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Abstract: Several entropy measures are now widely used to analyze real-world time series. Among
them, we can cite approximate entropy, sample entropy and fuzzy entropy (FuzzyEn), the latter
one being probably the most efficient among the three. However, FuzzyEn precision depends on
the number of samples in the data under study. The longer the signal, the better it is. Nevertheless,
long signals are often difficult to obtain in real applications. This is why we herein propose a new
FuzzyEn that presents better precision than the standard FuzzyEn. This is performed by increasing
the number of samples used in the computation of the entropy measure, without changing the length
of the time series. Thus, for the comparisons of the patterns, the mean value is no longer a constraint.
Moreover, translated patterns are not the only ones considered: reflected, inversed, and glide-reflected
patterns are also taken into account. The new measure (so-called centered and averaged FuzzyEn)
is applied to synthetic and biomedical signals. The results show that the centered and averaged
FuzzyEn leads to more precise results than the standard FuzzyEn: the relative percentile range is
reduced compared to the standard sample entropy and fuzzy entropy measures. The centered and
averaged FuzzyEn could now be used in other applications to compare its performances to those of
other already-existing entropy measures.

Keywords: entropy; fuzzy entropy; sample entropy; irregularity; fetal heart rate; time series;
symmetrical m-patterns

1. Introduction

Approximate entropy (ApEn) and sample entropy (SampEn) algorithms are now widely used to
quantify the irregularity of experimental time series [1,2]. They both rely on the evaluation of vectors’
similarity. However, in both ApEn and SampEn, the vectors’ similarity is based on the Heaviside
function, a function that has rigid boundaries. Thus, the contributions of samples inside the boundary
are treated equally, but the samples outside the boundary are left out. However, in the real world,
boundaries between classes may be ambiguous: it is often difficult to determine if an input pattern
belongs totally to a class. To overcome this lack of reality in ApEn and SampEn algorithms, Chen et al.
proposed the fuzzy entropy (FuzzyEn) algorithm [3]. In the latter case, the vectors’ similarity is defined
by the soft and continuous boundaries of a fuzzy function. Since its introduction, it has been reported
that FuzzyEn leads to better performance than ApEn or SampEn [4–6]. FuzzyEn presents a stronger
relative consistency and shows less dependence on data length than ApEn and SampEn [3].

Nevertheless, the number of samples in a signal still plays a role in the precision of FuzzyEn:
the shorter the signal, the lower the number of vectors, and thus, the lower the precision of
FuzzyEn (i.e., the larger the standard deviation). Therefore, to obtain more precise entropy values,
the longer the signal, the better it is. In practical situations (real data), this may be a challenge. Indeed,
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it is often difficult to have long recordings, particularly in the biomedical field where patients may
have difficulty to stay still or to cooperate.

This is why we herein propose a new fuzzy entropy measure that presents better precision than
the traditional FuzzyEn measure. This is performed by increasing the number of samples used in the
computation, without changing the length of the time series.

The paper is organized as follows. The original algorithm of FuzzyEn is first detailed in Section 2;
then the new entropy measure is described. The synthetic and biomedical data (fetal heart rate time
series) used in our work are introduced in Section 3. In Section 4, we first present, analyze, and discuss
the results obtained with the synthetic data. We then describe and interpret the results obtained with
the biomedical time series. We finally end with the conclusion.

2. Standard Fuzzy Entropy and the New Entropy Measure

In this section, we recall the FuzzyEn concept based on the use of a membership function. For this
purpose, the generalized Gaussian membership function is used since it allows the derivation of both
the rectangular function used in the calculation of SampEn and the standard Gaussian function used
in the calculation of FuzzyEn.

2.1. Fuzzy Entropy Algorithm

For a given discrete time series X = {x(1), x(2), . . . , x(N)} of length N, the algorithm to compute
FuzzyEn relies on the following steps [1]:

1. Split X into a series of subsequences Xm(i) of length m starting at x(i): Xm(i) = {x(i), x(i +
1), . . . , x(i + m− 1)}, 1 ≤ i ≤ N −m + 1.

2. For each vector Xm(i), compute the similarity degree Dm
ij of its neighboring vector Xm(j) using a

similarity function as:

Dm
ij = µp(d[Xm(i), Xm(j)], r), (1)

where the membership function µp reported in Figure 1 is defined ∀d ≥ 0 as:

µp(d, r) = exp(−(d/r)p), (2)

and where the distance function d is the maximum absolute difference d[Xm(i), Xm(j)] =

max0≤k≤m−1(|x(i + k)− x(j + k)|). For p = 2, we have the Gaussian function, and for p = ∞, we
have the rectangular function.

3. For each i (1 ≤ i ≤ N −m + 1), compute φm
i as:

φm
i (r) =

1
N −m− 1

N−m

∑
j=1,j 6=i

Dm
ij . (3)

4. Construct ϕm and ϕm+1 as:

ϕm(r) =
1

N −m

N−m

∑
i=1

φm
i (r), (4)

ϕm+1(r) =
1

N −m

N−m

∑
i=1

ϕm+1
i (r). (5)

5. Fuzzy entropy is then calculated as:
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FuzzyEn(m, r) = lim
N→∞

ln
[

ϕm(r)
ϕm+1(r)

]
, (6)

which, for finite datasets, can be estimated by the statistic:

FuzzyEn(m, r, N) = ln
[

ϕm(r)
ϕm+1(r)

]
. (7)

Figure 1. Membership functions µp(d, r) = exp(−(d/r)p) with r = 0.1. Gaussian function (blue) with
p = 2; rectangular function (magenta) with p = ∞, for d ≥ 0.

As shown in Figure 2, the 2-pattern ‘1’ has only one similar 2-pattern among the 27 possible
2-patterns in the time series. From the time series reported in Figure 2, the total number of similar
2-patterns is 12: (‘1’,‘15’), (‘5’,‘21’), (‘7’,‘19’), (‘8’,‘20’), (‘13’,‘24’), (‘14’,‘25’).

As for ApEn and SampEn, the statistical stability of the FuzzyEn estimation depends on the length
N of the time series as reported in Equation (7). To decrease this length-dependency, several strategies
can be proposed.

Figure 2. Stochastic time series where 2-patterns are pointed out. Each number corresponds to the
place of the corresponding segment. No-centered 2-patterns are considered. The two 2-patterns ‘1’ and
‘15’ (black bullets) have the same mean value; they are similar. The total number of similar 2-patterns is
12: (‘1’,‘15’), (‘5’,‘21’), (‘7’,‘19’), (‘8’,‘20’), (‘13’,‘24’), (‘14’,‘25’).

2.2. New Approaches

As mentioned above, from a fixed number of samples N in the time series, a way to improve the
statistical stability of the entropy measurement consists in artificially increasing the number of similar
m-patterns taken into account in the entropy calculation. To do so, three different ways are proposed:

1. The first approach is inspired by [3,7]. In the latter studies, the interest in centering each m-pattern
has been shown. In this case, instead of limiting the search of m-patterns with the same mean
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value, any pattern can be taken into account. Therefore, the number of similar patterns drastically
increases.
Therefore, in the first approach, a centered m-pattern Xcm(j) is compared to a reference centered
m-pattern Xcm(i). The similarity degree is calculated with Xcm(i) = {x(i), x(i + 1), . . . , x(i +
m − 1)} − x0(i), where 1 ≤ i ≤ N − m + 1 and x0(i) = 1

m ∑
j=m−1
j=0 x(i + j), through a

similarity function:

Dcm
ij = µp(d[Xcm(i), Xcm(j)], r), (8)

with the same membership function as the one reported in Equation (2). The centered fuzzy
entropy FuzzyEnc is thus defined as:

FuzzyEnc(m, r, N) = ln

[
ϕm

c (r)
ϕm+1

c (r)

]
, (9)

with ϕm
c (r) =

1
N−m ∑N−m

i=1 φm
ci (r) and with φm

ci (r) =
1

N−m−1 ∑N−m
j=1,j 6=i Dcm

ij .

As shown in Figure 3a, removing the mean value of 2-patterns increases the number of centered
similar 2-patterns since the number of centered 2-patterns similar to ‘1’ is six compared to one
when the centering approach is not used. From Figure 3b, the total number of centered similar
2-patterns is 25: (‘1’,‘9’,‘13’,‘15’,‘17’,‘24’), (‘2’,‘14’,‘25’), (‘3’,‘8’,‘20’), (‘4’,‘23’), (‘5’,‘7’,‘10’,‘19’,‘21’),
(‘11’,‘18’), (‘12’,‘16’), (‘22’,‘26’). The total number of similar centered 2-patterns is much larger
than no-centered 2-patterns.

2. The second approach is inspired by [8], where transformed patterns are compared to reference
patterns. Thus, in the second approach, a transformed m-pattern Γk[Xm(j)] (see below) is
compared to a reference m-pattern Xm(i). The similarity degree is calculated with the same
membership function as the one reported in Equation (2):

kDm
ij = µp(d[Xm(i), Γk[Xm(j)]], r). (10)

Four types of Γk[Xm(j)] operations with k = {T, R, I, G} are evaluated:

• ΓT [Xm(j)] = Xm(j + n) corresponds to a translation of n samples, k = T;
• ΓR[Xm(j)] = Xm(−j + n) corresponds to a reflection at the position n, k = R;
• ΓI [Xm(j)] = −Xm(−j + n) corresponds to an inversion at the position n, k = I;
• ΓG[Xm(j)] = −Xm(j + n) corresponds to a glide reflection of n samples, k = G.

At first sight, any type of operation could be used. However, from our point of view,
only isometries (translation T, reflection R, inversion I and glide reflection G) are suitable.
This statement is supported by the recent work reported in [8] where the concept of symmetry
was placed back on stage in the study of time series. Indeed, in [8], it was shown that the concept
of recurrences could be generalized by taking into account the symmetry properties of m-patterns.
As entropy can be derived from the recurrence concept (the recurrence plot [9] is defined as
RP = (N − m + 1)∑ Dij with µ∞(d, r)), from [8], four new kinds of entropy (ApEnT , ApEnR,
ApEnI , ApEnG or SampEnT , SampEnR, SampEnI , SampEnG or FuzzyEnT , FuzzyEnR, FuzzyEnI ,
FuzzyEnG) can be proposed. Finally, as our ultimate goal is to increase the precision of FuzzyEn,
it is more appropriate here to calculate the mean value of the four new fuzzy entropies. In this
case, the averaged fuzzy entropy FuzzyEna is defined as:

FuzzyEna(m, r, N) =
(FuzzyEnT + FuzzyEnR + FuzzyEnI + FuzzyEnG)

4
,
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with:

FuzzyEnk(m, r, N) = ln

[
ϕm

k (r)

ϕm+1
k (r)

]
,

with k = {T, R, I, G} for ϕm
k (r) = 1

N−m ∑N−m
i=1 φm

ki (r) and φm
ki (r) = 1

N−m−1 ∑N−m
j=1,j 6=i

kDm
ij .

FuzzyEnT corresponds to the standard FuzzyEn measure when m > 1.
As shown in Figure 3b, the transformation of the 2-patterns increases the number of similar
2-patterns. From Figure 3b, for the 2-pattern (‘1’), four kinds of 2-patterns can be obtained:
2-patterns with translation (‘T’) in black (‘1’,‘15’), 2-patterns with vertical reflection (‘R’) in red
(‘7’,‘19’), 2-patterns with inversion (‘I’) in green (‘13’,‘24’) and 2-patterns with glide reflection (‘G’)
in blue (‘5’,‘21’). By considering all 2-patterns ranging from ‘1’–‘27’, the mean total number of
symmetrical 2-patterns is Nsym = 92 with NT

sym = 12, NR
sym = 30, N I

sym = 24, NG
sym = 26.

3. The last approach compares a centered m-pattern Xcm(i) to a transformed centered m-pattern
Γk[Xcm(j)]. In this case, the centered and averaged fuzzy entropy FuzzyEnca is defined as:

FuzzyEnca(m, r, N) =
(FuzzyEncT + FuzzyEncR + FuzzyEncI + FuzzyEncG)

4
,

with:

FuzzyEnck(m, r, N) = ln

[
ϕm

ck(r)

ϕm+1
ck (r)

]
,

with k = {T, R, I, G} for ϕm
ck(r) =

1
N−m ∑N−m

i=1 φm
cki(r) and φm

cki(r) =
1

N−m−1 ∑N−m
j=1,j 6=i

kDcm
ij . kDcm

ij

is defined as kDcm
ij = µp(d[Xcm(i), Γk[Xcm(j)]], r).

As shown in Figure 3, one can observe that the combination of the centering and averaging
operations globally increases the number of m-patterns taken into account in the calculation of
the entropy measure. Furthermore, a centered m-pattern transformed by an inversion (‘I’) is
similar to a centered m-pattern transformed by a translation (’T’). The same remark applies for
glide and vertical reflection transformations of centered m-patterns.
From Figure 3c, regarding the 2-pattern (‘1’), two kinds of centered 2-patterns can be
obtained: 2-patterns (‘T’,‘I’) in black (‘1’,‘9’,‘13’,‘15’,‘17’,‘24’) and 2-patterns (‘R’,‘G’) in blue
(‘5’,‘7’,‘10’,‘19’,‘21’). By considering all 2-patterns ranging from ‘1’–‘27’, the mean total number
of symmetrical 2-patterns is Ncsym = 312 with NcT

sym = 86, NcR
sym = 70, NcI

sym = 86
and NcG

sym = 70.

The novelty of our method therefore relies on two main points: (i) the mean value of the patterns is
no longer a constraint in the computation as the patterns are centered; (ii) translated patterns, but also
reflected, inversed, and glide-reflected patterns are taken into account (in the standard sample and
fuzzy entropy measures, only translated patterns are considered). Therefore, for a given number of
samples N in the time series, we managed to increase the number of similar m-patterns taken into
account in the entropy calculation. In what follows, the new entropy measure will be applied to
synthetic 1/ f β time series and biomedical datasets. Its precision will be compared to the one of the
standard FuzzyEn.
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Figure 3. Stochastic time series with different types of 2-patterns. (a) Centered 2-patterns are considered.
Centered 2-patterns similar to ‘1’ are represented with magenta bullets; there are six patterns similar
to ‘1’. The total number of centered similar 2-patterns is 25: (‘1’,‘9’,‘13’,‘15’,‘17’,‘24’), (‘2’,‘14’,‘25’),
(‘3’,‘8’,‘20’), (‘4’,‘23’), (‘5’,‘7’,‘10’,‘19’,‘21’), (‘11’,‘18’), (‘12’,‘16’), (‘22’,‘26’). The total number of similar
centered 2-patterns is much larger than that of no-centered 2-patterns. (b) Regarding the 2-pattern (‘1’),
four kinds of 2-patterns can be obtained: 2-patterns with translation (‘T’) in black (‘1’,‘15’), 2-patterns
with vertical reflection (‘R’) in red (‘7’, ’19’), 2-patterns with inversion (‘I’) in green (‘13’,‘24’), 2-patterns
with glide reflection (‘G’) in blue (‘5’,‘21’). By considering all 2-patterns ranging from ‘1’–‘27’, the mean
total number of symmetrical 2-patterns is Nsym = 92 with NT

sym = 12, NR
sym = 30, N I

sym = 24, NG
sym = 26.

(c) Regarding the 2-pattern (‘1’), two kinds of centered 2-patterns can be obtained: 2-patterns (‘T’,‘I’)
in black (‘1’,‘9’,‘13’,‘15’,‘17’,‘24’), 2-patterns (‘R’,‘G’) in blue (‘5’,‘7’,‘10’,‘19’,‘21’). By considering all
2-patterns ranging from ‘1’–‘27’, the mean total number of symmetrical 2-patterns is Ncsym = 312 with
NcT

sym = 86, NcR
sym = 70, NcI

sym = 86 and NcG
sym = 70.

3. Data Processed

3.1. Synthetic Signals

In order to analyze the new fuzzy entropy measures and to compare their performances with the
ones of the standard FuzzyEn, we used 1/ f β time series, with different β values: β varied from −1 to
2 in steps of 0.2. For β > 0, the 1/ f β signals are persistent processes with long-term correlations [10].
However, for β < 0, the 1/ f β signals are anti-persistent processes with short-term anti-correlations [10].
From a theoretical point of view, the higher the value of β, the larger the number of correlations in
the time series and, therefore, the larger the number of similar samples used in the computation of
FuzzyEn. For each β value, 50 time series were simulated.

3.2. Biomedical Data

The new descriptors mentioned above were also applied to biomedical data and more precisely
to fetal heart rate (FHR) time series. The latter were acquired using a homemade pulse Doppler
system co-developed with Altaïs Technologies (Tours, France). This Doppler fetal monitor transmits
ultrasound waves of 2.25 MHz for an acoustic power limited to 1 mW/cm2 (for more details, see [11]).
It was developed to measure both the FHR and fetal movements (pseudo-breathing, limb movements).
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The study was approved by the Ethics Committee of the Clinical Investigation Centre for
Innovative Technology of Tours (CIC-IT 806 CHRUof Tours). Before acquisition, the consent of
each parent was obtained. All parents were over eighteen years of age, and pregnancies were single.
After locating the fetal heart with an echographic scanner, 18 Doppler recordings of 30 min each were
acquired at CHRU Bretonneau Tours, France. This corresponds to approximately 3600 heart beats
for each recording. In order to constitute homogeneous groups without spurious data, gestations
complicated by other kinds of disorders (hypertension, diabetes) were discarded. Two groups of fetuses
were selected: normal and those with severe intra-uterine growth retardation (IUGR). The severe IUGR
group included nine fetuses delivered prematurely by cesarean section. The normal group included
nine fetuses without disorders, delivered at term by spontaneous labor. For this clinical protocol,
the gestational ages of fetuses ranged from 30–34 weeks.

In what follows, the 30 min of data were processed, but also segments of 10 min and 20 min.
Our goal was thus to compare the results obtained as the data length decreases. Moreover, in order
to compare the results obtained between normal and IUGR groups, a Mann–Whitney test was used.
A p-value strictly less than 0.05 was considered to define statistical significance.

4. Results and Discussion

In all that follows, the value of r is set at 0.1 × the standard deviation of the time series.

4.1. Results for the Synthetic Signals

In order to validate our hypothesis (that is, the greater the number of similar m-patterns taken
into account in the computation, the more precise the entropy measure), we started by counting the
number of similar m-patterns from 50 synthetic time series.

From 1/ f β noises generated with N = 5000 samples with β ranging from −1 to 2, the median of
the mean number MN of similar 3-patterns and the median of the mean number MNca of centered
and averaged similar 3-patterns were evaluated and are reported in Table 1. As expected, the higher
the sample correlation in the time series, the higher the value of β and the higher the number of
similar 3-patterns. Indeed, from Table 1, when β increases from 0 to 2, MN goes from 1 to 162.
When symmetrical properties and the centering operation are taken into account, MNca goes from 21
to 9278 for β ranging from 0 to 2. From this, it can be claimed that the averaging and the centering
operations increase the number of similar patterns. Furthermore, whatever the m-value, we obtain
rising trends as β increases (data not shown).

In order to evaluate the performance of our new approaches, for a fixed m-value and for
50 1/ f β time series with different β values, different measures have been computed: the medians
MFuzzyEn, MFuzzyEnc, MFuzzyEna, MFuzzyEnca and the percentiles at 75% and 25% PFuzzyEn(75),
PFuzzyEn(25), PFuzzyEnc(75), PFuzzyEnc(25), PFuzzyEna(75), PFuzzyEna(25), PFuzzyEnca(75),
PFuzzyEnca(25) have been compared.

To quantitatively evaluate the gain brought by our new approaches in comparison with
FuzzyEn, two kinds of statistics have been evaluated: percentile ranges and relative percentile ranges.
The following percentile ranges have thus been computed:

• RF = PFuzzyEn(75)− PFuzzyEn(25);
• RFc = PFuzzyEnc(75)− PFuzzyEnc(25);
• RFa = PFuzzyEna(75)− PFuzzyEna(25);
• RFca = PFuzzyEnca(75)− PFuzzyEnca(25).

Finally, from the percentile ranges, the following relative percentile ranges have been evaluated:

• (RF − RFc)/RFc;
• (RF − RFa)/RFa;
• (RF − RFca)/RFca.
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The global results are presented in Tables A1–A3 reported in the Appendix and are shown in
Figure 4. We observe from the tables that SampEn leads to worse results than FuzzyEn, as already
shown by others. Moreover, we observe that the new approach leads to results that show a reduced
percentile range compared to the standard fuzzy entropy measure. Its precision is therefore better than
the other entropy measures. However, our work also has some drawbacks: the gain provided by the
method depends on the signal properties. The gain differs with β values.

Table 1. For the calculation of FuzzyEn and FuzzyEnca, the median of the mean number MN of
similar 3-patterns and the median of the mean number of centered and averaged MNca of similar
3-patterns obtained from 1/ f β noises (N = 5000 samples) with β ranging from −1 to 2. MNca =

(MNT
ca + MNR

ca + MN I
ca + MNG

ca), where MNk
ca is the median of the number of centered symmetric

similar 3-patterns obtained in the calculation of FuzzyEnca, k = {′T′, ‘R′, ‘I′, ‘G′}. For the computation,
m = 3 and r = 0.1× standard deviation of the time series.

β −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

MN 0.73 0.69 0.65 0.62 0.6 0.63 0.63 0.67 0.80 1.07 1.76 3.64 9.24 26.47 71.68 162.38

MNca 16.71 17.03 17.48 18.13 19.18 20.75 23.19 27.35 35.71 53.15 93.73 206.09 540.00 1580.67 4317.40 9277.86

Figure 4. Relative percentile ranges derived from Tables A1–A3 reported in the Appendix. (a) For β = −1,
relative percentile range values obtained for different m-values: for the centered fuzzy entropy compared
to the fuzzy entropy ((RF − RFc)/RFc), for the averaged fuzzy entropy compared to the fuzzy entropy
((RF − RFa)/RFa) and for the centered and averaged fuzzy entropy compared to the fuzzy entropy
((RF − RFca)/RFca); (b–d) similar to (a), but for β = 0, β = 1 and β = 2, respectively.
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4.2. Results for the Fetal Heart Rate Time Series

The results obtained from FHR time series for m = 2 are presented in Figure 5 for data lengths
of 10 min, 20 min, and 30 min. For the three data lengths, we observe that the normal fetuses show
a significantly higher entropy value than the pathological fetuses. This is true for the two entropy
measures: FuzzyEnca and the standard FuzzyEn. This means that FHR time series are more irregular
for the normal fetuses than for the pathological ones. We also observe that the p-value between the two
groups decreases as the data length increases. Therefore, the longer the data, the better the separation
between the two groups. However, we note that, whatever the length studied, the p-value is lower
for FuzzyEnca than for the standard FuzzyEn. Our new entropy measure is therefore more interesting
for this classification purpose than the standard FuzzyEn. Other data may now be processed; see,
e.g., [12–14].

Figure 5. Centered and averaged fuzzy entropy (FuzzyEnca) and standard fuzzy entropy (FuzzyEn)
for normal (N) in blue and pathological fetuses (P) in green with m = 2. The results for three data
lengths are shown. ? means statistically significant between the two groups.

5. Conclusions

A new entropy measure, FuzzyEnca, is proposed to improve the precision of the standard FuzzyEn.
The new measure relies on centering and averaging approaches that lead to a larger number of similar
patterns used in the computation of the entropy algorithm. This is performed by removing the
constraint of the mean value in the comparison of the patterns. Moreover, translated patterns are not
the only ones considered: reflected, inversed, and glide-reflected patterns are also taken into account.
The results obtained on 1/ f β time series reveal that FuzzyEnca shows a greater precision than FuzzyEn.
Moreover, when applied to FHR time series acquired from normal and pathological fetuses, FuzzyEnca

leads to a better discrimination between the two groups than the standard FuzzyEn. These findings
could allow one to obtain entropy-based relevant information by processing shorter datasets (we could
obtain the same precision as the standard FuzzyEn, but with less data). This is particularly interesting
for the biomedical field. FuzzyEnca now has to be applied to other datasets, and its performance has
to be compared to those of other already-existing entropy measures.
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Appendix A

Results reported in Tables A1–A3 show performances that differ with the β values. We observe
that the higher the β value, the lower the gain obtained in terms of relative percentile range. This is
probably due to the level of correlation between samples in the time series.
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Table A1. Results obtained for 1/ f β time series, for m = 2, N = 5000 samples and for different β values.

β value −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

MSampEn 3.46 3.5 3.53 3.54 3.57 3.59 3.58 3.54 3.45 3.29 3.04 2.68 2.21 1.68 1.13 0.64
MFuzzyEn 3.17 3.21 3.25 3.26 3.28 3.28 3.28 3.25 3.16 3.00 2.76 2.40 1.93 1.42 0.93 0.54
MFuzzyEnc 3.58 3.58 3.58 3.58 3.56 3.53 3.49 3.42 3.30 3.11 2.84 2.46 1.99 1.46 0.94 0.51
MFuzzyEna 3.14 3.17 3.2 3.22 3.24 3.24 3.23 3.20 3.12 2.97 2.73 2.37 1.90 1.40 0.93 0.57
MFuzzyEnca 3.57 3.58 3.58 3.57 3.56 3.53 3.48 3.41 3.30 3.11 2.83 2.44 1.96 1.44 0.94 0.53

RSampEn 0.05 0.08 0.07 0.08 0.09 0.08 0.08 0.10 0.08 0.05 0.08 0.11 0.16 0.24 0.25 0.23
RFuzzyEn 0.03 0.04 0.03 0.04 0.04 0.04 0.04 0.05 0.04 0.04 0.08 0.11 0.17 0.22 0.22 0.18
RFuzzyEnc 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.03 0.07 0.11 0.18 0.23 0.23 0.20
RFuzzyEna 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.04 0.08 0.11 0.13 0.13 0.10
RFuzzyEnca 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.05 0.08 0.11 0.14 0.14 0.11

(RSampEn− RFuzzyEn)/RFuzzyEn 0.63 0.75 1.24 1.09 1.17 1.04 1.10 0.99 0.90 0.43 0.12 0.00 -0.05 0.10 0.16 0.29
(RSampEn− RFuzzyEnc)/RFuzzyEnc 3.08 5.77 5.6 7.06 6.11 3.80 4.27 5.85 3.17 0.68 0.21 -0.05 -0.12 0.08 0.09 0.14
(RSampEn− RFuzzyEna)/RFuzzyEna 1.95 2.09 3.26 3.34 4.38 2.53 2.78 2.72 2.03 1.33 0.89 0.40 0.50 0.89 1.03 1.39
(RSampEn− RFuzzyEnca)/RFuzzyEnca 5.47 8.67 9.1 9.69 11.3 12.20 8.96 8.57 5.55 1.59 0.77 0.36 0.43 0.74 0.86 1.07

(RFuzzyEn− RFuzzyEnc)/RFuzzyEnc 1.49 2.86 1.95 2.87 2.27 1.35 1.51 2.44 1.19 0.18 0.08 0.05 0.07 0.02 0.07 0.12
(RFuzzyEn− RFuzzyEna)/RFuzzyEna 0.8 0.76 0.91 1.08 1.48 0.73 0.80 0.87 0.59 0.63 0.69 0.40 0.58 0.72 0.75 0.86
(RFuzzyEn− RFuzzyEnca)/RFuzzyEnca 2.96 4.51 3.52 4.13 4.66 5.46 3.74 3.81 2.44 0.81 0.59 0.36 0.51 0.59 0.60 0.61
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Table A2. Same as Table A1, but for m = 3.

β value −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

MSampEn 3.47 3.51 3.48 3.54 3.56 3.57 3.54 3.58 3.43 3.27 3.01 2.65 2.18 1.66 1.13 0.64
MFuzzyEn 3.02 3.1 3.12 3.15 3.2 3.18 3.16 3.15 3.04 2.88 2.61 2.26 1.80 1.30 0.84 0.49
MFuzzyEnc 3.28 3.27 3.28 3.29 3.27 3.26 3.22 3.16 3.05 2.87 2.59 2.22 1.77 1.26 0.80 0.44
MFuzzyEna 2.99 3.02 3.04 3.07 3.11 3.10 3.10 3.05 2.97 2.82 2.58 2.22 1.77 1.29 0.84 0.51
MFuzzyEnca 3.21 3.22 3.23 3.24 3.23 3.22 3.18 3.12 3.02 2.85 2.59 2.21 1.74 1.25 0.80 0.47

RSampEn 0.51 0.49 0.43 0.5 0.66 0.58 0.59 0.39 0.40 0.35 0.19 0.18 0.18 0.21 0.25 0.23
RFuzzyEn 0.17 0.16 0.13 0.17 0.23 0.17 0.18 0.14 0.17 0.11 0.09 0.11 0.17 0.19 0.20 0.16
RFuzzyEnc 0.05 0.04 0.03 0.03 0.05 0.03 0.04 0.04 0.03 0.05 0.08 0.11 0.17 0.20 0.20 0.16
RFuzzyEna 0.09 0.07 0.08 0.07 0.06 0.07 0.08 0.07 0.06 0.06 0.05 0.07 0.10 0.13 0.12 0.09
RFuzzyEnca 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.08 0.11 0.13 0.12 0.09

(RSampEn− RFuzzyEn)/RFuzzyEn 1.95 2.13 2.46 1.86 1.94 2.48 2.23 1.78 1.38 2.21 1.15 0.54 0.08 0.08 0.25 0.42
(RSampEn− RFuzzyEnc)/RFuzzyEnc 10.08 11.6 11.8 14.54 12.6 16.19 14.51 8.33 11.03 5.97 1.49 0.58 0.05 0.03 0.25 0.41
(RSampEn− RFuzzyEna)/RFuzzyEna 4.68 5.55 4.51 5.74 9.74 7.20 6.06 4.93 6.25 4.90 3.12 1.60 0.74 0.64 1.17 1.62
(RSampEn− RFuzzyEnca)/RFuzzyEnca 26.88 22.74 17.41 28.43 33.81 30.33 30.39 21.08 23.78 16.41 4.91 1.34 0.59 0.57 1.09 1.55

(RFuzzyEn− RFuzzyEnc)/RFuzzyEnc 2.75 3.03 2.7 4.43 3.63 3.93 3.80 2.36 4.05 1.17 0.16 0.03 0.03 0.05 0.00 0.00
(RFuzzyEn− RFuzzyEna)/RFuzzyEna 0.92 1.1 0.59 1.36 2.65 1.35 1.18 1.13 2.05 0.84 0.91 0.69 0.61 0.52 0.74 0.85
(RFuzzyEn− RFuzzyEnca)/RFuzzyEnca 8.44 6.59 4.32 9.28 10.84 8.00 8.71 6.94 9.41 4.42 1.74 0.52 0.47 0.45 0.68 0.79
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Table A3. Same as Table A1, but for m = 4. “-” means that an undefined value is obtained due the absence of similar m-patterns in the time series.

β value −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

MSampEn - - - - - - - - - - 2.95 2.71 2.19 1.59 1.13 0.64
MFuzzyEn 3.09 3.02 2.95 3.08 3.01 3.26 3.17 3.13 2.99 2.75 2.50 2.13 1.70 1.17 0.78 0.45
MFuzzyEnc 3.15 3.15 3.14 3.15 3.19 3.14 3.13 3.08 2.95 2.79 2.51 2.11 1.70 1.16 0.76 0.43
MFuzzyEna 2.73 2.73 2.84 2.77 2.81 2.92 2.84 2.87 2.72 2.55 2.35 2.05 1.65 1.19 0.78 0.47
MFuzzyEnca 3.08 3.11 3.12 3.11 3.11 3.12 3.09 3.04 2.93 2.76 2.51 2.14 1.67 1.19 0.76 0.44

RSampEn - - - - - - - - - - 1.09 0.49 0.26 0.28 0.26 0.22
RFuzzyEn 0.61 0.39 0.71 0.59 0.58 0.80 0.63 0.58 0.29 0.40 0.22 0.18 0.16 0.21 0.19 0.15
RFuzzyEnc 0.21 0.16 0.16 0.15 0.12 0.14 0.12 0.11 0.08 0.06 0.09 0.14 0.16 0.23 0.19 0.15
RFuzzyEna 0.27 0.19 0.29 0.28 0.29 0.27 0.29 0.26 0.24 0.19 0.09 0.10 0.10 0.10 0.11 0.08
RFuzzyEnca 0.09 0.1 0.1 0.08 0.07 0.07 0.05 0.06 0.04 0.03 0.03 0.06 0.11 0.10 0.12 0.09

(RSampEn− RFuzzyEn)/RFuzzyEn - - - - - - - - - - 4.03 1.75 0.64 0.31 0.38 0.49
(RSampEn− RFuzzyEnc)/RFuzzyEnc - - - - - - - - - - 11.29 2.60 0.59 0.22 0.40 0.44
(RSampEn− RFuzzyEna)/RFuzzyEna - - - - - - - - - - 11.06 4.13 1.54 1.93 1.44 1.70
(RSampEn− RFuzzyEnca)/RFuzzyEnca - - - - - - - - - - 34.58 6.91 1.33 1.92 1.27 1.54

(RFuzzyEn− RFuzzyEnc)/RFuzzyEnc 1.89 1.37 3.38 2.97 3.94 4.77 4.26 4.10 2.76 6.28 1.44 0.31 0.03 0.07 0.01 0.03
(RFuzzyEn− RFuzzyEna)/RFuzzyEna 1.28 1.03 1.49 1.13 1 2.02 1.16 1.26 0.23 1.07 1.40 0.86 0.55 1.24 0.77 0.82
(RFuzzyEn− RFuzzyEnca)/RFuzzyEnca 5.5 2.79 6.16 6.22 6.89 10.12 11.25 8.05 6.25 12.67 6.07 1.87 0.42 1.23 0.64 0.71



Entropy 2018, 20, 287 14 of 14

References

1. Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88,
2297–2301.

2. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample
entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049.

3. Chen, W.; Zhuang, J.; Yu, W.; Wang, Z. Measuring complexity using FuzzyEn, ApEn, and SampEn.
Med. Eng. Phys. 2009 31, 61–68.

4. Hu, J. An approach to EEG-based gender recognition using entropy measurement methods. Knowl.-Based Syst.
2018, 140, 134–141.

5. Tibdewal, M.N.; Dey, H.R.; Mahadevappa, M.; Ray, A.; Malokar, M. Multiple entropies performance measure
for detection and localization of multi-channel epileptic EEG. Biomed. Signal Process. Control 2017, 38,
158–167.

6. Hu, J.; Wang, P. Noise robustness analysis of performance for EEG-based driver fatigue detection using
different entropy feature sets. Entropy 2017, 19, 385.

7. Liu, C.; Li, K.; Zhao, L.; Liu, F.; Zheng, D.; Liu, C.; Liu, S. Analysis of heart rate variability using Fuzzy
measure entropy. Comput. Biol. Med. 2013, 43, 100–108.

8. Girault, J.-M. Recurrence and symmetry of time series: Application to transition detection.
Chaos Solitons Fractals 2015, 77, 11–28.

9. Eckmann, J.P.; Oliffson Kamphorts, S.; Ruelle, D. Recurrence plots of dynamical systems. Europhys. Lett.
1987, 4, 973–977.

10. Tarnopolski, M. On the relationship between the Hurst exponent, the ratio of the mean square successive
difference to the variance, and the number of turning points. Phys. A 2016, 461, 662–673.

11. Voicu, I.; Menigot, S.; Kouamé, D.; Girault, J.-M. New estimators and guidelines for better use of fetal heart
rate estimators with Doppler ultrasound devices. Comput. Math. Methods Med. 2014, 2014, 784862.

12. Fang, Y.; Zhou, D.; Li, K.; Liu, H. Interface Prostheses With Classifier-Feedback-Based User Training.
IEEE Trans. Biomed. Eng. 2017, 64, 2575–2583.

13. Zhou, D.; Fang, Y.; Botzheim, J.; Kubota, N.; Liu, H. Bacterial memetic algorithm based feature selection
for surface EMG based hand motion recognition in long-term use. In 2016 IEEE Symposium Series on
Computational Intelligence (SSCI); IEEE: Piscataway Township, NJ, USA, 2016; pp. 1–7.

14. Humeau-Heurtier, A.; Mahé, G.; Durand, S.; Abraham, P. Multiscale entropy study of medical laser speckle
contrast images. IEEE Trans. Biomed. Eng. 2013, 60, 872–879.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Standard Fuzzy Entropy and the New Entropy Measure
	Fuzzy Entropy Algorithm
	New Approaches

	Data Processed
	Synthetic Signals
	Biomedical Data

	Results and Discussion
	Results for the Synthetic Signals
	Results for the Fetal Heart Rate Time Series

	Conclusions
	
	References

