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Abstract  - Localization is a key issue for automatic 
navigation of autonomous vehicles. In this article, a 
simultaneous map-plotting and localization method for 
an autonomous vehicle is proposed. We use a laser 
detection and mnging sensor to detect the operating 
environment. An environment map is plot out using 
the sensor output data. Then, with an odometer, 
the vehicle position is located on this map. Finally, 
the two sensor outputs are merged using a Kalman 
filter to correct the map as well as the vehicle position. 

Keywords: Localization, MapPlotting, K h a n  Fil- 
ter, Autonomous Vehicle. 

1 Introduction 
Automatic navigation of an autonomous vehicle in- 

volves following a planned trajectory taking the vehi- 
cle from a start configuration to a goal Configuration. 
The desired trajectory can be viewed as a collection 
of vehicle configurations, which describe the vehicle‘s 
location and orientation with respect to the world cc- 
ordinate system. 

One of the major difficulties, however, for this au- 
tomatic navigation task, is to  know the exact location 
and orientation of the vehicle during its operation. 
Due to the unavoidable measurement errors, the vehi- 
cle configuration is never precisely, if not poorly, d e  
termined. 

In some previous research work, self positioning 
systems has been divided into three basic technologies 
[3, 81: stand alone (e.g. odometer, inertial navigat- 
ing), satellitebased (e.g. global positioning system), 
and terrestrial radio-based (e.g. cellular networks). 
Other landmark-based or map-based approaches have 
also been proposed which use ultrasonic, sonar, or 
laser range sensors [2, 61. 

In fact, each of these approaches has its own disad- 
vantages and estimation limits. With Odometer, the 
error due to wheel slips could not be eliminated and 
will keep adding up. Inertial navigating system (INS) 
is sensitive to vibration, noise and has temperature 
dependent measurement drifts. The accuracy range 
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of global positioning system (GPS) is often several 
meters. 

Thus, some hybrid positioning systems have been 
studied using two or more of the above technologies. 
The best example would be combinations of odome- 
ters, GPS, and INS sensors to locate vehicle position 
[l, 5,8].  Based on the fact that INS provides high-rate 
position, velocity, and attitude data with good short- 
term stability while the GPS provides position and 
velocity data with a good long-term stability [lo], in- 
tegrating the GPS with the INS has been largely used 
recently as a localization solution. 

But with GPS.and INS, the costs usually become 
quite expensive if we want to raise the precisions. 
Since autonomous vehicles are often equipped with 
a detection and ranging sensor to avoid collision, we 
propose a data merging algorithm using both laser d e  
tection and ranging (ladar) sensor and odometer data 
to  plot out the environment map and to locate the 
vehicle position. 

The paper is outlined as follows. In section 2, 
a simple bicycle mathematical model is given for the 
vehicle in order to design our localization algorithm. 
Then, in section 3 our algorithm is explained in de- 
tail. A Kalman filter which merge the sensor data 
and correct the final map plot is described. The algo- 
rithm is implemented and tested on a prototype elec- 
tric car “CyCab” and the result is shown in section 
4. Finally, we give a conclusion and discuss the future 
perspective of our research work in section 5. 

2 Vehicle Model 

The mathematic model we use to  develop the algo- 
rithm is a very simple planer model. We suppose that 
the vehicle behaves as a bicycle and that the wheels 
do not slip. The vehicle can he then drawn as shown 
in figure 1. 

From the above assumptions, we can write down 
the following equations in the vehicle‘s coordinate s y c  
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tem: 
VI% = v2s = voz 

K, = v,, + ~~4 = ~ 1 )  
v,, = v,, - L,$ = 0 
. voz $ = - t ana .  

L 

(1) 

where Vlz, V,,, and V,, are the longitudinal velocities 
of the front wheel, the rear wheel, and the center of 
gravity in the vehicle% coordinate system, VI,, VZ,, 
and V,, arc the lateral velocities of the front wheel, the 
rear wheel, and the center of gravity in the vehicle’s 
coordinate system, $ is the yaw angle, cy is the steering 
angle. 

If V = (Vo.> Voy)’ denote the velocity in the vehi- 
cle‘s coordinate system and Vc = (VG=,VG,)’ denote 
the velocity in the global coordinate system, we have 
the following relationship: 

VG = R V  (2) 

where R stands for the transformation matrix from 
the vehicle coordinate to the world coordinate. 

(3) 1 R =  [ cos$ -sin$ 
sin$ cos$ 

3.1 General Philosophy 

We have chosen to  use this stochastic map con- 
cept which was developed in the 80’s. This concept 
allows us to integrate data from the two different in- 
formation sources we have (ladar and odometer) and 
to estimate statistically the vehicle states and the en- 
vironment states at  the same time by using a Kalman 
filter. Figure 2 shows the data flow and data process- 
ing diagram of OUT algorithm. 
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~ 
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Figure 1: Bicycle model. 

This very simple cinematic model will be used in 
the following section to determine in a first step the 
position and yaw angle of the vehicle. And then a 
Kalman filter based on the same model will be de- 
signed to correct the position on a map generated with 
the ladar data. 

3 Algorithm 
The goal of our research is to construit an algo- 

rithm that can plot out the map of the unknown envi- 
ronment in which the vehicle is operating, while at  the 
same time, estimate and locate the vehicle’s position 
on the generated map. 

F i w r e  2: Algorithm process diagram. 

First, the ladar scan plots out the operating en- 
vironment map. An extracting algorithm locates ob- 
jects in the operating environment and plot their posi- 
tions to form a map. While the vehicle moves forward, 
the odometer integration algorithm estimates the ve- 
hicle position and also object positions in relation to 
the vehicle. Then, with a Kalman filter algorithm, we 
correct the object positions, thus the map, and also 
the vehicle positions on the map. 

3.2 System Equations for Extended Kalman 
Filter 

A Kalman filter is a recursive, linear, optimal, real 
time data processing algorithm which is used to esti- 
mate the states of a dynamic system in a noisy envi- 
ronment. It addresses the general problem of trying 
to estimate the state of a discrete-time controlled p r o  
cess that is governed by a linear stochastic difference 
equation. But since our system is non-linear, we try 
to linearize it about the current mean and covariance, 
and this is referred to as an extended Kalman filter 

From the equations (1) and (2), we can get the 
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following discrete equations: 

Xk Xk-1 + n l k  COS$k-I  

Yk = Yk-I + A l k S i n $ k - l  

$k = $k-I + - tanffk 

(4) 
n l k  i L 

where Z k ,  Y k ,  and $k are the longitudinal, lateral pc+ 
sition and yaw angle of the vehicle respectively in the 
world coordinate at kth time instant, A l k  = V,,k& 

is the driving distance in k t h  time interval At. 
As the objects in the operating environment don’t 

move, their positions can be expressed as follow: 

(5) 
X b k  = Z b k - 1  

Y b k  = Y b k - 1 .  

xbk  and y,Lk (z = 1 - n) are the position of the ith 
object in the world coordinate system. 

So with equations (4) and ( 5 ) ,  we can now form a 
discrete system to design our Kalman filter: 

1 (6) 
x k  = F ( X k - 1 , n l k , a k )  + U k - l  { Y k  = f f ( X k )  + W k  

with Vk and w k  the state variables noise and measure- 
ment noise respectively. The state variables x k  and 
measurement output Y k  at time instant k are chosen 

with 

The measurement output we get from the ladar 
are the object positions in the vehicle’s coordinate 
system, which can be expressed as: 

for i = 1 - n. 

(6) can be written as: 
Thus, the linearized system equations of the system 

x k  = F k - 1 X k - 1  + Uk-1 

Y k  = H k X k  + W k ,  

F k = - I  aF 
ax k 

and 

3.3 Extended Kalman filter 
The extended Kalman filter estimates a nonlinear 

system by using a form of feedback control the fil- 
ter estimates the system state variables at first and 
then obtains feedback in the form of measurements. 
Thus, the equations for the extended Kalman filter 
are divided into two groups: prediction equations and 
correction equations. It is shown in the following: 

Prediction step: 

(8) 
2; = F ( X k - l , A l k , f f k ) ,  

P i  = F k P k - i F T  + U k Q k - i U : .  

Correction step: 

K k  = P ; H z ( H k P ; H z  + W&kWT)-’ ,  

kk = 2, + K k ( Y k  - H(x;)), (9) 
P k  = (1 - K k H k ) P ; .  ... 

where Q is the state noise covariance, R is the mea- 
surement noise covariance, P is the error covariance, 
and K is the Kalman gain. 

The prediction equations are responsible for pro- 
jecting forward (in time) the current state and error 
covariance estimates to obtain the a priori estimates 
for the next time step (Le. 2;). The correction equa- 
tions are responsible for the feedback for incorporat- 
ing a new measurement into the a priori estimate to 
obtain an improved a posteriori estimate (i.e. x k ) .  

4 Experimental Result 
Our simultaneous mapplotting and localization al- 

gorithm was tested on a prototype electric car “Cy- 
Cab” (see figure 3) designed especially for INRIA. 

4.1 CyCab 
The researchers of INRIA are working since 1991 on 

a new intelligent transportation system for the cities 
of tomorrow. We study in particular on two differ- 
ent concepts : car-sharing and the intelligent vehi- 
cle. The small electric vehicle named CyCab has been 
designed exactly to fulfill these two situations, espe- 
cially for zones with limited access to regular automo- 
biles. It can transport up to two persons in downtown 
areas, pedestrian malls, large industrial or amuse- 
ment parks and airports, at a maximum of 30km/h 
speed. This revolutionary urban transportation vehi- 
cle is equipped with one computer to coordinate low 
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level servo controls, one computer to realize high level 
HMI communication, a linear camera for platoon driv- 
ing, a ladar sensor for anti-collision applications, a 
steering wheel angle encoder; and an odometer. 

Figure 3: Autonomow urban vehicle “CyCab”. 

The ladar sensor (voir figure 4) is mounted to the 
front of our CyCab. It has a measurement range of 
at least 50m, with a distance resolution of 4mm and 
accuracy of 5cm. The scan frequency is at 10Hz. It 
can give us a robust measurement of the objects in 
it’s scanning range. 

Figure 4:  Laser detection and mnging sensor. 

The encoder is installed in the differential gearbox 
located in the middle of the rear wheel axle. The 
resolution of the encoder is 100 pulses per revolution. 
It gives us the driving distance of the vehicle at  a 
frequency of 100Hz. Together with the steering angle 

’ data, vehicle location can be estimated through the 
equation (4). 

All the data transmission and servo control com- 
mande are managed by the low level servo control 
computer through CAN bus. These data can also 
be read and write by the high level HMI computer 
through the low level SCNO control computer. 

4.2 Experiment Setup 
First, we have placed some poles in the testing en- 

vironment. The poles were of 90cm tall, 5cm in diam- 
eter, and were randomly placed. The reason of using 
poles to represent environment installation is because 
its simple geometry properties are easier to identify 
for a preliminary algorithm. 

A driving test of a straight line was carried out in 
the testing environment using manual driving mode 
of CyCab with a driver on board. Our algorithm was 
launched on the high level HMI computer before the 
test. During the test, odometer and ladar sensor data 
were collected by the low level servo control computer, 
passed to the high level computer. Data were treated 
and environment map and vehicle position were plot- 
ted in real time by the high level computer on the 
screen on board as the CyCab was moving forward. 
The processing rate of our algorithm is at the fre- 
quency of the ladar sensor, which means the mapping 
and locating is updated every 100ms. 

4.3 Experimental  Result 
The resulting map and driving trajectory was 

recorded and plotted as shown in figure 5. We can 
see that the cross points are the poles located by the 
ladar sensor and extracted with a preliminary recogni- 
tion algorithm. Other environment obstacles are also 
drawn out with solid lines on the map. 

Figure 5: Eqerimental Result. 

The black trajectory is traced out using only 
odometer data while the gray trajectory is the result of 
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data merging and map correcting. With only odome- 
ter, the error can build up to 10m in a test distance 
of only 35m, which is not acceptable at  all. This is 
due to the measurement error on the steering angle 
and other measurement noise. These errors can build 
up throughout time when we estimate the vehicle p e  
sition using equation (1). 

On the other hand, the error is only a few cen- 
timeters with our data merging and map correcting 
algorithm using Kalman filtering technic. 

5 Conclusion and Future Perspective 
In this research work, a real time localization solu- 

tion with a reasonable error and a small budget using 
ladar sensor and odometer is studied. A simultaneous 
mapplotting and localization algorithm is proposed 
using Kalman filter to merge collected data and to 
correct the resulting map plot. We show that our 
algorithm has improved significantly the position es- 
timating result using only odometer data. Since au- 
tonomous vehicles are often equipped already with a 
detection and ranging sensor to avoid collision, the 
main advantage of our algorithm is that no extra sen- 
sors are needed in order to carry out the localization 
task. 

The future perspective would be to integrate some 
cartographic data into the system and to use a map- 
matching algorithm to give us the exact position for a 
localization task of larger scale. Further more, a cross- 
walk recognition algorithm by camera vision could 
also be included into the algorithm in order to per- 
form larger scale repositioning. Finally. with a trajec- 
tory planing algorithm, we can realize a path following 
control algorithm so that the vehicle could be aut- 
matically navigated. 
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