalism to synthesize hybrid model

specification utilizing continuous and discrete event sub-sets

and illustrated the idea for a barrel generator system. Under G-

DEVS, the hybrid system may be specified uniformly utilizing

only discrete events and will yield similar quality results as in

Praehofer’s work.

The system is characterized through a continuous input (chair

speed), a continuous output (chair position), and a discrete

output (skier). Chair position also serves as a state variable.

The chair speed causes the value of chair position to change

and the first derivative of chair speed is equal to chair speed.

A skier is considered reaching his destination when the chair

position variable reaches the position value + 100 m; it is then

outputted through the discrete output port, skier that can be

used to count the number of skiers reaching the top of chairlift.

Next, chair position is reset to 0. Given that chair position

represents the integration of chair speed over time, its behavior

is piecewise linear and its individual segments may be

expressed in G-DEVS in the form of discrete coefficient-

events. Thus, the chairlift system may be modeled uniformly

through discrete events in G-DEVS. In contrast, in Praehofer

(1991), the M&S approach mandate a traditional hybrid

specification.

Fig. 3. Chairlift, chair (and skier) position

The progress of execution of the G-DEVS simulation is traced

through the execution of the state transition and output

functions. Assume that the tuple (ac, bc) are state variables,

that represents the coefficients of the linear function:

chair position = 10 . ac . e + bc that models the linear skier

position progress with e the elapsed time. The state variable

sigma specifies how the simulation time advances, so it defines

the model state life time. The state variable in represents the

memorization of the event occurrence of a new flow rate given

by chair speed. It distinguishes if the skier is being moved at

the time the event is received or not.

ext (((ac, bc), sigma, in), e, chair speed)

 bc := 10 . ac . e + bc

 ac : = chair speed

 in := true

 sigma := 0

int (((ac, bc), sigma, in))

 if in = false

then bc := 0

 sigma := 10 / ac

 else if ac = 0

then sigma := infinity

 else sigma := (10- bc) / ac

endif

Root

Coordinator

Coordinator

B

Coordinator

A

Simulator

A1

Simulator

B2

Simulator

B1

Coupled

Model

Coupled

Model

Atomic Model

Atomic ModelAtomic Model

(*,t)

(*,t) (*,t)(x,t) (y,t) (x,t) (y,t)

Min tn

a) b)

 in:= false

 endif

 (((ac, bc), sigma, in))

 if in = false

then send out the skier variable to output skier

 and send out (ac, 0) to port-chair position

 else send out (ac, bc) to port-chair position

 endif

This example reflects the use of Mealy representation in the

modeling, where the generation of an output event is triggered

by an input event. An output event is assumed to result at the

same time the causal input event is intercepted by the model.

Thus, while synthesizing a coupled model, if loops

characterized by zero delays are encountered, the simulation

process will fail, since an infinite number of events may be

generated at the exact same time. Clearly, this is an artifact of

the zero delay assumption, stemming from approximating

delay values to zero. To address the problem effectively, a

small but finite delay, t, may be introduced between the input

and output events.

Fig. 4 describes graphically the evolution of the input, chair

speed, output skier, and the coefficients – ac and bc – as the

simulation progresses and time advances. The continuous

variable chair position is determined from the discrete

coefficient value utilizing the “Coef-1” function, as presented

in Fig. 5.

Fig. 4. Evolution of Chair Speed, Skier, and the coefficients –

ac and bc – as a function of time for Chair Position.

The hybrid system serves as a good vehicle to intuitively

understand the power of generalization inherent in the G-

DEVS approach. Consider that the chair position variable is an

Nth order function of the input inflow. To represent the state of

the model would require N+1 coefficients and a G-DEVS

specification may be developed along the same lines as

described earlier. An input event associated with inflow will

cause a state change in at least one of the N+1 coefficients,

thereby triggering execution of the model.

If we focus on the chair position value state variable of the

studied system, we can see that using G-DEVS can give a more

precise value of the chair (and skier) position. Fig. 5, gives the

variation of this state variable during simulation. Depending

on some incidents (e.g., delay, slow down) that can occur

while moving; we can observe that the skier and chair position

is not the same, due to the slope of the polynomial functions

that describe it. In detail, in the first case the chair position is

purely linear. In the second case, a stop occurs while lifting; it

follows a short delay of 3 time units. And in the last case, the

chair starts more slowly and then needs to be accelerated to

reach the deadline to make the skier arriving at destination on

time. The result is that at any time during the simulation the

skier (chair) position can be questioned to give its current

value more precisely than can piecewise-constant values

according to ac, bc and e. In comparison, the position is much

more precise than only considering discrete steps reached such

as considering, for instance, the numbers of pylons reached.

Fig. 5. Continuous representation of the “Chair Position”

variable

4. HISTORICAL PERSPECTIVE OF G-DEVS’

CONTRIBUTIONS

This section presents a non-exhaustive historical perspective

of the different contributions proposed by Norbert Giambiasi

and his team at the DIAM lab and, later, at the LSIS lab.

Bruno Escude started his PhD work with the statement that

systems whose input/output are dynamic functions of time are

nevertheless modelled by classical discrete event specification

(e.g. DEVS) that approximates the input, output, and state

trajectories through piecewise constant segments, where these

segments correspond to discrete time intervals that are not

necessarily equal in length. For systems that defy accurate

modelling through piecewise-constant segments, B. Escude,

mentored by S. Ghosh and N. Giambiasi (2000, 2001),

presented G-DEVS for the first time in a journal paper as “a

generalized discrete event specification”, wherein the

trajectories are organized through piecewise-polynomial

segments. They argued that the use of polynomial functions

for segments promises higher accuracy in modelling

continuous processes rather than discrete event abstractions.

They also compared and observed that discrete event systems,

including DEVS and G-DEVS, executed faster on computers

because executions denoted significant abstractions in the

system, unlike in continuous simulations where execution is

continuous and exhaustive. Moreover, they observed in

practice that G-DEVS' superiority over DEVS lies in its ability

to discretize a system characteristic. A key contribution of G-

DEVS is that it permits the development of a uniform

simulation environment for hybrid, i.e., both continuous and

discrete, systems. They concluded by illustrating G-DEVS on

both a first-order system and a hybrid system, with piecewise

linear segments. These two representative systems were

modelled under G-DEVS and executed on a simulator

developed for G-DEVS execution.

At the same time, Armand Damiba, a PhD student, under the

supervision of N. Giambiasi, and Aziz Naamane (2001),

proposed an approach combining a bond-graph with G-DEVS’

formalism for the modelling and simulation of complex

systems using discrete event methods. They showed how to

build discrete-event simulation models for bond-graph

elements, using either piecewise linear input-output

trajectories or any kind of polynomial trajectories. One of the

main advantages of their method is the reduction in the number

of simulation steps, and therefore the possibility of studying

dynamic-hybrid systems using only the discrete event

paradigm.

Then, Jean Claude Carmona, N. Giambiasi, and A. Naamane

(2004) described the fundamental integrator operator, the time

delay operator, and the concept of output feedback. Thus, they

proposed an integrator under piecewise-linear input

trajectories, thus, under trajectories described by a sequence of

general order polynomials (G-DEVS), ensuring a user-given

accuracy. Also, they obtained smart behavior in the case of

input discontinuities contrasting with the unsatisfactory

examples of classical numerical solvers. Furthermore, a

detailed comparison with discrete-time simulation techniques,

such as Euler, allowed the assessment of an important

computational gain using the proposed techniques. Finally, the

complete treatment of a hybrid system not only illustrated the

relevance of this approach, but underlined the interest of its

application in the more general contexts of mixed-mode

simulation and distributed simulation.

Later, Giambiasi and Carmona (2006) proposed to model basic

continuous components of dynamic systems in a way that

facilitated the transposition to a G-DEVS model, which thus

offered the ability to develop a uniform approach to model

hybrid systems (abstraction closer to real systems), i.e.,

systems composed of both continuous and discrete

components. The approach was obviously a discrete-event

approach, in which the choice of the time interval between two

steps of calculation was based on the behavior changes of the

process and no longer constant and/or a priori given. The

underlying objective was to strictly satisfy a given accuracy

with a low computational cost. More precisely, they presented

a G-DEVS model of an integrator using polynomial

descriptions of input-output trajectories. They showed its great

capability of easily handling the delicate problem of input

discontinuities, and made a detailed comparison with classical

discrete time simulation methods, thus demonstrating its

relevant properties. Several examples, including a complete

hybrid system, illustrated their results.

Gabriel Wainer and N. Giambiasi (2004a) and (2005)

introduced the Cell-Discrete Event System Specification

(Cell-DEVS) formalism that allows defining asynchronous

cell spaces with explicit timing delays (based on the

specifications of the DEVS formalism). They used Cell-DEVS

to solve different applications and go one step further in the

definition of complex continuous systems by combining Cell-

DEVS and Generalized DEVS (G-DEVS). In particular, they

proposed a model describing the electrical behavior of the

heart tissue, as previous research in this field has thoroughly

studied this problem using differential equations and cellular

automata. They showed that they can provide adequate levels

of precision at a fraction of the computing cost of differential

equations. They demonstrated that the use of the G-DEVS

formalism is perfectly suited to deal with this category of

problems, thus improving complex systems analysis. As a

conclusion, Wainer and Giambiasi showed that their approach

permits extending easily models to provide different actions in

different cells, while not affecting performance (2004b).

Gregory Zacharewicz (2008a), as a PhD student under the

supervision of Claudia Frydman and N. Giambiasi, presented

a Workflow environment allowing distributed simulation

based on DEVS/G-DEVS formalisms. A description language

for Workflow processes and an automatic transformation of a

Workflow into a G-DEVS model were defined. They

introduced a new distributed Workflow Reference Model with

HLA-compliant Workflow components, detailed the HLA

objects shared between Workflow federates, and presented the

publishing/subscribing status of each of these federates.

Finally, they illustrated the use of this distributed environment

with an example from Microelectronic production Workflow.

Recently, Amine Hamri, A. Naamane, and N. Giambiasi

(2015) have presented and demonstrated using G-DEVS to

build precise discrete-event models of logic gate design and

analysis in order to get more accurate and faster simulations.

In this work, states were represented with linear piecewise

trajectories (G-DEVS of order 1), contrary to the classical

Boolean logic models where states have constant piecewise

trajectories (0 and 1). With G-DEVS models, the transition

from a low level to a high one and vice versa is a linear

trajectory, which is more realistic than the instantaneous

transitions of classical logic gate models. They also

demonstrated that this accurate representation does not require

any more computations than does the DEVS model.

Several works in different application domains have been

developed by using and citing G-DEVS such as Barhen

(2004). They cannot be all developed here. We can cite Wainer

(2004b) that accurately modeled and simulated Heart Tissue

and Zacharewicz and T. Alix (2012) that modeled and simulate

joint product and service design. In Le Goc (2003), the

knowledge about the behavior of a continuous process has

been formalized in terms of relation between discrete events

so that a recursive recognition process of signatures was used

to design monitoring cognitive agents. At the end, B. Zeigler

has listed G-DEVS (Zeigler, 2003) as one of the significant

contribution in the recent advances of DEVS.

5. G-DEVS’ DISTRIBUTED SIMULATION AND

INTEROPERABLITY

For interoperability purposes, G-DEVS has been proposed to

extend the specification by giving the possibility to couple not

only distributed G-DEVS models, but also G-DEVS and non-

G-DEVS simulation components. Inspired by Zeigler et al.

(1998), Zacharewicz (2008a), during his PhD thesis under the

supervision of Giambiasi and Frydman, proposed to open G-

DEVS to distributed simulation. At that time, the standard for

High Level Architecture (HLA) (IEEEa 2000) was rising; it

was reviewed and adopted as a concrete potential frame to

develop G-DEVS distributed models. The objectives of these

works were to optimize resource use, work on remote

resources, and/or reuse existing simulations, and more

generally systems, by interconnecting them. A distributed

processing must ensure interoperability, confidentiality,

integrity, and causality using temporal synchronization

algorithms.

5.1. Distributed Simulation

Different implementation of the RTI (Run Time

Infrastructure) of HLA was realized and choice was made

between open source, freeware, and commercial RTI solution

implementation. Data need to be synchronized and

interoperable between the different applications that exchange

them. The RTI selected for these purposes in data exchange

was poRTIco RTI (poRTIco, 2010). The main reason for this

choice comes from the Java open source development of this

1.3-certified and 1516-compliant tool. Portico was set and

parameterized under Eclipse. The FOM file includes variable

objects to be shared. These objects are mainly product

attributes, along with their geolocation and crossings points.

The different federates involved in the platform are either G-

DEVS Models or other heterogeneous software applications.

The platform has been tested and used in supply chain

modelling and simulation (Zacharewicz et al., 2011).

The distributed simulation was chosen to ensure the exchange

of information between IS, because it can handle data from

heterogeneous distributed systems without interpreting them;

moreover, it has mechanisms for exchanging synchronized

messages. This is a means to convey and orchestrate the

exchange of data between IS, as an alternative to SOA. It is

robust (running at low levels with local behavior commonly

expressed by discrete event models, such DEVS (Zeigler,

1976; Zacharewicz, 2008a)) and, finally, it is completely

explicit (using synchronization algorithms (Fujimoto, 2000)).

The performance aspect of the messages exchanged, i.e., the

interpretation of messages for the simulation, was left to the IS

and was not addressed directly by the distributed simulation.

5.2. High Level Architecture Overview

The Architecture of High Level, High Level Architecture

(HLA) (IEEEb, 2000), is a specification of software

architecture that defines a normative framework to create

global execution software consisting of distributed simulations

and applications. This standard was introduced by the Office

of Defense Modeling and Simulation (DMSO) (1998) of the

Department of Defense (DoD). The original goal was the reuse

and interoperability of military applications, simulations, and

sensors. In HLA, each participating application is called

federated. An HLA federate interacts within an HLA

federation (Federated Group). HLA definitions have been

formalized in Standard HLA 1.3 in 1996 and HLA 1516

(IEEEa, 2000) in 2000.

The report on interoperability solutions implementations

(Zacharewicz, 2008a) attests that significant enterprise

interoperability solutions use HLA standards to support the

distributed implementation of enterprise interoperability

between components at a “run time” level.

6. LSIS_DME AND ITS EXTENSIONS

6.1. LSIS-DME: DEVS (and G-DEVS) Modeling Editor

Creating G-DEVS models in an editor was a challenge in the

late 1990s. In 2000, the first G-DEVS editor was proposed and

released under the name of DIAM-SIM (Giambiasi, 2000).

Then, in 2005, using a more recent programming language, a

new editor was proposed called LSIS_DME (Zacharewicz,

2008a). This last one was chosen to recode the models recalled

in the previous section and to perform simulations of these G-

DEVS models. The main reason for this reimplementation

came was the deprecation of the code developed in the 1990s.

The elected language was Java and the eclipse platform for

portability aptitudes, ability to develop lightweight web

applications, and to exchange information in XML format.

This new Java-based development environment has allowed

the tool and G-DEVS Model created inside to be more open

and interoperable with other tools and has also supported a

better user-friendly graphical editor.

Also, the runtime target was improved and tailored for G-

DEVS simulation formalism (Giambiasi, 2000).

As an illustration, many examples, such as the models

proposed by Naamane and al. (2004), workflow models, and

the conveyor example in section 3, have been graphically

modelled with LSIS_DME. Fig. 6 depicts a G-DEVS atomic

model screenshot captured in the software. The software

create, save, and edit G-DEVS or DEVS atomic and coupled

models with only a couple of clicks and almost no lines of code

required from the model maker. This permits non-specialists,

including industry practitioners and students, to get into the G-

DEVS modeling phase within a very short time.

Fig. 6. G-DEVS Model in LSIS_DME

In addition, LSIS_DME has been extended to run distributed

simulations. It was completed to become HLA compliant,

according to the methodology provided in Zacharewicz’s PhD

thesis (2008a). These models are therefore potentially able to

be simulated in a distributed environment according to the

HLA standard.

This implements the class FederateAmbassador and callback

functions from RTIAmbassador to communicate with the Run

Time Infrastructure. LSIS_DME has been initially configured

to connect a commercial RTI in the frame of a European

project. Then, it was migrated to an open source framework

(details in section 6). LSIS_DME has permitted performing

distributed simulations connected with other components

(client orders event generator, data bases, guidance emulator

of crossing, etc.). The LSIS_DME extensions solutions for the

platform was coded using the software development

environment Eclipse.

6.2. LSIS_WME: Workflow Component editor

LSIS_DME’s original features mostly apply to users in the

field of M&S. To tackle a production chains’ design, the use

of G-DEVS and associated tools was not easy entry point. To

overcome this problem, Zacharewicz et al. (2008b) introduced

a more conceptual language associated with a graphical tool

with a reduced number of concepts appropriate for non-

specialists. In detail, the production data exchange defines the

flow of information (like sequence planning or

tracing/tracking data) between tasks to be performed by

resources. In more detail, this data flow between the chain

steps and the logistic partners, the products, and the client pass

through products that can be equipped, for example, with

RFID tags, RFID readers, and any mobile station. This flow

must be orchestrated by a technical component able to manage

routing, sequencing, and aggregating information. This

component is in fact composed of a workflow engine that

describes the organization of the proper sequence of

information to exchange regarding causality and, in addition,

a HLA RTI that sustains the time synchronization specified in

this tool.

The WfMC proposed an XML representation of Workflow

currently accepted as a standard in the Workflow community

(WfMC, 1999; 2005). The XML Workflow process model

structure correctness can be certified by referring to a

Workflow Document Type Definition (DTD). This XML

representation is not fully convenient for the XML

specification of production or logistic Workflow. On the one

hand, the specificities of data transiting in a flow of production

need to be identified to be handled by production software and

exploited at the end of flow. On the other hand, some

definitions of this DTD are relative to administrative

Workflow and are not required for the kind of Workflow under

our scope, which can overcast the description for non-

Workflow expert users.

Thus, Zacharewicz (2008a) proposed a simple graphical

language to represent the components involved in Workflow

dedicated to the representation of production systems. A XML

Workflow process model is composed of tasks components

(Fig. 4 square items) that treat items and controllers’

components (Fig. 4 round items) that route items between

tasks. Items (information, e.g., product, routing data, etc.) pass

over a sequence of these components. The items are performed

by resources (e.g., Valve, Conveyor, etc.). Fig. 7 details the

Workflow model of a bottling and packing chain process with

the graphical Workflow Model Editor tool (LSIS_WME)

developed at LSIS University Aix-Marseille (Zacharewicz,

2008a). It represents the high-level Workflow model of the

information exchange (data flow) between different

components. This model consists of an initialization task (Play

symbol), an end task (Stop symbol) (in the figure, they are

initiated and finished by server component), and several tasks

for data treatment (the tasks are allocated to the components;

the swim lines distinguish the responsibilities). In addition, the

model contains controllers (OR-join, OR-split, etc.) to route

the data between the tasks.

Fig. 7. Supply Chain project Workflow

Workflow models are high level models, they need to be

refined for simulation. Several models have been used to

develop simulation engines for Workflow. For example,

Yasper and Yawl (2017) based their model on Petri nets (Van

Hee, 2005).

Zacharewicz (2008b) presented the ability of LSIS_WME to

generate G-DEVS specification using the XML XSLT model

transformation. In the M&S framework, some parts of the

Workflow model were transformed into a G-DEVS coupled

model by coupling G-DEVS atomic models (Fig. 5). The

coupled model coupling relation was generated and a library

of logistic models was proposed. This G-DEVS model takes

advantage of formal properties. In conclusion, the workflow

contains both G-DEVS models and other software

components. HLA interoperability permits performing

distributed simulation to validate the coherence of information

flow to be exchanged between the partners before real

execution.

6.3. Hybrid Simulation Platform

The LSIS_DME and WME editors have been involved with

previous work using HLA to ensure interoperability, as

mentioned in Zacharewicz (2008b) (2010). They have been

reused for building an application platform dedicated to a

simulation case study of supply chain model partners. The

accomplishment of mixing several simulation tools and other

software demonstrated that formal execution can be composed

with other data handling tools such as data bases systems,

ERP, etc.

Fig. 8 presents the distributed components of the platform that

used HLA to communicate in a System of System approach of

the announced logistic project (Zacharewicz et al., 2011).

Here, the G-DEVS models were coupled with RFID databases,

GIS maps, and constraint solver software.

Fig. 8. G-DEVS HLA platform

7. ONGOING WORK AND PERSPECTIVES

G-DEVS workflow models have been exploited in industrial

contexts to represent several industrial processes. At the same

time, industrial enterprises have gradually moved their goals

towards production of physical products supplemented by

intangible services to differentiate themselves in a competitive

market. The study of these services, their set up, and the

evaluation of their efficiency is a rising research domain. In

the frame of Model Driven Service Engineering Architecture

(MDSEA), a service system is modeled from different points

of view (static and dynamic) at different MDSEA levels:

Business Service Model (BSM), Technology Independent

Model (TIM), and Technology Specific Model (TSM).

Simulation is a dynamic feature of MDSE, which explains the

need for coherent M&S formalisms for simulation activities.

Accordingly, Hassan Bazoun (2014), in his PhD work

supervised by Zacharewicz, presented the simulation of

service systems based on DEVS and G-DEVS models. These

works inherit the transformation of workflow to G-DEVS.

Because workflow modelling is now mostly represented

according to the BPMN standard, the authors defined a

transformation approach of BPMN 2.0 models into DEVS and

G-DEVS simulation models based on the metamodel

approach, particularly with the need for data. They described

the methodology for enrichment of obtained DEVS or G-

DEVS models through performance indicator settings (time

and costs).

Other approaches are still under development for using G-

DEVS as the convergence formalism for many paradigms,

both conceptual or not. G-DEVS is an unambiguous formalism

ready for simulation. These works often deal with multi

modeling and model transformation. Thus, this demonstrates

the continuing interest in G-DEVS.

8. CONCLUSIONS

This paper proposed a state-of-the-art G-DEVS formalism. It

also outlined a history of different contributions. Then, it

provided the example of a chairlift system. In addition, it

introduced the use of G-DEVS models in distributed

simulation with the objective of interoperability with other

systems. The HLA standard can be used not only for

interoperability between distributed G-DEVS models, but also

potentially with other simulation formalisms. Recent research

has consisted in bringing missing features to G-DEVS

regarding its interoperability with other software. We keep in

mind that polynomial abstractions are still controlled by

experts to define appropriate thresholds, for instance. One

open issue is that some domain-dedicated software agents can

use the semantics of the domain to determine the shape of the

polynomial function to be used in the model and simulation.

9. ACKNOWLEDGEMENT

This paper is dedicated in the memory of Norbert Giambiasi,

who was the initiator, director, and mentor of these works. I

have special thoughts for Claudia Frydman, his wife, who has

contributed to this research work by bringing the vision of a

computer scientist, including the consideration of performance

computing that has always been perfect complement to

Norbert’s vision focused on digitalization and system

specification. For myself, I was mentored by both of them,

particularly during my PhD study and the works presented in

section 2.4 and the specific study case developed in section 2.5

at the LSIS Lab and Aix-Marseille University.

10. REFERENCES

Alix, T., Zacharewicz, G., (2012). Product-service systems

scenarios simulation based on G-DEVS/HLA: Generalized

discrete event specification/high level architecture.

Computers in Industry, Elsevier, 63 (4), pp.370-378.

Barhen, S., Barhen, J., & Protopopescu, V. (2004).

Asynchronous Discrete Event Systems and Emergence of

Computational Chaos. Mediterranean Multiconference on

Modeling and Simulation, Genoa, Italy October 29-31

Bazoun H., Bouanan Y., Zacharewicz G., Ducq Y., and Boye

H. (2014). Business process simulation: transformation of

BPMN 2.0 to DEVS models (WIP). In Proceedings of the

Symposium on Theory of Modeling & Simulation - DEVS

Integrative (DEVS '14). Society for Computer Simulation

International, San Diego, CA, USA, Article 20, 7 pages.

Carmona, J.C., Giambiasi, N. & Naamane. (2004).

Generalized Discrete Event Abstraction of Continuous

Systems: Application to an Integrator, A. Journal of

Intelligent and Robotic Systems 41: 37.

DMSO (1998). High Level Architecture, DMSO,

https://www.msco.mil/MSReferences/HLATechnicalSpecificat

ions.aspx, accessed November 2017.

Fujimoto R. M., (1997). “Zero lookahead and repeatability in

the high level architecture”, Spring Simulation

Interoperability Workshop, Orlando, FL, 3-7 March.

Hamri, M. E. A., Giambiasi, N., & Naamane, A. (2015).

Generalized discrete events for accurate modeling and

simulation of logic gates. In Concepts and Methodologies for

Modeling and Simulation (pp. 257-272). Springer

International Publishing.

Giambiasi, N., & Carmona, J. C. (2006). Generalized discrete

event abstraction of continuous systems: GDEVS formalism.

Simulation Modelling Practice and Theory, 14(1), 47-70.

Giambiasi N., Escude B., Ghosh S., (2000). G-DEVS A

Generalized Discrete Event Specification for Accurate

Modeling of Dynamic Systems. SCS Transactions Volume

17, 3, p.120-134.

Giambiasi N., Escude B., Ghosh S. (2001). Generalized

Discrete Event Simulation of Dynamic Systems, in: Issue 4

of SCS Transactions: Recent Advances in DEVS

Methodology-part II, Vol. 18, pp. 216-229, Dec 2001.

IEEE std 1516-2000 (2000a). IEEE Standard for Modeling

and Simulation (M&S) High Level Architecture (HLA) -

Framework and Rules The Institute of Electrical and

Electronic Engineers, ISBN: 0738126217, March 2001.

IEEE std 1516.2-2000 (2000b). IEEE Standard for Modeling

and Simulation (M&S) High Level Architecture (HLA) -

Federate Interface Specification The Institute of Electrical

and Electronic Engineers, ISBN: 0738126217, March 2001.

Le Goc, M., & Bouche, P. (2004). Towards a Discrete Event

Formalization of Sachem's Perception Based Monitoring.

IFAC Proceedings Volumes, 37(15), 203-208.

Naamane, A., Giambiasi N., Damiba A. (2001). Generalized

Discrete Event Simulation of Bond Graph. Simulation 77(1-

2): 4-22.

poRTIco, (2017). HLA RTI Software,

http://porticoproject.org, accessed November 2017.

Praehofer, H. (1991). Systems theoretic formalisms for

combined discrete continuous system simulation. Int. J. Gen.

Systems, 19(3), pp. 219–240.

Van Hee, K., Oanea, O., Post, R., Somers, L., & van der

Werf, J. M. (2006). Yasper: a tool for workflow modeling

and analysis, ACSD 2006. Sixth International Conference on

Application of Concurrency to System Design, 2006 (pp. 279-

282). IEEE.

Wainer, G. A., (2004a). Performance analysis of continuous

cell-DEVS models. In Proceedings of 18th European

Simulation Multiconference.

Wainer, G. A., Giambiasi, N., (2004b). Accurate Modeling

and Simulation of Heart Tissue with GDEVS/Cell-DEVS. In

MSV/AMCS (pp. 150-156).

Wainer G. A., Giambiasi N. (2005) Cell-DEVS/GDEVS for

Complex Continuous Systems. Simulation 81(2): 137-151.

WfMC, Workflow Management Coalition. (1999).

Terminology & Glossary. WfMC-TC-1011, 3.0, Feb.

WfMC, Workflow Management Coalition. (2005). Workflow

Process Definition Interface -- XML Process Definition

Language (XPDL). WFMC-TC-1025, Oct.

YAWL: Yet Another Workflow Language, website, (2017)

http://yawlfoundation.org/, accessed November 2017

Zacharewicz, G., C. Frydman, N. Giambiasi (2008a). G-

DEVS/HLA Environment for Distributed Simulations of

Workflows. Simulation, 84(5), pp. 197-213.

Zacharewicz, G., D. Chen, B. Vallespir, (2008b). HLA

Supported, Federation Oriented Enterprise Interoperability,

Application to Aerospace Enterprises. EuroSISO, Edinburgh,

Scotland, 08E-SIW-074, July.

Zacharewicz G., M. E. A. Hamri, C. Frydman, N. Giambiasi,

(2010). A Generalized Discrete Event System (G-DEVS)

Flattened Simulation Structure: Application to High-Level

Architecture (HLA) Compliant Simulation of Workflow,

Simulation, Vol 86, Issue 3, pp. 181 - 197

Zacharewicz G., J-C. Deschamps, François J. (2011).

Distributed simulation platform to design advanced RFID

based freight transportation systems. Computers in Industry

62(6): 597-612.

Zeigler B. P. (1976) Theory of Modelling and Simulation.

Wiley & Sons, New York, NY.

Zeigler B. P., Lee J. S., (1998). Theory of quantized systems:

formal basis for DEVS/HLA distributed simulation

environment, Proc. SPIE Vol. 3369, p. 49-58, Enabling

Technology for Simulation Science II; Alex F. Sisti; Ed. Aug.

https://www.msco.mil/MSReferences/HLATechnicalSpecifications.aspx
https://www.msco.mil/MSReferences/HLATechnicalSpecifications.aspx
http://porticoproject.org/
http://yawlfoundation.org/

Zeigler B. P., Praehofer H., Kim T. G., (2000). “Theory of

Modeling and Simulation.” 2nd Edition, Academic Press,

New York, NY.

Zeigler B. P., (2003). DEVS today: recent advances in

discrete event-based information technology, 11th

IEEE/ACM International Symposium on Modeling, Analysis

and Simulation of Computer Telecommunications Systems,

MASCOTS 2003. pp. 148-161.

View publication statsView publication stats

https://www.researchgate.net/publication/324686443

