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Abstract

The paper describes a method for reconstructing an image from
noisy and indirect observations by registering, via metamorphosis, a
template. The image registration part consists of two components,
one is a geometric deformation that moves intensities without changing
them and the other that changes intensity values. Unlike a registration
with only geometrical deformation, this framework gives good results
also when intensities of the template are poorly chosen. It also al-
lows for appearance of a new structure. The approach is applicable to
general inverse problems in imaging and we prove existence, stability
and convergence, which implies that the method is a well-defined reg-
ularisation method. We also present several numerical examples from
tomography.

Keywords: Inverse problem; indirect registration; metamorphosis.

1 Introduction

A key difficulty in shape based and/or spatiotemporal image reconstruction
is to match an image against an indirectly observed target (indirect image
registration). In the following, we give a brief overview of these notions
along with a short survey of existing results.

Shape based reconstruction The goal in shape based reconstruction
is to recover shapes (morphologies) of interior sub-structures of an object
whereas variations within these is of less importance. Such imaging studies
arise in nano-characterisation of a specimen by means of electron microscopy
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[5] or quantification of sub-resolution porosity in materials by means of x-ray
phase contrast imaging.

In these imaging applications it makes sense to account for qualitative
prior shape information during the reconstruction. Enforcing an exact spa-
tial match between a template and the reconstruction is often unrealistic
since shape information is almost always approximate, so the natural ap-
proach is to perform reconstruction assuming the structures are ‘shape wise
similar’.

Spatiotemporal imaging Here one images an object that changes over
time, i.e., one needs to recover both the object structure and its time vari-
ation from noisy time series of indirect observations (measured data). An
important case is when the object is the only entity that varies with time.

Spatiotemporal imaging arises when imaging moving organs in medicine.
For more details on this problem, the reader is referred to [10] and the ref-
erences therein. It is in particular relevant for techniques like positron emis-
sion tomography (PET) and single photon emission computed tomography
(SPECT) that are used to image the distribution of injected radiopharma-
ceuticals (activity map). The latter is an inherently dynamic quantity since
anatomical structures, like the heart and lungs, undergo motion during the
data acquisition, see [35] for a survey of organ motion models. Disregarding
organ motion is known to degrade the spatial localisation of the radiotracer,
leading to spatially blurred images. To exemplify the above mentioned is-
sues, consider SPECT based cardiac perfusion studies and 18F-FDG-PET
imaging of lung nodules/tumours. The former needs to account for the
beating heart and the latter for respiratory motion of the lungs and thoracic
wall. Studies show a maximal displacement of 23 mm (average 15–20 mm)
due to respiratory motion [31] and 42 mm (average 8–23 mm) due to car-
diac motion in thoracic PET [37]. Finally, even when organ motion can
be neglected, there are other dynamic processes, such as the uptake and
wash-out of radiotracers from body organs. Visualising such kinetics of the
radiotracers can actually be a goal in itself as is the case in dynamic PET,
which is commonly used in pre-clinical imaging studies related to drug dis-
covery/development [20].

Indirect image registration (matching) The aim in image registra-
tion is to deform a template image so that it matches a target image. This
becomes challenging when the template is allowed to undergo non-rigid de-
formations.

Diffeomorphic image registration is a well developed framework that
meets this purpose. Here, the image registration problem is recast as the
problem of finding a suitable diffeomorphism that deforms the template by
a group action into the target image [40, 2]. The underlying assumption is
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that the target image is contained in the orbit of the template under the
group action of diffeomorphisms. This can be stated in a very general set-
ting where diffeomorphisms act on various deformable objects, like landmark
points, curves, surfaces, scalar images, or even vector/tensor valued images.

The registration problem becomes even more challenging in indirect im-
age registration, which is the case when the target is only known indirectly
through measured data. Application of small diffeomorphic deformations
in the context of indirect image registration is presented in [29]. One can
in a similar manner use large deformation diffeomorphic metric mapping
(LDDMM) framework in indirect image registration as shown in [21, 11].

2 Overview of paper and specific contributions

The paper adapts the metamorphosis framework [36] to the indirect set-
ting. Metamorphosis extends the LDDMM framework (diffeomorphometry)
[40, 25] by allowing diffeomorphic changes to both the geometry of the tem-
plate and its grey-scale values (intensities). As detailed below, an important
feature of metamorphosis compared to diffeomorphometry is its capability
to reconstruct images even when the template has erroneous grey-scale val-
ues that lack geometric features, e.g., in the form of a noisy background.
We also show how indirect registration by metamorphosis formally defines
a regularisation method for inverse problems in imaging, satisfying proper-
ties of existence, stability and convergence. Next, we study robustness with
respect to choice of regularisation parameters. Finally, we provide an algo-
rithm and its implementation1 that relies on a Fourier transforms for kernel
convolutions and a Euler integration scheme for the temporal integration.
Note that other approaches could be developed, like [28] where the time dis-
crete path method in [15] is extended to the indirect setting, or adaptation
of the robust schemes for diffeomorphic registration developed in [22, 23].

We start by recalling necessary theory from LDDMM-based indirect reg-
istration (section 3). Using these notions, we next adapt the metamorphosis
framework to the indirect setting (section 4) and present our proof that this
is a regularisation method (section 4.3). Its numerical implementation is
outlined in section 4.4. Finally, we present several numerical examples from
indirect registration in 2D tomography (section 5). In particular, we give
a preliminary result for motion reconstruction when the acquisition is done
at multiple time points. We also study the robustness of our methods w.r.t.
the choice of regularisation parameters.

1https://github.com/bgris/IndirectMatchingMetamorphosis
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3 Indirect diffeomorphic registration

3.1 Large diffeomorphic deformations

Following [1], (large) diffeomorphic deformations are defined by flows of
time-varying vector fields. More precisely, let Ω ⊂ Rd be a fixed bounded
domain and let X := L2(Ω,R) represent grey scale images on Ω. Next, let
V denote a fixed Hilbert space of vector fields on Rd. We will assume V ⊂
Cp0 (Ω), i.e., the vector fields are supported on Ω and p times continuously
differentiable. Finally, L1 ([0, 1], V ) denotes the space of time-dependent
V -vector fields that are integrable, i.e.,

ν(t, · ) ∈ V and t 7→
∥∥ν(t, · )

∥∥
Cp is integrable on [0, 1].

The following (semi) norm on L1 ([0, 1], V ) will be frequently used:

‖ν‖p :=
(∫ 1

0

∥∥ν(t, · )
∥∥p
V

dt
)1/p

.

Here, ‖ · ‖V is the norm on the Hilbert space V of vector fields that is given
by the inner product.

The following proposition shows that velocity fileds in L1 ([0, 1], V ) can
be used to generate flows in Diffp0(Ω) (set of p-diffeomorphisms that are
supported in Ω ⊂ Rd, and if Ω is unbounded, tend to zero towards infinity).
This yields a method for generating diffeomorphisms.

Proposition 1. Let ν ∈ L1 ([0, 1], V ) and consider the ordinary differential
equation (flow equation):

d

dt
φ(t, x) = ν

(
t, φ(t, x)

)
φ(0, x) = x

for any x ∈ Ω and t ∈ [0, 1]. (1)

Then, (1) has a unique absolutely continuous solution φ(t, · ) ∈ Diffp0(Rd).

The above result is proved in [1] and the unique solution of (1) is hence-
forth called the flow of ν. We henceforth use the notation ϕν

s,t : Rd → Rd,
which refers to

ϕν
s,t := φ(t, · ) ◦ φ(s, · )−1 for s, t ∈ [0, 1] (2)

where φ : Ω→ Rd denotes the unique solution to (1).
As stated next, the set of diffeomorphisms that are given by solving the

flow equation (1) forms a group that is a complete metric space [1]. Its
elements are called large diffeomorphic deformations.
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Proposition 2. Let V ⊂ Cp0 (Ω) (p ≥ 1) be an admissible reproducing kernel
Hilbert space (RKHS) and define

GV :=
{
φ : Rd → Rd | φ = ϕν

0,1 for some ν ∈ L2 ([0, 1], V )
}
. (3)

Then GV forms a sub-group of Diffp0(Rd) that is a complete metric space
under the metric

dG(φ1, φ2) := inf
{
‖ν‖1 : ν ∈ L1([0, 1], V ) and φ1 = φ2 ◦ ϕν

0,1

}
= inf

{
‖ν‖2 : ν ∈ L1([0, 1], V ) and φ1 = φ2 ◦ ϕν

0,1

}
.

The group GV may act on X through the geometric group action, which
defines a deformation operator

W : GV ×X → X where W(φ, I0) := I0 ◦ φ−1. (4)

We conclude by characterizing the regularity properties of flows of veloc-
ity fields as well as the group action in (4), the proof is given in [7]. These
results will play an important role in what is to follow.

Proposition 3. Assume V ⊂ Cp0 (Ω) (p ≥ 1) is a fixed admissible Hilbert
space of vector fields on Ω and {νn}n ⊂ L2 ([0, 1], V ) a sequence that con-
verges weakly to ν ∈ L2 ([0, 1], V ). Then, the following holds with ϕnt := ϕνn

0,t :

1. (ϕnt )−1 converges to (ϕν
0,t)
−1 uniformly w.r.t. t ∈ [0, 1] and uniformly

on compact subsets of Ω ⊂ Rd.

2. lim
n→∞

∥∥∥W(ϕnt , I0)−W(ϕν
0,t, I0)

∥∥∥
X

= 0 for any I0 ∈ X.

3.2 Indirect image registration

Image registration (matching) is the task of deforming a given template
image I0 ∈ X so that it matches a given target image I∗ ∈ X [6, 41].

The above task can also be stated in an indirect setting, which refers
to the case when the template I0 ∈ X is to be registered against a target
I∗ ∈ X that is only indirectly known through data g ∈ Y where

g = A(I∗) + e. (5)

In the above, A : X → Y (forward operator) is known and assumed to be
differentiable and e ∈ Y is a single sample of a Y -valued random element
that denotes the measurement noise in the data.

Access to a shape prior (template), as in indirect registration, can have
profound effect in solving challenging inverse problem in imaging. As shown
in [11], tomographic imaging problems that are otherwise intractable (highly
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noisy and sparsely sampled data) can be successfully addressed using indirect
registration even when the template has a shape that is far from the true
unknown target image that gave rise to measured data. The next step is
to specify what is meant by deforming a template image and we consider
diffeomorphic (non-rigid) deformations, i.e., diffeomorphisms that deform
images by acting on them through a group action.

LDDMM-based registration Image registration by large diffeomorphic
(non-rigid) deformations is typically formulated as minimising the functional

GV 3 φ 7→
γ

2
dG(Id, φ)2 +

∥∥W(φ, I0)− I∗
∥∥2

X
for given γ > 0.

If V is admissible, then one can show that minimising the above functional
on GV is equivalent to minimising the following functional on L2 ([0, 1], V ):
[40, Theorem 11.2 and Lemma 11.3]:

L2 ([0, 1], V ) 3 ν 7→ γ

2
‖ν‖22 +

∥∥W(ϕν
0,1, I0)− I∗

∥∥2

X
given γ > 0.

Such a reformulation is advantageous since L2 ([0, 1], V ) is a vector space,
whereas GV is not. Hence, it is easier to devise algorithms for minimising a
functional over L2 ([0, 1], V ) rather than over GV .

As shown in [11], one can extend the above to the indirect setting where
the image target I∗ is not observed but only a data target g (LDDMM-
based indirect registration). We simply need to replace the data fidelity

term
∥∥W(ϕν

0,1, I0)−I∗
∥∥2

X
with one that is adapted for indirect observations,

which will involve the forward operator A and a data negative log-likelihood
L : Y × Y → R. More precisely, the corresponding indirect registration
problem can be adressed by minimising the functional

L2 ([0, 1], V ) 3 ν 7→ γ

2
‖ν‖22 + L

(
(A◦W)(ϕν

0,t, I0), g
)
.

The functional L : Y × Y → R is typically given by an appropriate affine
transform of the data negative log-likelihood [4], in which case minimising
f 7→ L

(
A(f), g

)
amounts to seeking a maximum likelihood solution of (5).

An interpretation of the above is that the template image I0, which is
assumed to be given a priori, acts as a shape prior when solving the inverse
problem in (5) and γ > 0 is a regularisation parameter that governs the
influence of this shape priori against the need to fit measured data. This
interpretation becomes more clear when one re-formulates LDDMM-based
indirect registration as

min
ν∈L2([0,1],V )

[
γ

2
‖ν‖22 + L

(
(A◦W)

(
φ(1, · ), I0

)
, g
)]

d

dt
φ(t, x) = ν

(
t, φ(t, x)

)
(t, x) ∈ Ω× [0, 1],

φ(0, x) = x x ∈ Ω.

(6)
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(a) Template. (b) Target. (c) Reconstruction. (d) Data.

Figure 1: Reconstruction (c) by LDDMM-based indirect registration using
a template (a) with a geometry that matches the target (b), but with in-
correct background intensity values. Target is observed indirectly through
tomographic data (d), which is 2D parallel beam Radon transform with
100 evenly distributed directions (see section 5.1 for details). The artefacts
in the reconstruction are due to incorrect background intensity in template.

4 Metamorphosis-based indirect registration

4.1 Motivation

The LDDMM-based indirect registration with geometric group action out-
lined in section 3.2 is remarkably stable when the template has correct topol-
ogy and intensity levels [11].

Usage of the geometric group action, however, prevents creating or re-
moving intensity, e.g., it is not possible to start out from a template with a
single connected structure and deform it to a image with two separated struc-
tures. Figure 1 shows the effect that erroneous intensity has on LDDMM-
based indirect registration. This severely limits the usefulness of LDDMM-
based indirect registration, e.g., spatiotemporal images (movies) are likely
to involve changes in both geometry (objects appear or disappear) and in-
tensity.

One approach to address this drawback of LDDMM-based indirect regis-
tration is to replace the geometric group action with one that alters intensi-
ties, e.g., a mass preserving group action [11]. This allows to correct motion
artefacts in PET as shown in [16, 17, 18] but not to model changes in in-
tensities that do not come from a geometric change. Another is to keep the
geometric group action, but replace LDDMM with a framework that model
the transformation of an image by a combination of a diffeomorphic defor-
mation and intensities changes. The latter leads to metamorphosis-based
indirect registration, which we next describe.

4.2 The metamorphosis framework

Just like in LDDMM, diffeomorphisms are generated by flows (1). The
difference in metamorphosis is that these diffeomorphisms are combined with
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intensities changes. Hence, image registration by LDDMM is restricted to
targets that lie in the orbit of the template under the diffeomorphic group
action whereas in metamorphosis, the ability to change intensities allows one
to reach any target in X [36]. As such, metamorphosis extends LDDMM.

To proceed, we start by the abstract definition of metamorphosis.

Definition 1 (Metamorphosis [36]). Let V ⊂ Cp0 (Ω) be an admissible Hilbert
space, GV is defined as in (3), and ‘.’ denotes some group action of GV
on X. A metamorphosis is a curve t 7→ (φt, Jt) in GV × X. The curve
t 7→ ft := φt.Jt is called the image part, t 7→ φt is the deformation part, and
t 7→ ft is the template part.

The image part represents the temporal evolution that is not related
to intensity changes (evolution of the underlying geometry), whereas the
template part is the evolution of the intensity. Both evolutions, which are
combined in metamorphosis, are driven by the same underlying flow of dif-
feomorphisms in GV .

A important case is when the metamorphosis t 7→ (φt, ft) has a defor-
mation part that solves the flow equation (1) and a template part that is
C1 in time. More precisely, let L2 ([0, 1], X) denote the space of functions
in X that are square integrable, i.e.,

ζ(t, · ) ∈ X and t 7→
∥∥ζ(t, · )

∥∥
X
∈ L2([0, 1],R).

A natural norm on L2 ([0, 1], X) is given by

‖ζ‖2 :=
(∫ 1

0

∥∥ζ(t, · )
∥∥2

X
dt
)1/2

.

We will henceforth use the notation

L2 ([0, 1], V ×X) := L2 ([0, 1], V )× L2 ([0, 1], X) .

Bearing in mind the above notation, for given (ν, ζ) ∈ L2 ([0, 1], V ×X)

and I0 ∈ X, define the curve t 7→ Iν,ζt that is absolutely continuous on [0, 1]
and solves

d

dt
Iν,ζt (x) = ζ

(
t, ϕν

0,t(x)
)

Iν,ζ0 (x) = I0(x)

with ϕν
0,t ∈ GV as in (2). (7)

The metamorphosis can now be parametrised as t 7→ (ϕν
0,t, I

ν,ζ
t ).

Indirect registration The indirect registration problem in section 3.2 can
be approached by metamorphosis instead of LDDMM. Similar to LDDMM-
based indirect image registration, we define metamorphosis-based indirect
image registration as the minimization of the objective functional

J γ,τ ( · ; g) : L2 ([0, 1], V ×X)→ R
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defined as

J γ,τ (ν, ζ; g) :=
γ

2
‖ν‖22 +

τ

2
‖ζ‖22 + L

(
A
(
W(ϕν

0,1, I
ν,ζ
1 )

)
, g
)

(8)

Here, Iν,ζt : Ω → R is given by (7) and we are given fixed regularisation
parameters γ, τ > 0, measured data g ∈ Y , and initial template I0 ∈ X that
defines the initial condition Iν,ζ0 (x) := I0(x).

Hence, performing metamorphosis-based indirect registration of a tem-
plate I0 against a target indirectly observed through data g amounts to
solving

(ν̂, ζ̂) ∈ arg min
(ν,ζ)

J γ,τ (ν, ζ; g). (9)

As shown in proposition 4, the above optimisation problem has a solution
assuming the data discrepancy and the forward operator fulfils some weak
requirements. From a solution we obtain the following:

Initial template: I0 ∈ X such that Iν,ζ0 := I0.

Reconstruction: Final registered template f ν̂,ζ̂1 =W
(
ϕν̂

0,1, I
ν̂,ζ̂
1

)
∈ X.

Image trajectory: The evolution of both geometry and intensity of the

template, given by t 7→ W
(
ϕν̂

0,t, I
ν̂,ζ̂
t

)
.

Template trajectory: The evolution of intensities of the template, i.e.,

the part that does not include evolution of geometry: t 7→ I ν̂,ζ̂t .

Deformation trajectory: The geometric evolution of the template, i.e.,
the part that does not include evolution of intensity: t 7→ W(ϕν̂

0,t, I0).

4.3 Regularising properties

In what follows, X := L2(Ω,R) and Y a Hilbert space. We will here prove
several properties (existence, stability and convergence) of metamorphosis-
based indirect image registration. Taken together, these show that meta-
morphosis-based indirect image registration is a well defined regularisation
method in the sense of [19].

Proposition 4 (Existence). Assume A : X → Y is continuous and the data
discrepancy L( · , g) : Y → R is weakly lower semi-continuous for any g ∈
Y . Then, J γ,τ ( · , g) : L2 ([0, 1], V ×X) → R defined through (8) has a
minimiser in L2 ([0, 1], V ×X) for any I0 ∈ L2(Ω,R).

Proof. We follow here the strategy to prove existence of minimal trajecto-
ries for metamorphosis (as in [9] for instance). One considers a minimis-
ing sequence of J γ,τ ( · ; g), i.e., a sequence that converges to the infimum
of J γ,τ ( · ; g) (such a sequence always exists). The idea is to prove that
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such a minimising sequence has a sub-sequence that converges to a point in
L2 ([0, 1], V ×X), i.e., the infimum is contained in L2 ([0, 1], V ×X) which
proves existence of a minima.

Bearing in mind the above, we start by considering a minimising sequence{
(νn, ζn)

}
n
⊂ L2 ([0, 1], V ×X) to J γ,τ ( · ; g), i.e.,

lim
n→∞

J γ,τ (νn, ζn; g) = inf
ν,ζ
J γ,τ (ν, ζ; g).

Since
{
νn
}
n
⊂ L2 ([0, 1], V ) is bounded, it has a sub-sequence that converges

to an element ν∞ ∈ L2 ([0, 1], V ). Likewise,
{
ζn
}
n
⊂ L2 ([0, 1], X) has a sub-

sequence that converges to an element ζ∞ ∈ L2 ([0, 1], X). Hence, with a
slight abuse of notation, we conclude that

νn ⇀ ν∞ and ζn ⇀ ζ∞ as n→∞.

The aim is now to prove existence of minimisers by showing that (ν∞, ζ∞)
is a minimiser to J γ,τ ( · ; g) : L2 ([0, 1], V ×X)→ R.

Before proceeding, we introduce some notation in order to simplify the
expressions. Define

Int := Iν
n,ζn

t and ϕns,t := ϕνn

s,t for n ∈ N ∪ {∞}. (10)

Hence, assuming geometric group action (4) and using (2), we can write

J γ,τ (νn, ζn; g) =
γ

2
‖νn‖22 +

τ

2
‖ζn‖22 + L

(
A
(
In1 ◦ ϕn1,0

)
, g
)

for n ∈ N ∪ {∞}. Assume next that the following holds:

In1 ◦ ϕn1,0 ⇀ I∞1 ◦ ϕ∞1,0 as n→∞. (11)

The data discrepancy term L( · , g) : Y → R is weakly lower semi continuous
and the forward operator A : X → Y is continuous, so L( · , g) ◦ A is also
weakly lower semi continuous and then (11) implies

L
(
A(I∞1 ◦ ϕ∞1,0), g

)
≤ lim inf

n→∞
L(A(In1 ◦ ϕn1,0), g). (12)

Furthermore, from the weak convergences of νn and ζn, we get

γ

2
‖ν∞‖22 +

τ

2
‖ζ∞‖22 ≤ lim inf

n→∞

[γ
2
‖νn‖22 +

τ

2
‖ζn‖22

]
. (13)

Hence, combining (12) and (13) we obtain

J γ,τ (ν∞, ζ∞; g) ≤ lim
n→∞

J γ,τ (νn, ζn; g).

Since
{

(νn, ζn)
}
n
⊂ L2 ([0, 1], V ×X) is a minimising sequence, this yields

J γ,τ (ν∞, ζ∞; g) = inf
(ν,ζ)∈L2([0,1],V×X)

J γ,τ (ν, ζ; g),
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which proves (ν∞, ζ∞) ∈ L2 ([0, 1], V ×X) is a minimiser to J γ,τ ( · ; g).
Hence, to finalize the proof we need to show that (11) holds. We start

by observing that the solution of (7) can be written as

Int := In0 (x) +

∫ t

0
ζn
(
s, ϕn0,s(x)

)
ds for n ∈ N ∪ {∞}, (14)

and note that (t, x) 7→ Int (x) ∈ C([0, 1]× Ω,R). Next, we claim that

In1 ⇀ I∞1 for some I∞1 ∈ X,

which is equivalent to

lim
n→∞

〈In1 − I∞1 , J〉 = 0 for any J ∈ L2(Ω,R). (15)

To prove (15), note first that since continuous functions are dense in L2, it
is enough to show (15) holds for J ∈ C0(Ω,R). Next,

〈In1 − I∞1 , J〉 =

∫
Ω

∫ t

0

(
ζn
(
s, ϕn0,s(x)

)
− ζ∞

(
s, ϕ∞0,s(x)

))
J(x)dsdx (16)

=

∫
Ω

∫ t

0

(
ζn
(
s, ϕn0,s(x)

)
− ζn

(
s, ϕ∞0,s(x)

))
J(x)dsdx (17)

+

∫
Ω

∫ t

0

(
ζn
(
s, ϕn0,s(x)

)
− ζ∞

(
s, ϕ∞0,s(x)

))
J(x)dsdx. (18)

Let us now take a closer look at the term in (17):∫
Ω

∫ t

0

(
ζn
(
s, ϕn0,s(x)

)
− ζn

(
s, ϕ∞0,s(x)

))
J(x)dsdx

=

∫
Ω

∫ t

0
ζn(s, x)J

(
ϕn0,s(x)

)∣∣Dϕn0,s(x)
∣∣dsdx

−
∫

Ω

∫ t

0
ζ∞(s, x)J

(
ϕ∞0,s(x)

)∣∣Dϕ∞0,s(x)
∣∣dsdx

=

∫
Ω

∫ t

0
ζn(s, x)

(
J
(
ϕn0,s(x)

)∣∣Dϕn0,s(x)
∣∣−J(ϕ∞0,s(x)

)∣∣Dϕ∞0,s(x)
∣∣)dsdx

−
∫

Ω

∫ t

0

(
ζ∞(s, x)− ζn(s, x)

)
J
(
ϕ∞0,s(x)

)∣∣Dϕ∞0,s(x)
∣∣dsdx

= 〈ζn, Jn − J∞〉 − 〈ζ∞ − ζn, J∞〉

where Jn ∈ L2 ([0, 1], X) is defined as

Jn(s, x) := J
(
ϕns,0(x)

)∣∣Dϕns,0(x)
∣∣ for n ∈ N ∪ {∞}. (19)

By proposition 3 we know that ϕns,0 → ϕ∞s,0 and Dϕns,0 → Dϕ∞s,0 uniformly
on Ω. Since J is continuous on Ω, we conclude that ‖Jn−J∞‖2 → 0. When
combined with the boundedness of ζn, we get

〈ζn, Jn − J∞〉 ≤ ‖ζn‖2 · ‖Jn − J∞‖2 → 0.
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Furthermore, since ζn ⇀ ζ∞, we also get 〈ζ∞ − ζn, J∞〉 → 0. Hence, we
have shown that (17) tends to zero, i.e.,

lim
n→∞

∫
Ω

∫ t

0

(
ζn
(
s, ϕn0,s(x)

)
− ζn

(
s, ϕ∞0,s(x)

))
J(x)dsdx = 0.

Finally, we consider the term in (18). Since ζn ⇀ ζ∞, we immediately
obtain∫

Ω

∫ t

0

(
ζn
(
s, ϕ∞s (x)

)
− ζ∞

(
s, ϕ∞s (x)

))
J(x)dsdx =

〈
ζn − ζ∞, J∞

〉
→ 0.

To summarise, we have just proved that both terms (17) and (18) tend to 0
as n→∞, which implies that (15) holds, i.e., In1 ⇀ I∞1 .

To prove (11), i.e., In1 ◦ ϕn1,0 ⇀ I∞1 ◦ ϕ∞1,0, we need to show that

lim
n→∞

〈
In1 ◦ ϕn1,0 − I∞1 ◦ ϕ∞1,0, J

〉
= 0 for any J ∈ L2(Ω,R), (20)

and as before, we may assume J ∈ C0(Ω,R). Using (19) we can express the
term in (20) whose limit we seek as∣∣〈In1 ◦ ϕn1,0 − I∞1 ◦ ϕ∞1,0, J〉∣∣

≤
∣∣∣〈In1 , Jn(1, · )− J∞(1, · )

〉∣∣∣+
∣∣∣〈In1 − I∞1 , J∞(1, · )

〉∣∣∣
≤ ‖In1 ‖ ·

∥∥Jn(1, · )− J∞(1, · )
∥∥+

∣∣〈In1 − I∞1 , J∞(1, · )〉
∣∣.

Since ‖In1 ‖ is bounded (because ‖ζn‖ is bounded) and since In1 ⇀ I∞1 (which
we shoed before), all terms above tend to 0 as n→∞, i.e., (20) holds.

This concludes the proof of (11), which in turn implies the existence of
a minimiser of J γ,τ ( · ; g).

Our next result shows stability in the sense that the solution to the
indirect registration problem is (weakly) continuous w.r.t. variations in data.

Proposition 5 (Stability). Let {gk}k ⊂ Y and assume this sequence con-
verges (in norm) to some g ∈ Y . Next, for each γ, τ > 0 and each k, define
(νk, ζk) ∈ L2 ([0, 1], V ×X) as

(νk, ζk) = arg min
(ν,ζ)

J γ,τ (ν, ζ; gk).

Then there exists a sub sequence of (νk, ζk) that converges weakly to a min-
imiser of J γ,τ ( · ; g) in (8).

Proof. J γ,τ ( · ; gk) has a minimiser (νk, ζk) ∈ L2 ([0, 1], V ×X) for any gk ∈
Y (proposition 4). The idea is first to show that the sequences (νk)k and
(ζk)k are bounded. Next, we show that there exists a weakly converging
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subsequence of (νk, ζk) that converges to a minimiser (ν, ζ) of J γ,τ ( · ; g),
which also exists due to proposition 4.

Since (νk, ζk) minimises J γ,τ ( · ; gk), we have by (8) that

‖νk‖22 ≤
2

γ
J γ,τ ( · ; gk)(ν

k, ζk) ≤ 2

γ
J γ,τ ( · ; gk)(0, 0) for each k. (21)

Observe now that if ν = 0 and ζ = 0, then ϕν
0,1 = Id by (1) and Iν,ζ1 = I0

by (7), so in particular

W
(
ϕν

0,1, I
ν,ζ
1 )

)
= I0 whenever ν = 0 and ζ = 0.

Hence, J γ,τ ( · ; gk)(0, 0) = L
(
A(I0), gk

)
and, in addition, ‖ν‖2 = 0 and

‖ζ‖2 = 0, so (21) becomes

‖νk‖22 ≤
2

γ
L
(
A(I0), gk

)
→ L(A(I0), g) as k →∞. (22)

In conclusion, the sequence (νk)k ⊂ L2 ([0, 1], V ) is bounded. In a similar
way, we can show that (ζk)k ⊂ L2 ([0, 1], X) is bounded.

The boundedness of both sequences implies that there are sub sequences
to these that converge weakly to some elements ν∞ ∈ L2 ([0, 1], V ) and
ζ∞ ∈ L2 ([0, 1], X), respectively. Thus, to complete the proof, we need to
show that (ν∞, ζ∞) ∈ L2 ([0, 1], V ×X) minimises J γ,τ ( · ; g), i.e., that

J γ,τ (ν∞, ζ∞; g) ≤ J γ,τ (ν, ζ; g) holds for any (ν, ζ) ∈ L2 ([0, 1], V ×X).

From the weak convergences, we obtain

γ

2
‖ν∞‖22 +

τ

2
‖ζ∞‖22 ≤

γ

2
lim inf

k
‖νk‖22 +

τ

2
lim inf

k
‖ζk‖22

≤ 1

2
lim inf

k

[
γ‖νk‖22 + τ‖ζk‖22

]
. (23)

The weak convergence also implies (see proof of proposition 4) that

W
(
ϕk0,1, I

∞
1

)
⇀W

(
ϕ∞0,1, I

∞
1

)
in X.

In the above, we have used the notational convention introduced in (10).
By the lower semi-continuity of L, we get

L
(
A
(
W(ϕ∞0,1, I

∞
1 )
)
, g
)
≤ lim inf

k
L
(
A
(
W(ϕk0,1, I

k
1 )
)
, gk

)
. (24)

Hence,

J γ,τ (ν∞, ζ∞; g) =
γ

2
‖ν∞‖22 +

τ

2
‖ζ∞‖22 + L

(
A
(
W(ϕ∞0,1, I

∞
1 )
)
, g
)
.

≤ 1

2
lim inf

k

[
γ‖νk‖22 + τ‖ζk‖22

]
+ lim inf

k
L
(
A
(
W(ϕk0,1, I

k
1 )
)
, gk

)
≤ lim inf

k
J γ,τ (νk, ζk; gk). (25)
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Next, since (νk, ζk) ∈ L2 ([0, 1], V ×X) minimises J γ,τ ( · ; gk), we get

J γ,τ (ν∞, ζ∞; g) ≤ lim inf
k
J γ,τ (ν, ζ; gk) for any (ν, ζ) ∈ L2 ([0, 1], V ×X).

Furthermore, J γ,τ (ν, ζ; gk)→ J γ,τ (ν, ζ; g), so

J γ,τ (ν∞, ζ∞; g) ≤ J γ,τ (ν, ζ; g) for all (ν, ζ) ∈ L2 ([0, 1], V ×X).

In particular, we have shown that (ν∞, ζ∞) minimises J γ,τ ( · ; g).

Our final results concerns convergence, which investigates the behaviour
of the solution as data error tends to zero and regularisation parameters are
adapted accordingly through a parameter choice rule against the data error.

Proposition 6 (Convergence). Let g ∈ Y and assume

A
(
W(ϕν

0,1, I
ν,ζ
1 )

)
= g for some (ν, ζ) ∈ L2 ([0, 1], V ×X).

Next, for parameter choice rules δ 7→ γ(δ) and δ 7→ τ(δ) with δ > 0, define

(νδ, ζδ) ∈ arg min
(ν,ζ)

J γ(δ),τ(δ)(ν, ζ; g + eδ)

where eδ ∈ Y (data error) has magnitude ‖eδ‖ ≤ δ. Finally, assume that
δ 7→ γ(δ)/τ(δ) and δ 7→ τ(δ)/γ(δ) are bounded, and

lim
δ→0

γ(δ) = lim
δ→0

τ(δ) = lim
δ→0

δ2

γ(δ)
= lim

δ→0

δ2

τ(δ)
= 0.

Then, for any sequence δk → 0 there exists a sub-sequence δk′ such that
(νδk′ , ζδk′ ) converges weakly to a (ν∗, ζ∗) satisfying A

(
W(ϕν∗

0,1, I
ν∗,ζ∗

1 )
)

= g.

Proof. Let (δk) be a sequence converging to 0 and, for each k, let us denote

gk := g + eδk , νk := νδk , and ζk := ζδk .

Similarly to previous proofs, we will show that the sequences (νk) and (ζk)
are bounded, and then that the weakly converging subsequence that can be
extracted from (νk, ζk) converges to a suitable solution.

Define γk := γ(δk) and τk := γ(δk). Then, for each k we have

‖νk‖22 ≤
1

γk
J γk,τk,gk(νk, ζk) ≤ 1

γk
J γk,τk,gk(ν̂, ζ̂)

=
1

γk

(
γk‖ν̂‖22 + τk‖ζ̂‖22 + L(g, gk)

)
≤ ‖ν̂‖22 +

τk
γk
‖ζ̂‖22 +

δk
γk
.

From the assumptions on the parameter choice rules, we conclude that
(νk) ⊂ L2 ([0, 1], V ) is bounded. Similarly, one can show that (ζk) ⊂
L2 ([0, 1], X) is bounded.
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From the above, we conclude that there is a subsequence of (νk, ζk) that
converges weakly to (ν̃, ζ̃) in L2 ([0, 1], V ) × L2 ([0, 1], V ). Then (see proof
of proposition 4)

L
(
A
(
W(ϕν̃

0,1, I
ν̃,ζ̃
1 )

)
, g
)
≤ lim inf

k
L
(
A(W

(
ϕνk

0,1, I
ν̃,ζ̃
1 )

)
, gk

)
.

Furthermore, the above quantity converges to 0 since

L
(
A
(
W(ϕνk

0,1, I
νk,ζk

1 )
)
, gk

)
≤ J γk,τk,gk(νk, ζk) ≤ J γk,τk,gk(ν̂, ζ̂)

= γk‖ν̂‖22 + τk‖ζ̂‖22 + L(g, gk)→ 0 and k →∞.

Hence, A
(
W(ϕν̃

0,1, I
ν̃,ζ̃
1 )

)
= g.

4.4 Numerical implementation

In order to solve (9), we use a gradient descent scheme on the control variable
(ν, ζ) ∈ L2 ([0, 1], V ×X) with a uniform discretisation of the interval [0, 1]
into N parts, i.e., ti = 1/N for i = 0, . . . , N and the gradient descent is
performed on

(
ν(ti, · ), ζ(ti, · )

)
, for i = 0, 1, . . . , N .

we use a Euler scheme on this discretisation for computing the numer-
ical integrations. The flow equation (1) is computed using the following
approximation with small deformations:

ϕν
ti,0 ≈ ϕ

ν
ti−1,0 ◦

(
Id− 1

N
ν(ti−1, · )

)
.

Algorithm 1 presents the implementation2 for computing the gradient of J
based on expressions from appendix A. Note that the number ‘N ’ is not a
fixed value, which is just a value for numerical discretisation. As long as
such value is sufficiently large, we can obtain a small linearised diffeomorphic
deformation. Then the large diffeomorphic deformation can be obtained by
compositions of these small linearised deformations [40]. The computation
of the Jacobian determinant

∣∣Dϕν
ti,1

(x)
∣∣ at each time point is based on the

following approximation similar to the one used in [11]:∣∣Dϕν
ti,1( · )

∣∣ ≈ (1 +
1

N
div ν(ti, · )

)∣∣Dϕν
ti+1,1

∣∣ ◦ (Id +
1

N
ν(ti, · )

)
.

By simple derivations for the 2D case, we have∣∣∣Dϕν
ti,1( · )

∣∣∣ =
(

1 +
1

N
div ν(ti, · ) +

1

N2
|Dν(ti, · )|

)∣∣Dϕν
ti+1,1

∣∣◦(
Id +

1

N
ν(ti, · )

)
.

2https://github.com/bgris/IndirectMatchingMetamorphosis
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It is easy to see that the error is about O(N−2) for the above approximation.
Since all of the numerical implementations are based on the discretisa-

tions in temporal and spatial domains, the exact computation to the Jaco-
bian determinant is hardly required. Even if we use the exact one, it might
not increase the overall precision of the algorithm. Moreover, if the N is
large enough, this error can be neglected.

5 Application to 2D tomography

5.1 The setting

Let X = L2(Ω,R) and its elements represent 2D images on a fixed bounded
domain Ω ⊂ R2. In the application shown here, diffeomorphisms act on
X through the geometric group action in (4). The goal is to register a
given differentiable template image I0 ∈ X against a target that observed
indirectly as in (5).

The forward operator The forward operator A : X → Y in 2D tomo-
graphic imaging is the 2D ray/Radon transform, i.e.,

A(f)(ω, x) =

∫
R
f(x+ sω)ds for ω ∈ S1 and x ∈ ω⊥.

Here, S1 is the unit circle, so (ω, x) encodes the line s 7→ x+ sω in R2 with
direction ω through x. The data manifold M is the set of such lines that are
included in the measurements, i.e., M is given by the experimental set-up,
so Y = L2(M,R). We will consider parallel lines in R2 (parallel beam data),
i.e., tomographic data g ∈ Y are noisy digitised values of an L2-function on
this manifold. The forward operator is linear, so it is Gateaux differentiable
and the adjoint of its derivative is given by the backprojection [27, 24].

The squared 2-norm corresponds to the data likelihood when data is
corrupted by additive Gaussian noise:

L : Y × Y → R with L(g, h) = ‖g − h‖22.

The noise level in data is specified by the peak signal-to-noise ratio (PSNR),
which is defined as

PSNR(g) = 10 log10

(
‖g0 − g0‖2

‖e− e‖2

)
for g = g0 + e.

In the above, g0 is the noise-free part and e is the noise component of data
with g0 and e denoting the mean of g0 and e, respectively. The PSNR is
expressed in terms of dB.
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Algorithm 1 Computation of ∇J (ν, ζ).

Require: ν(ti, · ) and ζ(ti, · ) with ti ← i/N for i = 0, 1, . . . , N .
1: for i = 1, . . . , N do . Compute ζ(ti, · ) ◦ ϕν

0,ti
2: temp← ζ(ti, · )
3: for j = i− 1, . . . , 0 do

4: temp← temp ◦
(

Id + 1
N ν(tj , · )

)
5: end for
6: ζ(ti, · ) ◦ ϕν

0,ti ← temp
7: end for
8: for i = 1, . . . , N do . Compute fν,ζ(ti, · ) := Iν,ζ(ti, · ) ◦ ϕν

ti,0

9: Iν,ζ(ti, · )← I0 +
∑i−1
j=0 I

ν,ζ(tj , · ) + 1
N ζ(tj , · ) ◦ ϕν

0,tj

10: Iν,ζ(ti, · ) ◦ ϕν
0,0 ← Iν,ζ(ti, · )

11: for j = 1, . . . , i do

12: Iν,ζ(ti, · ) ◦ ϕν
tj ,0 ←

(
Iν,ζ(ti, · ) ◦ ϕν

0,tj−1

)
◦
(

Id− 1
N ν(tj−1, · )

)
13: end for
14: end for
15: for i = 1, . . . , N do . Compute I0 ◦ ϕν

ti,0

16: I0 ◦ ϕν
0,0 ← I0 ◦ ϕν

0,0 = I0

17: I0 ◦ ϕν
ti,0 ←

(
I0 ◦ ϕν

ti−1,0

)
◦
(

Id− 1
N ν(ti−1, · )

)
18: end for
19: for i = 1, . . . , N do

20: G(ti, · )← ∇(I0 ◦ ϕν
ti,0) +

∑ti−1

j=0

1

N
∇(ζ(tj , · ) ◦ ϕν

ti,tj )

21: end for
22:

∣∣Dϕν
tN ,1

∣∣ =
∣∣Dϕν

1,1

∣∣ = 1 . Compute
∣∣Dϕν

ti,1

∣∣
23: for i = N − 1, . . . , 0 do

24:
∣∣Dϕν

ti,1

∣∣← (
1 + 1

N div ν(ti, · )
)∣∣Dϕν

ti+1,1

∣∣ ◦ (Id + 1
N ν(ti, · )

)
25: end for
26: ∇L

(
fν,ζ(1, · ), g

)(
ϕν
tN ,1

)
← ∇L

(
fν,ζ(1, · ), g

)
27: for i = N − 1, . . . , 0 do . Compute ∇L

(
fν,ζ(1, · ), g

)(
ϕν
ti,1

)
28: ∇L

(
fν,ζ(1, · ), g

)(
ϕν
ti,1

)
← ∇L

(
fν,ζ(1, · ), g

)(
ϕν
ti+1,1

)
◦
(

Id + 1
N ν(ti, · )

)
29: end for
30: for i = 1, . . . , N do . Compute ∇J (ν, ζ)
31:

∇ν J γ,τ (ν, ζ, g)(ti, , · )← 2γν(ti, , · )

−
∫

Ω

K(x, · )
∣∣∣Det(dϕν

ti,1(x))
∣∣∣∇L(fν,ζ(1, · ), g)(ϕν

ti,1(x)
)
G(ti, x)dx

32:

∇ζ J γ,τ (ν, ζ)(ti, , · )← 2τζ(ti, , · )

+ |Det(dϕν
ti,1)

∣∣∣∇L(fν,ζ(1, · ), g)(ϕν
ti,1(x)

)
G(ti, · )

33: end for
34: return ∇J (ν)(ti, · ), ∇J (ζ)(ti, · ) for i = 1, . . . , N .
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Joint tomographic reconstruction and registration Under the ge-
ometric group action (4), metamorphosis based-indirect registration reads
as

f ν̂,ζ̂1 =W
(
ϕν̂

0,1, I
ν̂,ζ̂
1

)
= I ν̂,ζ̂1 ◦ ϕν̂

1,0

where (ν̂, ζ̂) ∈ L2 ([0, 1], V ×X) minimises (8), i.e., given regularisation pa-
rameters γ, τ ≥ 0 and initial template I0 ∈ X we solve

min
(ν,ζ)

[
γ

2
‖ν‖22 +

τ

2
‖ζ‖22 +

∥∥∥A(f(1, φ(1, · )−1
))
− g
∥∥∥2

2

]


d

dt
f(t, x) = ζ

(
t, φ(t, x)

)
f(0, x) = I0(x)

d

dt
φ(t, x) = ν

(
t, φ(t, x)

)
φ(0, x) = x.

(26)

We will consider a set V of vector fields that is an RKHS with a reproducing
kernel represented by symmetric and positive definite Gaussian. Then V is
admissible and is continuously embedded in L2(Ω,R2). The kernel we pick
is Kσ : Ω× Ω→ R2×2

+

Kσ(x, y) := exp
(
− 1

2σ2
‖x− y‖2

)(1 0
0 1

)
for x, y ∈ R2 and σ > 0. (27)

The kernel-size σ also acts as a regularisation parameter.

5.2 Overview of experiments

In the following we test various aspects of using metamorphoses based indi-
rect registration for joint tomographic reconstruction and registration. The
tomographic inverse problem along with characteristics of the data are out-
lined in section 5.1. The results are obtained by solving (26) via a gradient
descent, see appendix A for the computation of the gradient of the objec-
tive. For each reconstruction, we list the number of angles of the parallel
beam ray transform, the kernel-size σ in (27), and the two regularisation
parameters γ, τ > 0 appearing in the objective functional in (26).

The first test (section 5.3) aims to show how metamorphoses based in-
direct registration handles a template with intensities that differ from those
of the target. Section 5.4 considers the ability to handle an initial template
with a topology that does not match the target. This is essential when one
has simultaneous geometric and topological changes. As an example, in spa-
tiotemporal imaging it may very well be the case that geometric deformation
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takes place simultaneously as new masses appear or disappear. Next, sec-
tion 5.5 studies the robustness of the solutions with respect to variations in
the regularisation parameters. Finally, section 5.6 shows how indirect regis-
tration through metamorphoses can be used to recover a temporal evolution
of a given template registered against time series of data. This is an essential
part of spatio-temporal tomographic reconstruction.

Sections 5.3 to 5.5 have a common setting in that grey scale images in
the reconstruction space are discretised using 256× 256 pixels supported in
a rectangular region Ω. The tomographic data is noisy samples of the 2D
parallel beam ray transform of the target sampled at 100 angles uniformly
distributed angles in [0, π] with 362 lines/angle. Data is corrupted with
additive Gaussian noise with differing noise levels. In the last section 5.6 we
add a Poisson noise to the data in order to avoid inverse crime [39] and also
test robustness against misspecification of the noise model.

5.3 Consistent topology and inconsistent intensities

Here, topology of the template is consistent with that of the target, but
intensities differ. The template, which is shown in fig. 2(a), is registered
against tomographic data shown in fig. 2(c). The (unknown) target used to
generate data is shown in fig. 2(b). Also, data has a noise level corresponding
to a PSNR of 15.6 dB and the kernel size σ is set to 1/16:th of the side length
of the image domain Ω. The final reconstruction is shown in fig. 2(h), which
is to be compared against the target in fig. 2(b). Figure 2 also shows image,
deformation and template trajectories.

We clearly see that metamorphosis based indirect registration can handle
a template with wrong intensities. As a comparison, see fig. 1(c) for the
corresponding LDDMM based indirect registration using the same template
and data. Furthermore, the different trajectories also provides easy visual
interpretation of the influence of geometric and intensity deformations.

5.4 Inconsistent topology and intensities

Here, both topology and intensities of the template differ from those in the
target. The template, which is shown in fig. 3(a), is registered against tomo-
graphic data shown in fig. 3(c). The (unknown) target used for generating
the data is shown in fig. 3(b). Also, data has a noise level corresponding to
a PSNR of 10.6 dB and the kernel size σ is set to 1/16:th of the side length
of the rectangular image domain Ω. The final reconstruction is shown in
fig. 3(h), which is to be compared against the target in fig. 3(b). Figure 3
also shows image, deformation and template trajectories.

We clearly see that metamorphosis based indirect registration can handle
a template where both intensities and the topology are wrong. In particular,
we can see follow both the deformation of the template and the appearance
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of the white disc.

5.5 Robustness

Metamorphosis based indirect registration, which amounts to solving (26),
requires selecting three parameters: the kernel-size σ and the two regulari-
sation parameters γ and τ . Here we study the influence of these parameters
on the final registered image (reconstruction). We conclude that the recon-
struction is very robust with respect to the choice of these three parameters.
This is illustrated in figs. 4 and 5 where the reconstructed image is in the
left-most column. The metamorphosis framework provides, in addition to
this reconstruction, a decomposition into a template part and a deformation
part. However, unlike reconstruction, the task of decomposition is sensitive
to the choice of these parameters.

We first study the influence of the choice of the two regularisation pa-
rameters γ and τ by considering the setup in section 5.3 for varying choices
of these parameters. Two extremal solutions are valid for the change of the
shape of the triangles: it can be generated by a change in the intensity value,
or by a geometric change. The first solutions is the optimal solution for
γ = 10−1 and τ = 10−5 (i.e., when the deformation part is more penalised
than the change in the intensity value) and the second one for λ = 10−5

and τ = 10−1. For intermediate choices of parameters, like γ = 10−3 and
τ = 10−3, the optimal solution is an intermediate one when these two effects
combine. We present these results in fig. 4. We emphasis again that for all
choices of parameters the reconstructed images are of good quality, only its
decomposition into deformation and template parts varies.

Let us next study the influence of the choice of the kernel size σ. This
parameter defines the characteristic scale for the allowed deformations: if
σ is small, deformations of small areas of the template are favored, while
if σ is large, bigger areas will be easily displaced. Apart from the visual
perception, the reconstruction is quantitatively compared using structural
similarity (SSIM) [38] and PSNR. Table 1 lists SSIM and PSNR values for
reconstructions obtained using different choices of kernel size. We see that
the reconstruction is of good quality for all choices of kernel size σ.

Interestingly, even if the reconstruction looks good, its decomposition
into template and deformation is really different so the template and defor-
mation parts seem to balance out each other in an non-intuitive way when
they are combined to form the reconstruction. As an example, for extremal
choices of the kernel size (like σ ≈ 1/3 of the domain size), false structures
appear in the template part of the decomposition. This is clearly an issue if
the decomposition is used for interpretation. However these artefacts appear
only for extremal choices of kernel size σ, it does not appear for values of
the kernel size that lie between 1/32:nd and 1/6:th of the image size. We
currently lack an understanding of this phenomenon.
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σ 0.3 0.6 1 2 3 5 10

SSIM 0.660 0.703 0.737 0.769 0.766 0.764 0.682
PSNR -7.75 -7.03 -6.57 -6.36 -6.49 -6.66 -8.98

Table 1: SSIM and PSNR values for metamorphosis based indirect reg-
istration with varying kernel size σ and fixed regularisation parameters
γ = τ = 10−5.

5.6 Spatio-temporal reconstruction

The goal here is to recover the unknown temporal evolution of a template
matched against (gated) parallel beam 2D ray transform data acquired at
10 different time points (from t = 0.1 to t = 1), so the target undergoes
a temporal evolution. At each of the 10 time points, we only have limited
tomographic data in the sense that i:th acquisition corresponds to sampling
the parallel beam ray transform of the target at time ti using 10 angles
randomly distributed in [(i − 1)π/10, iπ/10] using 362 lines/angles. We
added a Poisson noise to these data. Similarly to previous experiments,
the reconstruction space discretised as 256 × 256 pixel grey scale images
supported in Ω.

The registration of the template I0 against the temporal series of data gi,
1 ≤ i ≤ 10 at the 10 time points ti is performed by minimising the following
functional with respect to one trajectory (ν, ζ) ∈ L2 ([0, 1], V ×X):

J γ,τ (ν, ζ; g1, . . . , g10) :=
γ

2
‖ν‖22 +

τ

2
‖ζ‖22 +

10∑
i=1

L
(
A
(
W(ϕν

0,ti , I
ν,ζ
ti

)
)
, gi

)
where t 7→ Iν,ζt , is the absolutely continuous solution to

d

dt
Iν,ζt (x) = ζ

(
t, ϕν

0,t(x)
)

Iν,ζ0 (x) = I0(x)

with ϕν
0,t ∈ GV as in (2).

The target, the gated tomographic data, and the three trajectories (im-
age, deformation and template) resulting from the metamorphosis based
indirect registration are shown in fig. 6. We see that metamorphosis based
indirect registration can be used for spatio-temporal reconstruction even
when (gated) data is highly under sampled. In particular, we can recover
the evolution (both the geometric deformation and the appearance of the
white disc) of the target. As a comparison, fig. 6(f) presents reconstruc-
tions obtained from filtered back projection (FBP) and total variation (TV)
[26, 33, 12, 32, 13]. Here, data is a concatenation of the 10 gated data sets,
thereby corresponding then sampling the ray transform using 100 angles in
[0, π]. Note that the temporal evolution of the target is not accounted for
in these reconstructions.
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6 Conclusions and discussion

We have introduced a metamorphosis-based framework for indirect regis-
tration and showed that this corresponds to a well-defined regularisation
method. We also present several numerical examples from tomography sup-
porting this theoretical result.

In particular, section 5.6 illustrates that this framework can be used to
recover the temporal evolution of a template from time series data, even
when data at each time point is very incomplete. This approach does how-
ever assume access to an initial template. In spatio-temporal reconstruction,
such an initial template is unknown and it needs to be recovered as well. One
approach for doing this is by an intertwined scheme that alternates between
to steps (similarly to [21]): (i) given a template, estimate its evolution that
is consistent with times series of data using the metamorphosis framework
for indirect registration, and (ii) estimate the initial template from times
series of data given its evolution. The method in section 5.6 solves the first
of the above steps, which is the more difficult one.

Another topic is the choice of hyper-parameters. Our metamorphosis-
based framework for indirect registration relies on three parameters with
the kernel-size σ being the most important as shown in section 5.5. This
parameter has a strong influence on the way the reconstructed image tra-
jectory decomposes into a deformation and a template part. Clearly it acts
as a regularisation parameter and a natural problem is to devise a scheme
for choosing it bearing in mind the size (scale) of the features undergoing
deformation. Unfortunately, similarly to direct registration by LDDMM,
the choice of this parameter (and more generally choice of kernel for the
RKHS V ) is still an open problem [3, 11, 14]. One way is to use a multi-
scale approach [8, 30, 34] but a general method for selecting an appropriate
kernel-size remains to be determined.
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(a) Template. (b) Target. (c) Data (sinogram).
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Figure 2: Metamorphosis based indirect-matching of template in (a) against
data in (c), which represents 2D ray transform of target in (b) (100 uniformly
distributed angles in [0, π]). The second row (d)–(h) shows the image tra-
jectory t 7→ W(ϕν

0,t, ft(ν, ζ)), so the final registered template is in (h). The
third row (i)–(m) shows the deformation trajectory t 7→ W(ϕν

0,t, I0), likewise
the fourth row (n)–(r) shows the intensity trajectory t 7→ ft(ν, ζ).

23



(a) Template I0. (b) Target. (c) Data (sinogram).
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(n) t = 0. (o) t = 0.2. (p) t = 0.5. (q) t = 0.7. (r) t = 1.

Figure 3: Metamorphosis based indirect-matching of template in (a) against
data in (c), which represents 2D ray transform of target in (b) (100 uniformly
distributed angles in [0, π]). The second row (d)–(h) shows the image tra-
jectory t 7→ W(ϕν

0,t, ft(ν, ζ)), so the final registered template is in (h). The
third row (i)–(m) shows the deformation trajectory t 7→ W(ϕν

0,t, I0), likewise
the fourth row (n)–(r) shows the intensity trajectory t 7→ ft(ν, ζ).
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Reconstruction Deformation Template
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Figure 4: Reconstruction results and their decomposition into template part
and deformation part for various regularisation parameters γ and τ .
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Reconstruction Deformation Template
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Figure 5: Reconstruction results and their decomposition into template part
and deformation part for various kernel size σ. As comparison, the image
domain has size 32 in this example.
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(a) The temporal evolution of the target.

(b) The (gated) tomographic data. Each data set is highly incomplete (limited angle).

(c) Image trajectory (reconstruction), combines deformation and template trajectories.

(d) Deformation trajectory, models mainly geometric changes.

(e) Template trajectory, models mainly intensity changes.

(f) FBP (left) and TV (middle) reconstructions from concatenated data
(right).

Figure 6: Reconstructing the temporal evolution of a template using meta-
morphosis. Target (a), data (b), and results (c)–(e), are shown at selected
time points t = 0.2, 0.4, 0.6, 0.8, and 1.0. As a comparison we show re-
constructions assuming static target obtained from concatenating the gated
tomographic data (f).
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A Gradient computation

This section presents the computation of the gradient of J γ,τ ( · ; g), which
is useful for any first order optimisation metod for minimising the functional
J γ,τ ( · ; g) in (8). The computations assume X = L2(Ω,R) with

I0 ∈ X ∩ C1(Ω,R) and (ν, ζ) ∈ L2 ([0, 1], V ×X) .

Furthermore, for each t ∈ [0, 1] we also assume t 7→ ζ(t, · ) ∈ C1(Ω,R). In
numerical implementations, we consider digitised images and considerations
of the above type are not that restrictive.

Let us first compute the differential of the data discrepancy term with
respect to ζ using the notation fν,ζt :=W(ϕν

t,0, I
ν,ζ
t ) = Iν,ζt ◦ ϕν

t,0. As noted
in (14), we have

fν,ζt (x) = (Iν,ζt ◦ ϕν
t,0)(x) = I0

(
ϕν
t,0(x)

)
+

∫ t

0
ζ
(
τ, ϕν

t,τ (x)
)
dτ. (28)

Then

∂ζ

[
L
(
fν,ζt , g

)]
(ζ)(η) =

〈
∇L(fν,ζt , g), ∂ζf

ν,ζ
t (ζ)(η)

〉
=

∫
Ω

∫ t

0
∇L

(
fν,ζ1 , g

)
η(τ, ϕν

t,τ (x))dτdx

=

∫
Ω

∫ 1

0
1τ≤t|Det(dϕν

τ,t(x))|∇L(fν,ζt , g)(ϕν
τ,t(x))η(τ, x)dτdx

=
〈

1 ·≤t|Det(dϕν· ,t)|∇L(fν,ζt , g))(ϕν· ,t), η
〉
L2([0,1],L2(Ω,R))

.

In order to compute the differential of the discrepancy term with respect
to ν, we start by computing the differential of fν,ζ1 with respect to ν. Hence,
let µ ∈ L2 ([0, 1], V ) and x ∈ Ω. Then

d

dε
fν+εµ,ζ
t (x)

∣∣∣
ε=0

=
〈
∇I0

(
ϕν
t,0(x)

)
,

d

dε
ϕν+εµ
t,0 (x)

∣∣
ε=0

〉
+

∫ t

0

〈
∇ζ(τ, ϕν

t,τ (x)),
d

dε
ϕν+εµ
t,τ (x)

∣∣
ε=0

〉
dτ

= −
∫ t

0

〈
∇I0(ϕν

t,0(x)), dϕν
s,0

(
ϕν
t,s(x)

)(
µ(s, ϕν

t,s(x)
))〉

ds∫ t

0

〈
∇ζ
(
τ, ϕν

t,τ (x)
)
,

∫ τ

t
dϕν

s,τ

(
ϕν
t,s(x)

)(
µ
(
s, ϕν

t,s(x)
))

ds

〉
dτ

= −
∫ t

0

〈
∇I0

(
ϕν
t,0(x)

)
,dϕν

s,0

(
ϕν
t,s(x)

)(
(µ
(
(s, ϕν

t,s(x)
))〉

ds

−
∫ t

0

∫ s

0

〈
∇ζ(τ, · )◦ϕν

t,τ (x), dϕν
s,τ

(
ϕν
t,s(x)

)(
µ
(
s, ϕν

t,s(x)
))〉

dτds.

(29)
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Using (29), we can compute the derivative of ε 7→ L
(
W(ϕν+εµ

t , Iν+εµ,ζ
t )

)
at

ε = 0:

d

dε
L
(
W
(
ϕν+εµ
t , Iν+εµ,ζ

t

))∣∣
ε=0

=
〈
∇L

(
fν,ζt , g

)
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d

dε
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〉
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∫
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0
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(
fν,ζt , g
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ϕν
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shapes in Sobolev spaces. Foundations of Computational Mathematics,
pages 1–62, 2016.
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K. P. Schäfers. Mass-preserving motion correction of pet: Displace-
ment field vs. spline transformation. In 2011 IEEE Nuclear Science
Symposium Conference Record, pages 3088–3090. IEEE, 2011.

[18] F. Gigengack, L. Ruthotto, M. Burger, C. H. Wolters, X. Jiang, and
K. P. Schafers. Motion correction in dual gated cardiac pet using mass-
preserving image registration. IEEE transactions on medical imaging,
31(3):698–712, 2011.

[19] M. Grasmair. Generalized Bregman distances and convergence rates for
non-convex regularization methods. Inverse Problems, 26(11):115014,
2010.

[20] G. T. Gullberg, B. W. Reutter, A. Sitek, J. S. Maltz, and T. F.
Budinger. Dynamic single photon emission computed tomography –
basic principles and cardiac applications. Physics in Medicine and Bi-
ology, 55:R111–R191, 2010.

[21] J. Hinkle, M. Szegedi, B. Wang, B. Salter, and S. Joshi. 4D CT im-
age reconstruction with diffeomorphic motion model. Medical image
analysis, 16(6):1307–1316, 2012.

[22] A. Mang and G. Biros. Constrained Hˆ1-regularization schemes for
diffeomorphic image registration. SIAM journal on imaging sciences,
9(3):1154–1194, 2016.

[23] A. Mang and L. Ruthotto. A Lagrangian Gauss–Newton–Krylov
solver for mass-and intensity-preserving diffeomorphic image registra-
tion. SIAM Journal on Scientific Computing, 39(5):B860–B885, 2017.

[24] A. Markoe. Analytic Tomography, volume 106 of Encyclopedia of math-
ematics and its applications. Cambridge University Press, 2006.

31



[25] M. I. Miller, L. Younes, and A. Trouvé. Diffeomorphometry and
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