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Image reconstruction through metamorphosis

Barbara Gris ∗ Ozan Öktem †

Abstract

This article adapts the framework of metamorphosis to the resolu-
tion of inverse problems with shape prior. The metamorphosis frame-
work allows to transform an image via a balance between geometrical
deformations and changes in intensities (that can for instance corre-
spond to the appearance of a new structure). The idea developed here
is to reconstruct an image from noisy and indirect observations by
registering, via metamorphosis, a template to the observed data. Un-
like a registration with only geometrical changes, this framework gives
good results when intensities of the template are poorly chosen. We
show that this method is a well-defined regularization method (prov-
ing existence, stability and convergence) and present several numerical
examples.

1 Introduction

The paper develops image reconstruction techniques for inverse problems in
imaging that are applicable to shape based reconstruction and spatiotem-
poral imaging.

Shape based reconstruction Some imaging applications focus on recov-
ering the shapes of interior sub-structures of an object whereas variations
within these is of less importance. Examples are nano-characterisation of
specimens by means of electron microscopy or x-ray phase contrast imag-
ing. As an example, in electron electron tomography (ET) one is often
primarily interested in the morphology of sub-cellular structures and nano-
characterisation of materials [8]. Another example is quantification of sub-
resolution porosity in materials by means of x-ray phase contrast imaging.

In these imaging applications it makes sense to account for qualitative
prior shape information during the reconstruction. Enforcing an exact spa-
tial match between a template and the reconstruction is often too strong
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since realistic shape information is almost always approximate, so the natu-
ral approach is to perform reconstruction assuming the structures are ‘shape
wise similar’ to a template.

Spatiotemporal imaging Inverse problems in imaging that involve tem-
poral variation seek to reconstruct time varying spatially distributed quan-
tities, henceforth called images, from noisy time series of measured data.
An important sub-class is when all the time dependency in data originates
from time dependency of the images that are to be recovered.

This is, e.g., the case in nuclear medical imaging, where techniques like
positron emission tomography (PET) and single photon emission computed
tomography (SPECT) are used for visualising the distribution of injected
radoopharmaceuticals (activity map). The latter is an inherently dynamic
quantity, e.g., anatomical structures undergo motion, like the motion of the
heart and respiratory motion of the lungs and thoracic wall, during the
data acquisition. Not accounting for organ motion is known to degrade the
spatial localisation of the radiotracer, leading to spatially blurred images.
Furthermore, even when organ motion can be neglected, there are other
dynamic processes, such as the uptake and wash-out of radiotracers from
body organs. Visualising such kinetics of the radiotracers can actually be
a goal in itself, as in pre-clinical imaging studies related to drug discov-
ery/development. The term ‘dynamic’ in PET and SPECT imaging often
refers to such temporal variation due to radiotracers kinetics rather than
organ movement [40].

To exemplify the above mentioned issues, consider SPECT based cardiac
perfusion studies and 18F-FDG-PET imaging of lung nodules/tumours. The
former needs to account for the beating heart and the latter for respiratory
motion of the lungs and thoracic wall. Studies show a maximal displacement
of 23 mm (average 15–20 mm) due to respiratory motion [88] and 42 mm
(average 8–23 mm) due to cardiac motion in thoracic PET [98].

See section 7 for a more detailed review on various approaches for spa-
tiotemporal image reconstruction in nuclear medicine.

Indirect image registration (matching) A key step in both shape
based reconstruction and many reconstruction methods for spatiotemporal
imaging is to register a template image so that it matches a target image,
which becomes challenging when the template is allowed to undergo non-
rigid deformations. As an example, diffeomorphic image registration is an
active research area, see [91] for a nice survey Here, the image registra-
tion problem is recast as the problem of finding a suitable diffeomorphism
that deforms the template into the target image [22]. The underlying as-
sumption is that the target image is contained in the orbit of the template
under the group action of diffeomorphisms. This principle can be stated in
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a very general setting where diffeomorphism acts on various image features,
like landmark points, curves, surfaces, scalar images, or even vector/tensor
valued images [100].

The registration problem becomes more challenging when one seeks to
jointly recover the image and its temporal variation, mainly because the
target is only known indirectly through measured data. This is referred
to as indirect image registration and diffeomorphic image registration can
be readily adapted to this setting as shown in [70] for linearised deforma-
tions and in [20] for the large deformation diffeomorphic metric mapping
(LDDMM) framework.

2 Overview of paper and specific contributions

The paper adapts the metamorphosis framework to the indirect image reg-
istration setting. Metamorphosis is an extension of the LDDMM framework
where not only the geometry of the template, but also the grey-scale values
undergo diffeomorphic changes.

We show how this framework allows to define a regularization method
for inverse problems, satisfying properties of existence, stability and conver-
gence. We present several numerical examples for tomographic operators,
and in particular give a preliminary result for motion reconstruction when
the acquisition is done at several time points. We also study the robustness
of our methods with respects to the parameters.

3 Background

3.1 Large diffeomorphic deformations

We recall here the notion of large diffeomorphic deformations defined by
flows of time-varying vector fields, as formalized in [3].

Let Ω ⊂ Rd be a fixed bounded domain and let X := L2(Ω,R) represent
grey scale images on Ω. Next, let V denote a fixed Hilbert space of vector
fields on Rd. We will assume V ⊂ Cp0 (Ω), i.e., the vector fields are supported
on Ω and p times continuously differentiable. Finally, L1 ([0, 1], V ) denotes
the space of time-dependent V -vector fields that are integrable, i.e.,

ν(t, · ) ∈ V and t 7→
∥∥ν(t, · )

∥∥
Cp is integrable on [0, 1].

Furthermore, we will frequently make use of the following (semi) norm on

‖ν‖p :=
(∫ 1

0

∥∥ν(t, · )
∥∥p
V

dt
)1/p

where ‖ · ‖V is the naturally defined norm based upon the inner product of
the Hilbert space V of vector fields.
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The following proposition allows one to consider flows of elements in
L1 ([0, 1], V ) and ensures that these flows belong to Diffp0(Ω) (set of p-
diffeomorphisms that are supported in Ω ⊂ Rd, and if Ω is unbounded,
tend to zero towards infinity).

Proposition 1. Let ν ∈ L1 ([0, 1], V ) and consider the ordinary differential
equation (flow equation):

d

dt
φ(t, x) = ν

(
t, φ(t, x)

)
φ(0, x) = x

for any x ∈ Ω and t ∈ [0, 1]. (1)

Then, (1) has a unique absolutely continuous solution φ(t, · ) ∈ Diffp0(Rd).

The above result is proved in [3] and the unique solution of (1) is hence-
forth called the flow of ν. We also introduce to notation ϕν

s,t : Rd → Rd that
refers to

ϕν
s,t := φ(t, · ) ◦ φ(s, · )−1 for s, t ∈ [0, 1] (2)

where φ : Ω→ Rd denotes the unique solution to (1).
As stated next, the set of diffeomorphisms that are given as flows forms

a group that is a complete metric space [3].

Proposition 2. Let V ⊂ Cp0 (Ω) (p ≥ 1) be an admissible reproducing kernel
Hilbert space (RKHS) and define

GV :=
{
φ : Rd → Rd | φ = ϕν

0,1 for some ν ∈ L2 ([0, 1], V )
}
.

Then GV forms a sub-group of Diffp0(Rd) and

dG(φ1, φ2) := inf
{
‖ν‖1 : ν ∈ L1([0, 1], V ) and φ1 = φ2 ◦ ϕν

0,1

}
= inf

{
‖ν‖2 : ν ∈ L1([0, 1], V ) and φ1 = φ2 ◦ ϕν

0,1

}
defines a metric on GV .

The elements of GV are called large diffeomorphic deformations and GV
acts on X via the geometric group action that is defined by the operator

W : GV ×X → X where W(φ, I0) := I0 ◦ φ−1. (3)

We conclude by stating regularity properties of flows of velocity fields as
well as the group action in (3), these will play an important role in what is
to follow. The proof is given in [14].

Proposition 3. Assume V ⊂ Cp0 (Ω) (p ≥ 1) is a fixed admissible Hilbert
space of vector fields on Ω and {νn}n ⊂ L2 ([0, 1], V ) a sequence that con-
verges weakly to ν ∈ L2 ([0, 1], V ). Then, the following holds with ϕnt := ϕνn

0,t :
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1. (ϕnt )−1 converges to (ϕν
0,t)
−1 uniformly w.r.t. t ∈ [0, 1] and uniformly

on compact subsets of Ω ⊂ Rd.

2. lim
n→∞

∥∥∥W(ϕnt , I0)−W(ϕν
0,t, I0)

∥∥∥
X

= 0 for any f ∈ X.

4 Image registration

Image registration (matching) refers to the task of deforming a given tem-
plate image I0 ∈ X so that it matches a given target image I∗ ∈ X.

The above task can also be stated in an indirect setting, which refers
to the case when the template I0 ∈ X is to be registered against a target
I∗ ∈ X that is only indirectly known through data g ∈ Y where

g = A(I∗) + e. (4)

In the above, A : X → Y (forward operator) is known and assumed to be
differentiable and e ∈ Y is a single sample of a Y -valued random element
that denotes the measurement noise in the data.

A further development requires specifying what is meant by deforming
a template image, and we will henceforth consider diffeomorphic (non-rigid)
deformations, i.e., diffeomorphisms that deform images by actin g on them
through a group action.

4.1 LDDMM-based registration

An example of using large diffeomorphic (non-rigid) deformations for image
registration is to minimize the following functional:

GV 3 φ 7→
γ

2
dG(Id, φ)2 +

∥∥W(φ, I0)− I∗
∥∥2

X
given γ > 0.

If V is admissible, then minimizing the above functional on GV amounts to
minimizing the following functional on L2 ([0, 1], V ) [100, Theorem 11.2 and
Lemma 11.3]:

L2 ([0, 1], V ) 3 ν 7→ γ

2
‖ν‖22 +

∥∥W(ϕν
0,1, I0)− f

∥∥2

X
given γ > 0.

Such a reformulation is advantageous since L2 ([0, 1], V ) is a vector space,
whereas GV is not, so it is easier to minimize a functional over L2 ([0, 1], V )
rather than over GV .

The above can be extended to the indirect setting as shown in [20],
which we henceforth refer to as LDDMM-based indirect registration. More
precisely, the corresponding indirect registration problem can be adressed
by minimising the functional

L2 ([0, 1], V ) 3 ν 7→ γ

2
‖ν‖22 + L

(
(A◦W)(ϕν

0,t, I0), g
)
.
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Here, L : Y × Y → R is typically given by an appropriate affine transform
of the data negative log-likelihood [6], so minimizing f 7→ L

(
A(f), g

)
corre-

sponds to seeking a maximum likelihood solution of (4).
An interpretation of the above is that the template image I0, which is

assumed to be given a priori, acts as a shape prior when solving the inverse
problem in (4) and γ > 0 is a regularization parameter that governs the
influence of this shape priori against the need to fit measured data. This
interpretation becomes more clear when one re-formulates LDDMM-based
indirect registration as

min
ν∈L2([0,1],V )

[
γ

2
‖ν‖22 + L

(
(A◦W)

(
φ(1, · ), I0

)
, g
)]

d

dt
φ(t, x) = ν

(
t, φ(t, x)

)
(t, x) ∈ Ω× [0, 1],

φ(0, x) = x x ∈ Ω.

(5)

5 Metamorphosis-based indirect registration

5.1 Motivation

As shown in [20], access to a template that can act as a shape prior can
have profound effect in solving challenging inverse problem in imaging. As
an example, tomographic imaging problems that are otherwise intractable
(highly noisy and sparsely sampled data) can be successfully addressed using
indirect registration even when using a template is far from the ground truth
image used for generating the data.

When template has correct topology and intensity levels, then LDDMM-
based indirect registration with geometric group action is remarkably stable
as shown in [20]. Using a geometric group action, however, makes it impos-
sible to create or remove intensity, e.g., it is not possible to start out from a
template with a single isolated structure and deform it to a image with two
isolated structures. This severely limits the usefulness of LDDMM-based in-
direct registration, e.g., spatiotemporal images (moves) are likely to involve
changes in both geometry (objects appear or disappear) and intensity. See
fig. 1 for an example of how wrong intensity influences the registration.

As noted in [20], one approach is to replace the geometric group ac-
tion with one that alters intensities, e.g., a mass preserving group action.
Another is to keep the geometric group action, but replace LDDMM with
a framework for diffeomorphic deformations that acts on both geometry
and intensities, e.g., metamorphosis. This latter approach is the essence of
metamorphosis-based indirect registration.
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(a) Template. (b) Target. (c) Reconstruction. (d) Data.

Figure 1: Reconstruction by LDDMM-based indirect registration (c) using
a template (a) with a geometry that matches the target (b), but with in-
correct background intensity values. Target is observed indirectly through
tomographic data (d), which is 2D parallel beam Radon transform with
100 evenly distributed directions (see section 6.1 for details). The artefacts
in the reconstruction are due to incorrect background intensity in template.

5.2 Metamorphosis

In metamorphosis diffeomorphisms are still generated by flows as in LD-
DMM, but the difference is that they now act with a geometric group action
on both intensities and underlying points. As such, metamorphosis extends
LDDMM. The abstract definition of a metamorphosis reads as follows.

Definition 1 (Metamorphosis [96]). Let V ⊂ Cp0 (Ω) be an admissible Hilbert
space and “.” denotes some group action of GV on X. A Metamorphosis
is a curve t 7→ (φt, ft) in GV ×X. The curve t 7→ ft := φt.ft is called the
image part, t 7→ φt is the deformation part, and t 7→ ft is the template part.

The image part represents the temporal evolution that is not related
to intensity changes, i.e., evolution of underlying geometry, whereas the
template part is the evolution of the intensity. Both evolutions, which are
combined in metamorphosis, are driven by the same underlying flow of dif-
feomorphisms in GV .

A important case is when the metamorphosis t 7→ (φt, ft) has a defor-
mation part that solves the flow equation (1) and a template part is C1 in
time. More precisely, L2 ([0, 1], X) denotes the space of functions in X that
are square integrable, i.e.,

ζ(t, · ) ∈ X and t 7→
∥∥ζ(t, · )

∥∥
X

is in L2([0, 1],R).

The norm on L2 ([0, 1], X) is then

‖ζ‖2 :=
(∫ 1

0

∥∥ζ(t, · )
∥∥2

X
dt
)1/2

.

We will also use the notation

L2 ([0, 1], V ×X) := L2 ([0, 1], V )× L2 ([0, 1], X) .
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Bearing in mind the above notation, for given (ν, ζ) ∈ L2 ([0, 1], V ×X) and

I0 ∈ X, define the curve t 7→ Iν,ζt , which is absolutely continuous on [0, 1],
as the solution to

d

dt
Iν,ζt (x) = ζ

(
t, ϕν

0,t(x)
)

Iν,ζ0 (x) = I0(x)

with ϕν
0,t ∈ GV as in (2). (6)

The metamorphosis can now be parametrised as t 7→ (ϕν
0,t, I

ν,ζ
t ).

Indirect registration The indirect registration problem in section 4 can
be approached by metamorphosis instead of LDDMM. Analogous to LDDMM-
based indirect image registration in [20], we define metamorphosis-based in-
direct image registration as the minimization of the objective functional

J γ,τ ( · ; g) : L2 ([0, 1], V ×X)→ R

defined as

J γ,τ (ν, ζ; g) :=
γ

2
‖ν‖22 +

τ

2
‖ζ‖22 + L

(
A
(
W(ϕν

0,1, I
ν,ζ
1 )

)
, g
)

(7)

for given regularization parameters γ, τ ≥ 0, measured data g ∈ Y , and
initial template I0 ∈ X that sets the initial condition Iν,ζ0 (x) := I0(x).

Hence, performing metamorphosis-based indirect image registration of a
template I0 against a target indirectly observed through data g amounts to
solving

(ν̂, ζ̂) ∈ arg min
(ν,ζ)

J γ,τ (ν, ζ; g).

The above always has a solution assuming the data discrepancy and the
forward operator fulfills some weak requirements (see proposition 4). From
a solution we then obtain the following:

• Initial template: I0 ∈ X such that Iν,ζ0 := I0.

• Reconstruction: f ν̂,ζ̂1 = W
(
ϕν̂

0,1, I
ν̂,ζ̂
1

)
∈ X, the final registered tem-

plate.

• Image trajectory: t 7→ W
(
ϕν̂

0,t, I
ν̂,ζ̂
t

)
, the evolution of both geometry

and intensity of the template.

• Intensity trajectory: t 7→ I ν̂,ζ̂t , is the evolution of intensities of the
template, i.e., the part that does not include evolution of geometry.

• Deformation trajectory: t 7→ W(ϕν̂
0,t, I0), is the geometric evolution of

the template, i.e., the part that does not include evolution of intensity.
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5.3 Regularising properties

In the following we prove several properties (existence, stability and conver-
gence) of metamorphosis-based indirect image registration, which are nec-
essary if the approach is to constitute a well defined regularisation method
(notion defined in [35]). We set X := L2(Ω,R) and Y a Hilbert space.

Proposition 4 (Existence). Assume A : X → Y is continuous and the data
discrepancy L( · , g) : Y → R is weakly lower semi-continuous for any g ∈ Y .
Then, J γ,τ ( · , g) : L2 ([0, 1], V ×X)→ R defined through (6) and (7) has a
minimizer in L2 ([0, 1], V ×X) for any I0 ∈ L2(Ω,R).

Proof. We follow here the strategy to prove existence of minimal trajecto-
ries for metamorphosis (as in [19] for instance). One considers a minimiz-
ing sequence of J γ,τ ( · ; g), i.e., a sequence that converges to the infimum
of J γ,τ ( · ; g) (such a sequence always exists). The idea is to prove that
such a minimizing sequence has a sub-sequence that converges to a point in
L2 ([0, 1], V ×X), i.e., the infimum is contained in L2 ([0, 1], V ×X) which
proves existence of a minima.

Bearing in mind the above, we start by considering a minimizing se-
quence

{
(νn, ζn)

}
n
⊂ L2 ([0, 1], V ×X) to J γ,τ ( · ; g), i.e.,

lim
n→∞

J γ,τ (νn, ζn; g) = inf
ν,ζ
J γ,τ (ν, ζ; g).

Since
{
νn
}
n
⊂ L2 ([0, 1], V ) is bounded, it has a sub-sequence that converges

to an element ν∞ ∈ L2 ([0, 1], V ). Likewise,
{
ζn
}
n
⊂ L2 ([0, 1], X) has a sub-

sequence that converges to an element ζ∞ ∈ L2 ([0, 1], X). Hence, with a
slight abuse of notation, we conclude that

νn ⇀ ν∞ and ζn ⇀ ζ∞ as n→∞.

The aim is now to prove existence of minimizers by showing that (ν∞, ζ∞)
is a minimizer to J γ,τ ( · ; g) : L2 ([0, 1], V ×X)→ R.

Before proceeding, we introduce some notation in order to simplify the
expressions. Define

Int := Iν
n,ζn

t and ϕns,t := ϕνn

s,t for n ∈ N
⋃
{∞}. (8)

Hence, assuming geometric group action (3) and using (2), we can write

J γ,τ (νn, ζn; g) =
γ

2
‖νn‖22 +

τ

2
‖ζn‖22 + L

(
A
(
In1 ◦ ϕn1,0

)
, g
)

for n ∈ N
⋃
{∞}. Assume next that the following holds:

In1 ◦ ϕn1,0 ⇀ I∞1 ◦ ϕ∞1,0 as n→∞. (9)
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The data discrepancy term L( · , g) : Y → R is weakly lower semi continuous
and the forward operator A : X → Y is continuous, so L( · , g) ◦ A is also
weakly lower semi continuous and then (9) implies

L
(
A(I∞1 ◦ ϕ∞1,0), g

)
≤ lim inf

n→∞
L(A(In1 ◦ ϕn1,0), g). (10)

Furthermore, from the weak convergences of νn and ζn, we get

γ

2
‖ν∞‖22 +

τ

2
‖ζ∞‖22 ≤ lim inf

n→∞

[γ
2
‖νn‖22 +

τ

2
‖ζn‖22

]
. (11)

Hence, combining (10) and (11) we obtain

J γ,τ (ν∞, ζ∞; g) ≤ lim
n→∞

J γ,τ (νn, ζn; g).

Since
{

(νn, ζn)
}
n
⊂ L2 ([0, 1], V ×X) is a minimizing sequence, this yields

J γ,τ (ν∞, ζ∞; g) = inf
(ν,ζ)∈L2([0,1],V×X)

J γ,τ (ν, ζ; g),

which proves (ν∞, ζ∞) ∈ L2 ([0, 1], V ×X) is a minimizer to J γ,τ ( · ; g).
Hence, to finalize the proof we need to show that (9) holds. We start by

observing that the solution of (6) can be written as

Int := In0 (x) +

∫ t

0
ζn
(
s, ϕn0,s(x)

)
ds for n ∈ N ∪ {∞}, (12)

and note that (t, x) 7→ Int (x) ∈ C([0, 1]× Ω,R). Next, we claim that

In1 ⇀ I∞1 for some I∞1 ∈ X,

which is equivalent to

lim
n→∞

〈In1 − I∞1 , J〉 = 0 for any J ∈ L2(Ω,R). (13)

To prove (13), note first that since continuous functions are dense in L2, it
is enough to show (13) holds for J ∈ C0(Ω,R). Next,

〈In1 − I∞1 , J〉 =

∫
Ω

∫ t

0

(
ζn
(
s, ϕn0,s(x)

)
− ζ∞

(
s, ϕ∞0,s(x)

))
J(x)dsdx (14)

=

∫
Ω

∫ t

0

(
ζn
(
s, ϕn0,s(x)

)
− ζn

(
s, ϕ∞0,s(x)

))
J(x)dsdx (15)

+

∫
Ω

∫ t

0

(
ζn
(
s, ϕn0,s(x)

)
− ζ∞

(
s, ϕ∞0,s(x)

))
J(x)dsdx. (16)
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Let us now take a closer look at the term in (15):∫
Ω

∫ t

0

(
ζn
(
s, ϕn0,s(x)

)
− ζn

(
s, ϕ∞0,s(x)

))
J(x)dsdx

=

∫
Ω

∫ t

0
ζn(s, x)J

(
ϕn0,s(x)

)∣∣Dϕn0,s(x)
∣∣dsdx

−
∫

Ω

∫ t

0
ζ∞(s, x)J

(
ϕ∞0,s(x)

)∣∣Dϕ∞0,s(x)
∣∣dsdx

=

∫
Ω

∫ t

0
ζn(s, x)

(
J
(
ϕn0,s(x)

)∣∣Dϕn0,s(x)
∣∣−J(ϕ∞0,s(x)

)∣∣Dϕ∞0,s(x)
∣∣)dsdx

−
∫

Ω

∫ t

0

(
ζ∞(s, x)− ζn(s, x)

)
J
(
ϕ∞0,s(x)

)∣∣Dϕ∞0,s(x)
∣∣dsdx

= 〈ζn, Jn − J∞〉 − 〈ζ∞ − ζn, J∞〉

where Jn ∈ L2 ([0, 1], X) is defined as

Jn(s, x) := J
(
ϕns,0(x)

)∣∣Dϕns,0(x)
∣∣ for n ∈ N

⋃
{∞}. (17)

By proposition 3 we know that ϕns,0 → ϕ∞s,0 and Dϕns,0 → Dϕ∞s,0 uniformly
on Ω. Since J is continuous on Ω, we conclude that ‖Jn− J∞‖2 tends to 0.
Since ζn is bounded, we conclude that

〈ζn, Jn − J∞〉 ≤ ‖ζn‖2 · ‖Jn − J∞‖2 → 0.

Furthermore, since ζn ⇀ ζ∞, we also get 〈ζ∞ − ζn, J∞〉 → 0. Hence, we
have shown that (15) tends to zero, i.e.,

lim
n→∞

∫
Ω

∫ t

0

(
ζn
(
s, ϕn0,s(x)

)
− ζn

(
s, ϕ∞0,s(x)

))
J(x)dsdx = 0.

Finally, we consider the term in (16). Since ζn ⇀ ζ∞, we immediately
obtain∫

Ω

∫ t

0

(
ζn
(
s, ϕ∞s (x)

)
− ζ∞

(
s, ϕ∞s (x)

))
J(x)dsdx =

〈
ζn − ζ∞, J∞

〉
→ 0.

To summarise, we have just proved that both terms (15) and (16) tend to 0
as n→∞, which implies that (13) holds, i.e., In1 ⇀ I∞1 .

To prove (9), i.e., In1 ◦ ϕn1,0 ⇀ I∞1 ◦ ϕ∞1,0, we need to show that

lim
n→∞

〈
In1 ◦ ϕn1,0 − I∞1 ◦ ϕ∞1,0, J

〉
= 0 for any J ∈ L2(Ω,R), (18)

and as before, we may assume J ∈ C0(Ω,R). Using (17) we can express the
term in (18) whose limit we seek as∣∣〈In1 ◦ ϕn1,0 − I∞1 ◦ ϕ∞1,0, J〉∣∣

≤
∣∣∣〈In1 , Jn(1, · )− J∞(1, · )

〉∣∣∣+
∣∣∣〈In1 − I∞1 , J∞(1, · )

〉∣∣∣
≤ ‖In1 ‖ ·

∥∥Jn(1, · )− J∞(1, · )
∥∥+

∣∣〈In1 − I∞1 , J∞(1, · )〉
∣∣.
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Since ‖In1 ‖ is bounded (because ‖ζn‖ is bounded) and since In1 ⇀ I∞1 (which
we shoed before), all terms above tend to 0 as n→∞, i.e., (18) holds.

This concludes the proof of (9), which in turn implies the existence of a
minimizer of J γ,τ ( · ; g).

Proposition 5 (Stability). Let {gk}k ⊂ Y and assume this sequence con-
verges (in norm) to some g ∈ Y . Next, for each γ, τ > 0 and each k, define
(νk, ζk) ∈ L2 ([0, 1], V ×X) as

(νk, ζk) = arg min
(ν,ζ)

J γ,τ (ν, ζ; gk).

Then there exists a sub sequence of (νk, ζk) that converges weakly to a min-
imizer of J γ,τ ( · ; g) in (7).

Proof. We know from proposition 4 that J γ,τ ( · ; g) and J γ,τ ( · ; gk) has a
minimizer for any g, gk ∈ Y . The idea is first to show that the sequences
(νk)k and (ζk)k are bounded. Next, we show that there exists a weakly con-
verging subsequence of (νk, ζk) that converges to a minimizer of J γ,τ ( · ; g).

By (7), for each k we have (as (νk, ζk) minimizes J γ,τ ( · ; gk))

‖νk‖22 ≤
2

γ
J γ,τ ( · ; gk)(ν

k, ζk) ≤ 2

γ
J γ,τ ( · ; gk)(0, 0) . (19)

Observe now that if ν = 0 and ζ = 0, then ϕν
0,1 = Id by (1) and Iν,ζ1 = I0

by (6), so in particular

W
(
ϕν

0,1, I
ν,ζ
1 )

)
= I0 whenever ν = 0 and ζ = 0,

Hence, J γ,τ ( · ; gk)(0, 0) = L
(
A(I0), gk

)
and, in addition, ‖ν‖2 = 0 and

‖ζ‖2 = 0, so (19) becomes

‖νk‖22 ≤
2

γ
L
(
A(I0), gk

)
→ L(A(I0), g) as k →∞. (20)

In conclusion, the sequence (νk)k ⊂ L2 ([0, 1], V ) is bounded, so it has a sub
sequence that converges weakly to some element ν∞ ∈ L2 ([0, 1], V ). In a
similar way, (ζk)k ⊂ L2 ([0, 1], X) is bounded, so it has a sub sequence that
converges weakly to some element ζ∞ ∈ L2 ([0, 1], X).

In order to show that (ν∞, ζ∞) ∈ L2 ([0, 1], V ×X) minimizes J γ,τ ( · ; g),
we will show that J γ,τ (ν∞, ζ∞; g) ≤ J γ,τ (ν, ζ; data) for any (ν, ζ) ∈ L2 ([0, 1], V ×X).

From the weak convergences, we obtain

γ

2
‖ν∞‖22 +

τ

2
‖ζ∞‖22 ≤

γ

2
lim inf

k
‖νk‖22 +

τ

2
lim inf

k
‖ζk‖22

≤ 1

2
lim inf

k

[
γ‖νk‖22 + τ‖ζk‖22

]
. (21)
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The weak convergence also implies (see proof of proposition 4) that

W
(
ϕk0,1, I

∞
1

)
⇀W

(
ϕ∞0,1, I

∞
1

)
in X.

In the above, we have used the notational convention introduced in (8). By
the lower semi-continuity of L, we get

L
(
A
(
W(ϕ∞0,1, I

∞
1 )
)
, g
)
≤ lim inf L

(
A
(
W(ϕk0,1, I

k
1 )
)
, gk

)
. (22)

As a consequence,

J γ,τ (ν∞, ζ∞; g) =
γ

2
‖ν∞‖22 +

τ

2
‖ζ∞‖22 + L

(
A
(
W(ϕ∞0,1, I

∞
1 )
)
, g
)
.

≤ 1

2
lim inf

k

[
γ‖νk‖22 + τ‖ζk‖22

]
+ lim inf

k
L
(
A
(
W(ϕk0,1, I

k
1 )
)
, gk

)
≤ lim inf

k
J γ,τ (νk, ζk; gk). (23)

Next, since (νk, ζk) ∈ L2 ([0, 1], V ×X) minimizes J γ,τ ( · ; gk), we get

J γ,τ (ν∞, ζ∞; g) ≤ lim inf
k
J γ,τ (ν, ζ; gk) for any (ν, ζ) ∈ L2 ([0, 1], V ×X).

Furthermore, J γ,τ (ν, ζ; gk)→ J γ,τ (ν, ζ; g), so we conclude that

J γ,τ (ν∞, ζ∞; g) ≤ J γ,τ (ν, ζ; data) for all (ν, ζ) ∈ L2 ([0, 1], V ×X).

In particular, we have shown that (ν∞, ζ∞) minimises J γ,τ ( · ; g).

Convergence investigates the behaviour of the solution as data error
tends to zero and regularization parameters are adapted accordingly (pa-
rameter choice rule) to the data error.

Proposition 6 (Convergence). Let g ∈ Y . We suppose that there exists

(ν̂, ζ̂) such that A
(
W(ϕν̂

0,1, I
ν̂,ζ̂
1 )

)
= g. For given δ > 0, we define

(νδ, ζδ) ∈ arg min
(ν,ζ)

J γ(δ),τ(δ)(ν, ζ; g + eδ)

where data error eδ ∈ Y has magnitude ‖eδ‖ = δ. Next, assume there exists
parameter choice rules δ 7→ γ(δ) and δ 7→ τ(δ) such that δ 7→ γ(δ)/τ(δ) and
δ 7→ τ(δ)/γ(δ) are bounded and

lim
δ→0

γ(δ) = lim
δ→0

τ(δ) = lim
δ→0

δ2

γ(δ)
= lim

δ→0

δ2

τ(δ)
= 0.

Then, there exists a subsequence (νδk , ζδk) of (νδ, ζδ) such that δk → 0 and

(νδk , ζδk) converges weakly towards (ν∗, ζ∗) that satisfies A
(
W(ϕν∗

0,1, I
ν∗,ζ∗

1 )
)

=
g.

13



Proof. let (δk) be a sequence converging to 0 and, for each k, let us denote
gk = g + eδk , νk,= νδk and ζk = ζδk .

Similarly to previous proofs, let us show that the sequences (νk) and
(ζk) are bounded, and then that the weakly converging subsequence that
can be extracted from (νk, ζk) converges to a suitable solution. .

Define γk := γ(δk) and τk := γ(δk). Then, for each k we have

|νk|2 ≤ 1

γk
J γk,τk,gk(νk, ζk) ≤ 1

γk
J γk,τk,gk(ν̂, ζ̂)

=
1

γk

(
γk|ν̂|2 + τk|ζ̂|2 + L(g, gk)

)
≤ |ν̂|2 +

τk
γk
|ζ̂|2 +

δk

γk
.

From the assumptions on γ, τ , and δ, we conclude that (νk) is bounded in
L2 ([0, 1], V ) and similarly one can show that (ζk) is bounded. Hence, there
is a subsequence of (νk, ζk) that converges weakly to (ν̃, ζ̃) in L2 ([0, 1], V )×
L2 ([0, 1], V ).

Then (see proof of existence of minimizer for J γ,τ ( · ; g))

L
(
A
(
W(ϕν̃

0,1, I
ν̃,ζ̃
1 )

)
, g
)
≤ lim inf L

(
A(W

(
ϕνk

0,1, I
ν̃,ζ̃
1 )

)
, gk

)
.

Furthermore, this quantity converges to 0 because for each k:

L
(
A
(
W(ϕνk

0,1, I
νk,ζk

1 )
)
, gk

)
≤ J γk,τk,dk(νk, ζk)

≤ J γk,τk,dk(ν̂, ζ̂) = γk|ν̂|2 + τk|ζ̂|2 + L(g, gk)

which tends to 0. Hence, A
(
W(ϕν̃

0,1, I
ν̃,ζ̃
1 )

)
= g.

6 Application to 2D tomography

6.1 The inverse problem

We present here several examples of reconstruction from 2D parallel beam
tomographic data with our framework and compare these results with other
reconstruction methods.

6.2 Framework

We use in the following scalar gaussian kernels

Kσ(x, y) := exp
(
−|x− y|

2

2σ2

)
for scalar parameter σ > 0.

Furthermore, A : X → Y is the parallel beam ray transform which is a
continuous operator. It is sampled at a certain number of angles that will
be specified for each case. Finally, L is the L2-distance on the range of A.
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For each example we will specify following four parameters: the kernel-
size σ, the number of angles of the ray transform, and the two regularisation
parameters λ and τ defined in (7).

In addition, since data is noisy, we will also specify the signal-to-noise
ratio (SNR) defined as

SNR(g) = 10 log10

(
‖g0 − g0‖2

‖η − η‖2

)
for g = g0 + η.

In the above, g0 is the noise-free term and η is the noise term in data with
g0 and η denoting the mean of g0 and η, respectively. The SNR is expressed
in terms of dB.

The results that we present are obtained by minimising the objective
functional in (7) via a gradient descent.

6.3 Multi object and poorly-chosen intensities

We first present the reconstruction we obtain with the same data as in
fig. 1: the template and the ground truth image have the same topology
but the intensities and shapes of objects are different, see fig. 2. The SNR
is here 15.6 dB. The ray transform is here taken with 100 angles and the
size kernel is σ = 2 (the size of the images is 16 × 16). The reconstructed
image is presented in fig. 2(h), and the intermediate trajectories for the
metamorphosis are shown in fig. 2 (image, deformation part and template
part).

We can see on this example that the metamorphosis indirect registration
framework (unlike the LDDMM one, see fig. 1) allows to recover both inten-
sities and geometric changes between the template image and the ground
truth. Besides the result can be decomposed into these two variations, en-
abling easy visual interpretation.

6.4 Object appearance and poorly-chosen intensities

We present here the reconstruction we obtain with Shepp-Logan images
where the ground truth image is a deformed Shepp-Logan with a non-
uniform background and an additional white disc (see fig. 3). The SNR
is here 10.6 dB. The ray transform is here taken with 100 angles and the
size kernel is σ = 3 (the size of the images is 16 × 16). The reconstructed
image is presented in fig. 2(h), and the intermediate trajectories for the
metamorphosis are shown in fig. 3 (image, deformation part and template
part).

As previously, the ground truth is well reconstructed and one can follow
both the deformation of the template and the appearance of the white disc.
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(a) Template. (b) Target. (c) Data (sinogram).

(d) t = 0. (e) t = 0.2. (f) t = 0.5. (g) t = 0.7. (h) t = 1.

(i) t = 0. (j) t = 0.2. (k) t = 0.5. (l) t = 0.7. (m) t = 1.

(n) t = 0. (o) t = 0.2. (p) t = 0.5. (q) t = 0.7. (r) t = 1.

Figure 2: Metamorphosis based indirect-matching of template in (a) against
data in (c), which represents 2D ray transform of target in (b) (100 uniformly
distributed angles in [0, π]). The second row (d)–(h) shows the image tra-
jectory t 7→ W(ϕν

0,t, ft(ν, ζ)), so the final registered template is in (h). The
third row (i)–(m) shows the deformation trajectory t 7→ W(ϕν

0,t, I0), likewise
the fourth row (n)–(r) shows the intensity trajectory t 7→ ft(ν, ζ).
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(a) Template I0. (b) Ground truth. (c) Data (sinogram).

(d) t = 0. (e) t = 0.2. (f) t = 0.5. (g) t = 0.7. (h) t = 1.

(i) t = 0. (j) t = 0.2. (k) t = 0.5. (l) t = 0.7. (m) t = 1.

(n) t = 0. (o) t = 0.2. (p) t = 0.5. (q) t = 0.7. (r) t = 1.

Figure 3: Metamorphosis based indirect-matching of template in (a) against
data in (c), which represents 2D ray transform of target in (b) (100 uniformly
distributed angles in [0, π]). The second row (d)–(h) shows the image tra-
jectory t 7→ W(ϕν

0,t, ft(ν, ζ)), so the final registered template is in (h). The
third row (i)–(m) shows the deformation trajectory t 7→ W(ϕν

0,t, I0), likewise
the fourth row (n)–(r) shows the intensity trajectory t 7→ ft(ν, ζ).
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6.5 Example of application for spatio-temporal reconstruc-
tion

The goal of this framework is to perform spatio-temporal reconstruction, it
will be the object of another article but we present here a preliminary result
with images of the same type as in section 6.4. Here the acquisition is done
at 10 different time points (from t = 0.1 to t = 1), with an object under
study that is moving. Besides we suppose that the acquisition is slow so that
for each of the 10 time points, only data for limited angles are available: we
suppose that the i−th acquisition corresponds to the ray transform with 10
angles randomly distributed between (i − 1)π/10 and iπ/10. The moving
ground truth and the obtained results are presented on fig. 4 and examples
of data are shown on fig. 5.

We also present in fig. 6, the result of reconstruction we obtained using
the TV algorithm and the Filter-back-projection on the concatenation of
10 data (corresponding then to a ray transform with 100 angles). Theses
concatenated data are shown on fig. 6(c).

We can see on these figures that, unlike TV and FBP algorithms, our
method allows to catch the evolution of the object under study (both the
deformation and the appearance of the white disc).

6.6 Robustness

Performing the reconstruction via the framework that we present requires
to choose three parameters: the kernel-size σ and the two regularisation
parameters λ and τ . We study here the influence of their choices in the
reconstruction result of the experiment presented in Section 6.4.

In practice, the reconstruction result, as well as its decomposition in
template-part and deformation-part, is not too sensitive to the choice the
two regularisation parameters λ and τ . We present in table 1 the structural
similarity (SSIM) and peak signal-to-noise ratio (PSNR) values for σ equal
to 3 and varying regularisation parameters.

The reconstruction result is more sensitive to the choice of the kernel size.
We present in fig. 7 the reconstructed image, and the corresponding final
template-part and deformation part for various values of σ. We also give in
table 2 the values of SSIM and PSNR of each kernel size. One can see that
even if, for all values of the kernel size the reconstruction is satisfying, its
decomposition in the template part and deformation part are really different.
The deformation and the change in grey-scale value combine sometimes in
a non-intuitive way in order to produce a suitable reconstructed image.
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Ground truth Image
Deformation

part
Template part

t
=

0
t

=
0.

1
t

=
0.

2
t

=
0.

3
t

=
0.

4
t

=
0.

5
t

=
0.

6
t

=
0.

7
t

=
0.

8
t

=
0.

9
t

=
10
.

Figure 4: Spatio-temporal reconstruction with Metamorphosis framework,
the template is shown at the first row (same initialisation for the Image,
template part and deformation part). The first column shows the ground
truth images at the 10 data time points; the second column shows the image
trajectory (i.e. the reconstructions) t 7→ W(ϕν

0,t, ft(ν, ζ)); the third column
shows the deformation trajectory t 7→ W(ϕν

0,t, I0); and the fourth column
shows the intensity trajectory t 7→ ft(ν, ζ).
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(a) t = 0.1. (b) t = 0.5. (c) t = 1.

Figure 5: Examples of data used for the spatio-temporal reconstruction
with Metamorphosis framework.

(a) FBP. (b) TV. (c) Concatenated data.

Figure 6: Reconstruction from spatio-temporal data (see fig. 4), methods:
FBP (left) and TV (middle).

τ
γ

10−7 10−5 10−3 10−1

10−1 0.768 0.765 0.765 0.765
-6.49 -6.62 -6.62 -6.62

10−3 0.768 0.7666 0.7666 0.7666
-6.39 -6.49 -6.49 -6.49

10−5 0.768 0.7666 0.7666 0.7666
-6.39 -6.49 -6.49 -6.49

10−7 0.768 0.7666 0.7666 0.7666
-6.39 -6.49 -6.49 -6.49

Table 1: SSIM (top) and PSNR (bottom) values for Metamorphosis-indirect-
matching reconstruction with varying regularisation parameter and σ = 3
for several regularisation parameters.
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Image Deformation part Template part
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10

Figure 7: Reconstruction results and their recomposition in template part
and deformation part for various kernel size σ.
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σ 0.3 0.6 1 2 3 5 10

SSIM 0.640 0.89 0.737 0.769 0.766 0.764 0.681
PSNR -8.12 -7.30 -6.58 -6.34 -6.49 -6.67 -8.99

Table 2: SSIM and PSNR values for Metamorphosis-indirect-matching re-
construction with varying kernel size σ and fixed regularisation parameters
λ = τ = 10−5.
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7 Survey of spatiotemporal reconstruction meth-
ods in nuclear medical imaging

7.1 Gating

The conventional approach to account for motion is through independent
frame-by-frame reconstruction. Here data is gated, i.e., sub-divided into
sub-sets that represent data acquired when the organs at the same specific
temporal state. For cardiac and respiratory motion, gated data would cor-
respond to decomposition of the whole dataset into parts that represent dif-
ferent breathing and/or cardiac phases. After gating each single gate shows
less motion, however, suffers from a relatively low signal-to-noise ratio as
only a small portion of all available events is contained. Reconstruction is
then performed, one for each temporal state using the associated sub-set of
gated data. In this way, 4D reconstruction problem is reduced to a sequence
of independent 3D reconstruction problems. In this context one often speaks
of double gated data, which is when there are two sources of motion, e.g.,
motion of the beating heart and respiratory motion of the lungs and thoracic
wall.

Gating techniques that account for the beating heart are usually based on
using a electrocardiogram (shows the heart as it contracts over the interval
from one R wave to the next) to guide data acquisition. Gating techniques
that account for respiratory motion are more challenging, e.g., optical track-
ing systems are used to measure the respiratory motion, see survey in [7] for
an overview. These are mostly engineering considerations, a research topic
of interest is to consider computational gating, i.e., computationally ‘freeze’
the movement to overcome motion artefacts. One example is optical gating
techniques that exploit the periodic motion of the heart [95].

7.2 Organ motion models

The topics listed here deal with motion models for organs, which in turn
is closely related to image registration and shape analysis. Emphasis is on
cardiac and respiratory motion, see [26, 81, 31] for nice surveys of this topic.

Cardiac motion Many cardiac motion models are developed to provide
diagnostic information about the cardiac function.

Physics-based deformable models can be used to parameterise deforma-
tions that captured the motion of the left ventricle [73]. 4D B-splines can
also be used to interpolate the motion between the tracked myocardial points
[72]. The 4D displacement field formed by combining the 2D fields, as de-
rived from the short-axis and long-axis image planes, could be used to track
the deformation of points anywhere within the myocardium. These models
are estimated from tagged magnetic resonance imaging (MRI) images of the
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heart, but the deformation model itself may be of relevance also for cardiac
PET/computed tomography (CT) and SPECT/CT imaging.

Another approach, which is used when the motion model is estimated
from other imaging modalities, is based on extensions of the classic optical
flow approach of [42]. The optical flow technique assumes that a moving
point in a sequence of images does not change its intensity. The classic ap-
proach invokes local Taylor series approximations (using partial derivatives
with respect to the spatial and temporal coordinates). It was first applied
directly to 2D cardiac images in [61, 1]. Because 2D motion is inadequate
to describe cardiac motion vectors, extension to the 3D setting is given in
[90, 104] on CT cardiac sequences.

One may also consider motion models inspired from linear elastic mate-
rial models as in [49, 23]. Here, the motion field is regularised by an energy
function constraining the source volume as if it were a physical elastic mate-
rial being deformed by external forces. Yet another approach is based on the
optical flow method [36], which assume that a moving point in a sequence
of images does not change its intensity. This assumption may be violated in
emission tomography because of the limited spatial resolution (and the re-
sulting partial volume effect), particularly as the myocardium expands and
becomes thin in the end-diastolic phase. An alternative is to invoke the con-
tinuity equation describing conservation of mass (here, intensity), resulting
in an additional term relative to classic optical flow (and sometimes referred
to as extended optical flow) [90]. See also [50] which proposes a technique
based on 3D optical flows combined with a model of the myocardium as an
elastic membrane.

Respiratory motion Respiratory motion of the heart, if unaccounted for,
may introduce imaging artefacts that resemble false defects [59]. Further-
more, it also introduces considerable degradations in quantitative accuracy
of images [79] and quality of polar maps [74].

A central topic in this context is rigid versus non-rigid modelling of
the motion. Respiratory motion of the heart (as well as liver, stomach,
spleen, and kidneys) do for the most part involve rigid translations downward
and to the interior as the diaphragm contracts during inspiration [89, 53].
Nonetheless, such motion also induces non-rigid movements (deformations)
of the heart, as it is pushed and pulled by the diaphragm and other connected
tissue [2]. Quantitative measures reveal that non-rigid motion was close to
10% in several cases [51]. On the other hand, only small improvements were
observed [51] after performing non-rigid motion modelling. Hence, whether
to use a rigid or non-rigid model depends on the resolution of the PET
scanner.

The simplest non-rigid motion model is affine, which has six parameters
(3D rotation and translation). One may extend the affine model to a rigid

24



model that also allow three scale [56] and three skew parameters [51]. An
approach for non-rigid modelling based on optical flows is reported in [24].
A regularised B-spline approach with a Markov random field regulariser is
used in [5], see also [21].

Other shape-constrained deformable models that have specifically been
developed for organ segmentation in 3D medical images are surveyed in [99],
see also [29] for a survey of shape models in the context of emission tomog-
raphy. Registration and segmentation techniques for pulmonary image anal-
ysis are provided in [86] and [68, 81, 31] surveys respiratory motion correc-
tion strategies and deformation models relevant for thoracic PET, PET/CT
that are also applicable to SPECT. Finally, we also mention [48] which is
the largest evaluation of non-linear deformation algorithms applied to brain
image registration ever conducted. Many of these are also relevant in the
context of 4D PET and SPECT.

7.3 Reconstruction methods that incorporate motion

Traditional reconstruction methods for inverse problems with temporal vari-
ation is frame-by-frame reconstruction (assumes gated data), followed by ex-
tracting the temporal behaviour of the objects or regions of interest through
curve fitting and other image-based processing. In such an approach, one
only exploits the spatial relationship between the image to be recovered and
the measurement data at each time instant. Hence, one does not account
for the temporal dynamics of the underlying process, leading to non-optimal
results unless the solution is temporally uncorrelated.

The term 4D reconstruction refers to methods that seek to account for
the temporal dynamics in the 3D images. Several approaches have recently
been proposed, see [25, 81, 85, 31] for surveys (some of these references also
deal with integrating temporal models for the radiotracer kinetics into the
reconstruction scheme, but the methods should also work with temporal
models for organ motion). In order to keep the radiation burden as low
as possible, most methods estimated motion model parameters on basis of
the PET or SPECT data instead of, e.g., gated CT images. They can be
classified into four groups [5]:

(i) Averaging of aligned images (inter-iterative temporal smoothing).

(ii) Re-reconstruction using a time-varying forward model.

(iii) Event re-binning.

(iv) Joint reconstruction of image and motion.

All but the last category requires that a motion model is estimated prior
to reconstruction. See also [69] for a survey of effects of motion, attenua-
tion, and scatter corrections on gated cardiac SPECT reconstruction. This
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paper investigate how these degrading factors will impact the reconstructed
myocardium for different reconstruction methods.

Averaging of aligned images After gating the data, each gate is re-
constructed individually and aligned to one assigned reference gate. To
overcome the problem of low signal-to-noise rations, the aligned images are
averaged (summed) afterwards using an estimated motion model, which pro-
vides motion vectors that enables tracking any given voxel across the gates.
One may here use any of the motion models listed in section 7.2.

Such an approach was suggested in [10] for cardiac gated data. One may
also in the reconstruction replace the uniform-voxel framework by a mesh
[11]. This provides an efficient image description based on non-uniform sam-
pling as mesh nodes are placed more densely in image regions having finer
detail. However, the investigators seem to have abandoned this approach in
favour of post-reconstruction motion-compensated filtering in later publica-
tions [64, 12]. Overall, spatial [43, 67] or temporal [46, 83] inter-iteration
filtering methods are ad hoc (e.g., are not proved to be convergent).

Re-reconstruction using a time-varying forward model Similar to
item i, data is gated and each individually reconstructed gate is aligned to
one assigned reference gate. The obtained motion information is incorpo-
rated into a subsequent re-reconstruction of the whole dataset by incorpo-
rating the motion field into the linear forward model.

Approaches along this line focus mostly on integrating motion models
into the forward model within the maximum-likelihood expectation max-
imisation (ML-EM) method, see [57, 28] for respiratory motion correction
approaches in PET and [15] for SPECT. Most approaches are based on
modifying the maximum a posteriori (MAP)-OSL algorithm of [39], e.g.,
[38] uses a formulation to encourage smoothing across the gated frames.
Furthermore, [36, 37] provides a generalised weighted formulation to weight
inter-gate variations in voxel intensities depending on gate separation (higher
weights for nearer gates), see also [54, 55] for a similar approach.

Event re-binning An issue with the approaches item i and item ii above is
that they treat the same moving image as different temporal reconstructions
that are merely temporally correlated. A truly 4D approach would estimate
deformations and incorporate these within a unified forward model.

In PET one may gate the acquired list mode data and reconstruct each
gate. Motion is estimated based on these reconstructed images. The initial
list mode data is re-binned in a subsequent step by applying the transfor-
mation gained from the motion estimation step. Such an approach was
proposed and investigated in [78, 58, 56] for respiratory gating applications,
which later was also used for cardiac gating [93]. The measured non-rigid
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motion (estimated from the gated images) is modelled in the image-space
and becomes part of the forward model resulting in a truly 4D ML-EM
reconstruction algorithm, see also [41, 66, 82].

An alternative is to incorporate a motion model in the reconstruction
procedure since it does not modify data and thereby preserve its statistical
properties. This is proposed in [77] (rigid) and [78] (rigid and non-rigid).
The work in [78, 77] is extended in [71] to describe a reconstruction algorithm
specifically tailored to list-mode PET data containing motion signals (e.g.,
from MR navigators) along with detected coincidences. In this approach,
all counts are reconstructed into one reference frame in order to maximise
signal-to-noise ratio, while correcting for motion, in order to minimise mo-
tion blurring. This method can be easily extended to motion-corrected,
frame-by-frame dynamic reconstruction.

Joint reconstruction of image and motion Here, motion is estimated
simultaneously to the reconstruction of the image. An objective function is
optimised w.r.t. two arguments: image and motion. Hence, only one image
with the full statistic is reconstructed. Given the close link between the
image reconstruction and motion estimation steps, a simultaneous method
of estimating the two is better able to reduce motion blur and compensate
for poor signal-to-noise ratios and to improve the accuracy of the estimated
motion [33, 36]. A draw-back is the relatively high computational costs
involved in such a joint reconstruction approach.

In [33, 36] one seeks to perform a two-step minimization of a joint energy
functional term (which included both image likelihood and motion-matching
terms). This work was also extended from a two-frame approach to the com-
plete cardiac cycle in [34]. See also [62, 73, 18] for algorithms that include
similar regularisation via the strain energy function for the purpose of my-
ocardium motion estimation. The approach taken by Jacobson and Fessler
[44, 45] considered a parametric Poisson model for gated PET measurements
involving the activity distribution as unknown as well as a set of deformation
parameters describing the motion of the image throughout the scan (from
gate to gate). By maximising the log-likelihood for this model, a technique
referred to as joint estimation with deformation modelling was used to de-
termine both the image and deformation parameter estimates jointly from
the full set of measured data. A similar motion-aware likelihood function
is used in [9], although using a distinct optimisation scheme and depicting
more convincing results. In his context one may also consult [103], which
compares three approaches for joint reconstruction of image and motion:
a state-space model, the separability condition and a multiple constraints
model. By formulating these methods in a common statistical regularisation
framework, the authors are able to illuminate their relationships.

A common model for double gated data is to model the respiratory
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motion of the heart as rigid. One can then transform individual lines of
response (i.e., via translations and rotations) to compensate for respiratory
motion, followed by standard reconstructions of individual cardiac-gated
datasets [60]. This approach does not compensate for duration of time
each line of response spends outside the field-of-view because of motion,
which can be compensated via multiplication factors applied to the motion-
compensated events [16] or by modifying the sensitivity images through
the 4D ML-EM formalism. The latter approach is taken in [79, 21] where
4D respiratory motion is compensated for each cardiac phase. It is also
possible to pursue 4D reconstruction methods that incorporate both cardiac
and respiratory gating information as in [9] that uses data from a dual-
gated framework with 24 total gates. Nonetheless, in practice, the common
approach has been to use 4D reconstruction methods to compensate for
respiratory motion within each cardiac gate, followed by post-reconstruction
registration and summing of cardiac-gated images [21, 94].

A novel approach to incorporate correction for cardiac and pulmonary
motion in dual gated PET/CT cardiac imaging is provided in [32]. Intensity
modulations caused by the highly non-rigid cardiac motion are considered
by means of a mass-preserving transformation model initially developed for
image registration [17, 65]. This motion model is incorporated into a varia-
tional regularisation framework for joint motion estimation and reconstruc-
tion. See also [13] for a variational regularisation for joint reconstruction
of image and motion in which the motion is modelled by mass conserva-
tion and [87] for a variational approach to joint reconstruction of image and
motion in SPECT. Another alternative is to consider motion models de-
rived from LDDMM based deformations. Finally, [27] provides an overview
of variational shape models as applied to the registration and segmentation
problems. These could also be coupled with variational regularisation meth-
ods for image reconstruction. One may also consider microlocal analysis for
recovering moving edges in CT given an estimated model for motion [47].
This can in turn be used to define dynamic edge based priors for variational
4D combined modality imaging, such as 4D PET/CT and SPECT/CT.

Finally, an important aspect is also how to acquire attenuation maps
for cardiac SPECT in the presence of respiratory motion. A comparison of
several methods is provided in [52] and see also [75] for attenuation correction
in (4D) PET using phase-correlated 4D CT.

7.4 Dynamic dictionaries

The central theme here is to develop 4D dictionaries for 3D images with
temporal variation. Sparse representations for video restoration (denois-
ing [76, 63] and in-painting [63]) are examples of dictionaries that encode
both spatial and temporal information. Dictionary learning methods can be
applied to dynamic imaging scenarios, see [4] for dynamic MRI. Here, the
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spatio-temporal data, and thereby the spatio-temporal dictionary atoms,
exhibit joint coherence in space and time.

For analytic dictionaries, the feasibility of wavelet-based compression of
4D images with smooth grey scale variations is shown in [101] for ultrasound
images, see also where 4D ultrasound images of the beating heart are com-
pressed about 2000 times without impairing upon the diagnostic usability
[30, 102, 92]. In the context of 4D PET, there are dictionaries that encode
spatial and temporal variability [84]. The approach is to estimate both a
set of temporal basis functions and the corresponding coefficient for each
basis function at each spatial location within the image. The joint esti-
mation is performed through a fully 4D version of the ML-EM algorithm.
Results are compared to the conventional frame-by-frame independent re-
construction with ML-EM for varying levels of both spatial and temporal
post-reconstruction smoothing. Another similar approach is developed in
[97], see also [80]. As of writing, there is however no transform based dictio-
nary providing a sparse representation of edge information over time. Here,
one could use techniques from [47] to develop a 4D variant of shearlets for
sparse representation of spatio-temporal images.
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