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Abstract. RDF Graph Summarization pertains to the process of extracting concise but meaningful summaries from RDF Knowl-
edge Bases (KBs) representing as close as possible the actual contents of the KB both in terms of structure and data. RDF Sum-
marization allows for better exploration and visualization of the underlying RDF graphs, optimization of queries or query eval-
uation in multiple steps, better understanding of connections in Linked Datasets and many other applications. In the literature,
there are efforts reported presenting algorithms for extracting summaries from RDF KBs. These efforts though provide different
results while applied on the same KB, thus a way to compare the produced summaries and decide on their quality and best-
fitness for specific tasks, in the form of a quality framework, is necessary. So in this work, we propose a comprehensive Quality
Framework for RDF Graph Summarization that would allow a better, deeper and more complete understanding of the quality of
the different summaries and facilitate their comparison. We work at two levels: the level of the ideal summary of the KB that
could be provided by an expert user and the level of the instances contained by the KB. For the first level, we are computing
how close the proposed summary is to the ideal solution (when this is available) by defining and computing its precision, recall
and F-measure against the ideal solution. For the second level, we are computing if the existing instances are covered (i.e. can
be retrieved) and in what degree by the proposed summary. Again we define and compute its precision, recall and F-measure
against the data contained in the original KB. We also compute the connectivity of the proposed summary compared to the ideal
one, since in many cases (like, e.g., when we want to query) this is an important factor and in general in RDF, datasets that are
linked within are usually used. We use our quality framework to test the results of three of the best RDF Graph Summarization
algorithms, when summarizing different (in terms of content) and diverse (in terms of total size and number of instances, classes
and predicates) KBs and we present comparative results for them. We conclude this work by discussing these results and the
suitability of the proposed quality framework in order to get useful insights for the quality of the presented results.

Keywords: Quality framework; Quality metrics; RDF Summarization; Linked Open Data; RDF Query processing

1. Introduction

RDF has become one of the major standards in
describing and publishing data, establishing what we
call the Semantic Web. Thus, the amount of RDF
data available increases fast both in size and complex-
ity, making the appearance of RDF Knowledge Bases
(KBs) with millions or even billions of triples some-
thing usual. Given that RDF is built on the promise of
linking together relevant datasets or KBs and with the
appearance of the Linked Open Data (LOD) cloud, we
can now query KBs (both standalone or distributed)
with millions or billions of triples altogether. This in-

creased size and complexity of RDF KBs has a direct
impact on the evaluation of the RDF queries we ex-
press against these RDF KBs. Especially on the LOD
cloud, we observe that a query against a big, complex,
interlinked and distributed RDF KB might retrieve no
results at the end because either the association be-
tween the different RDF KBs is weak (is based only
on a few associative links) or there is an association
at the schema level that has never been instantiated
at the actual data level. Moreover, a lot of these RDF
KBs carry none at all or only partial schema informa-
tion (mainly contain instances built and described sep-
arately). Additionally, in the LOD cloud the number
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of KBs which do not use the full schema or they use
multiple schemas is increased due to the absence of the
schema information which describes the interlinks be-
tween the datasets and the combinatorial way of mix-
ing vocabularies.

One way to address the concerns described above is
by creating summaries of the RDF KBs. Thus we al-
low the user or the system to decide whether or not to
post a query, since she knows whether information is
present or not based on the summary. This would pro-
vide significant cost savings in processing time since
we will substitute queries on complex RDF KBs with
queries first on the summaries (on much simpler struc-
tures with no instances) and then with queries only to-
wards the KBs that we know will produce some use-
ful results. Graph summarization techniques would al-
low the creation of a concise representation of the KB
regardless of the existence or not of schema informa-
tion in the KB. Actually, the summary will represent
the actual situation in the KB, namely should capture
the existing/used classes and relationships by the in-
stances and not what the schema proposes (and might
have never been used). This should facilitate the query
building for the end users with the additional bene-
fit of exploring the contents of the KB based on the
summary. This is true regardless if we use heteroge-
neous or homogeneous, linked or not, standalone or
distributed KBs. In all these cases we can use the RDF
summary to concisely describe the data in the RDF
KB and possibly add useful information for the RDF
graph queries, like the distribution and the number of
instances for each involved entity.

In the literature we can find various efforts propos-
ing summarization techniques for RDF graphs. These
techniques, presented briefly in section 3, come from
various scientific backgrounds ranging from generic
graph summarization to explicit RDF graph summa-
rization. While all promise that they provide correct,
concise and well-built summaries so far has been very
little effort into addressing in a comprehensive and co-
herent way the problem of evaluating these summaries
against different criteria and have some mathemati-
cal metrics to describe the quality of the results. Only
sparse efforts have been reported, usually tailored to
a specific method or algorithm. So with this paper,
we aim to cover the gap that exists in the literature
and provide a comprehensive Quality Framework for
RDF Graph Summarization that would allow a better,
deeper and more complete understanding of the qual-
ity of the different summaries and facilitate their com-
parison. We propose to take into account the possibil-

ity to compare the summary against two levels of in-
formation possibly available for a RDF KB. In the case
where an ideal summary is available, either because
it has been proposed by a human expert or because
we can assume that an existing schema represents per-
fectly the data graph, we compare the summary pro-
vided by the algorithms with it and use similarity mea-
sures to compute its precision and recall against the
ideal summary. If this is not available or usually in
addition to it, we compute the percentage of the in-
stances represented by the summary (including both
class and property instances). This provides us with
the understanding of how well the summary covers the
KB. Moreover we introduce a metric to cover the co-
herency dimension if the problem, i.e. how well con-
nected the computed summary graph is. One can com-
bine at the end the two overall metrics or use them
independently. In order to validate the proposed qual-
ity metrics, we evaluated three of the most promising
RDF graph summarization algorithms and report on
the quality of their results over different datasets with
diverse characteristics. We should note here that the
proposed Quality Framework is independent of any of
the algorithms evaluated but it is suitable in providing
a common ground to compare them.

This is why we could summarize our contribution as
presenting a quality framework that:

– Evaluates the quality of RDF Graph Summaries,
where a combined effort is made to summarize,
while preserving existing important semantics,
basic structure and coherence;

– Works at different levels, both trying to under-
stand the comparison of the two summaries (ideal
and computed) at the schema and the instance lev-
els, while previous approaches were mainly deal-
ing with one level (which corresponds to the in-
stance level in our approach);

– Provides novel customized definitions for preci-
sion and recall for summaries, thus allowing bet-
ter capturing of the quality of the results âĂŞ so
we go beyond the standard property and recall
definitions;

– Adds the discussion on the connectivity of the
computed summary and tries to promote sum-
maries that are more connected. This is quite cru-
cial if we want to later on query the summary us-
ing standard RDF tools.

So, the proposed framework allows for understand-
ing the quality of the different summaries at different
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levels. The users can pick the metrics that better fit to
the task for which they need to pick a summary.

The paper is structured as follows: Section 2 in-
troduces some of the foundations of RDF and RDFS,
which are useful for defining later on some concepts
in our work; Section 3 provides a review of the ex-
isting works around quality metrics in graph summa-
rization; while Section 4 presents our proposed Quality
Metrics for RDF Graph Summaries. Section 5 presents
the three of the most promising RDF Graph Summa-
rization algorithms in the literature that are compared
using the proposed Quality Framework in Section 6,
where the extensive experiments performed in order
to validate the appropriateness of the proposed metrics
are reported. We then conclude our paper in section 7.

2. Preliminaries

2.1. RDF

As per the W3C standards, the RDF data model rep-
resents data on the Web as a set of triples of the form
(s, p, o), expressing the fact that for the subject s, the
value of the property p is the object/value o. RDF data
can also be represented as a labeled directed graph
in which entities (subjects/objects) are represented as
nodes and property instances (expressed by the triples)
as labeled directed edges. RDF datasets are usually
accompanied with a RDF Schema1, which provides a
data-modeling vocabulary for RDF data. RDF Schema
(RDFS) defines a set of classes for declaring the re-
source types and a set of properties for declaring the
resource relationships and attributes. RDF Schema de-
scribes relations between classes and properties, but
could also be represented as a directed labeled graph,
where the labeled nodes represent the classes and the
labeled edges represent properties relating class in-
stances.

Let C, P, I and L be the sets of class Universal
Resource Identifiers (URIs), property URIs, instance
URIs and literal values respectively, and let T be a set
of RDFS standard properties (rdfs:range, rdfs:domain,
rdf:type, rdfs:subClassOf, etc.). The concepts of RDF
schemas and instances can be formalized as follows.

Definition 1 (RDF schema graph). An RDF schema
graph Gs = (Ns, Es, λs,C, P,T ) is a directed labeled
graph where:

1https://www.w3.org/TR/2004/REC-rdf-schema-20040210/

Fig. 1.: RDF Schema and data graphs

– Ns is the set of nodes, representing classes and
properties.

– Es ⊆ {(x, α, y)| x ∈ Ns, α ∈ T, y ∈ Ns} is the set
of labeled edges.

– λs : Ns −→ C ∪ P is an injective node labeling
function that maps nodes of Ns to class and prop-
erty URIs.

We note λe : Es −→ T the edge labeling function that
associates to each edge (x, α, y) ∈ Es the RDFS stan-
dard property URI α ∈ T .

Definition 2 (RDF data graph). An RDF data graph
Gi = (Ni, Ei, λi, I, P, L,C) is a directed labeled graph
where:

– Ni is the set of nodes, representing instances, lit-
erals and class URIs .

– Ei ⊆ {(x, α, y)| x ∈ Ni, α ∈ P, y ∈ Ni} is the set
of labeled edges.

– λi : Ni −→ I ∪ L ∪ C is a node labeling func-
tion that maps nodes of Ni to instance URIs, class
URIs or literals.

We note λei : Ei −→ P the edge labeling function that
associates to each edge (x, α, y) ∈ Ei the property URI
α ∈ P.

Example 1 The upper part of Figure 1 shows a vi-
sualization of an RDF schema graph example for the
cultural domain, representing only class nodes, while
properties are illustrated as edges between classes. For
example, the class Painter denotes the set of instances
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which represent painter entities, while property paints
relates class Painter instances to class Painting in-
stances. The lower part of Fig. 1 depicts an instance
(data) graph building on this schema. This graph rep-
resents 6 different resources. For example the resource
Picasso is an instance of the Painter class having prop-
erties fname, lname and paints.

Type edges. Edges labeled with rdf:type in the RDF
data graph explicitly describe the type (class) of an in-
stance, e.g. dashed edges in Fig. 1, where for instance
Picasso is declared to be a Painter. We will note in the
following the type edge label with τ. For an instance
x ∈ Ni, we define Types(x) = {λi(y)| (x, τ, y) ∈ Ei}
to be the set of types related to the node x via an
explicit type edge definition, e.g., Types(Picasso)=
{Painter}, while Types(Guernica)= {Painting}.

Properties. We denote by Properties(x) = {α :
∀(x, α, y) ∈ Ei : α 6= τ ∧ λi(y) ∈ I ∧ x ∈ Ni}, a set of
labels of the non-Type edges which associate the node
x with a set of entity nodes(nodes labeled by instance
URIs).

Attributes. We denote by Attributes(x) = {α :
∀(x, α, y) ∈ Ei : α 6= τ ∧ λi(y) ∈ L ∧ x ∈ Ni} a set of
labels of the non-Type edges which associate the node
x with a set of literal nodes(nodes labeled by literal
values) ,

Example 2 The set of properties associated with Pi-
casso node in our example are {paints}, while the set
of attributes of Picasso node are { f name, lname}.

Definition 3 (Class Instances) We denote by
instances(c ∈ C) = {λi(x) : ∀(x, τ, y) ∈ Ei : y = c}
a set of labels of the nodes which are associated to the
node c (represent the class) via a typed edge τ, or in
other words the set of resources(subjects) belonging to
the class c.

Definition 4 Property Instances. We denote by
instances(p ∈ P) = {λi(x) : ∀(x, α, y) ∈ Ei : α = p}
a set of labels of the nodes which are associated to
other nodes via the property p, or in other words, is the
set of resources (subjects) having the property p.

Example 3 The set of instances of the class Painting
in our example are {Woman,Guernica, Abraham},
while the set of instances of the property exhibited
(which is one of the Painting class’s properties) are
{Woman,Guernica}

Patternid classes C Properties Pr Instances Ins S up

1 Painter fname, lname, paints Picasso, Rembrandt 2
2 Painting exhibited Woman, Guernica 2
3 Painting - Abraham 1
3 Museum - museum .es 1

Table 1: Knowledge patterns example (computed
based on the bisimilarity relation)

2.2. Knowledge patterns

A knowledge pattern (or simply pattern from now
on) characterizes a set of instances in an RDF data
graph that share a common set of types and a common
set of properties. More precisely:

Definition 5 (Knowledge Pattern) A knowledge pat-
tern KP in an RDF data graph is a quad (Cl, Pr, Ins, S UP),
where Cl = {c1, c2, ....., cn} ⊆ C is a set of classes,
Pr = {Pr1, Pr2, ....., Prm} ⊆ P is a set of properties,
Ins ⊆ I is the set of instances that have all the types
of Cl and all the properties of Pr, and S UP = |Ins| is
called the support of the knowledge pattern in the RDF
data graph (i.e. the number of instances that have all
types and all properties).

We introduce the term knowledge pattern because it
is not sure that all summarization algorithms will pro-
duce something that can be necessarily defined as an
RDF class or RDF property and also because we want
to differentiate from the classes/properties of the ideal
summary when we compare the two.

Pattern Instances. We denote by instances(pa) =
Ins a set of the original KB resources having the same
set of the properties/types of the pattern pa, or in
other words is the set of bindings for the ?a variable
over the RDF data graph in the following SPARQL-
like conjunctive pattern: {<?a, τ, c1 >, <?a, τ, c2 >
, ....., <?a, τ, cn >, <?a, Pr1, ?b1 >, <?a, Pr2, ?b2 >
, ...., <?a, Prm, ?bm >}, e.g. instances(p2)= { Woman,
Guernica }

Example 4 Table 1 shows possible patterns which can
be extracted from the RDF instance graph depicted in
Figure 1 based on a forward bisimilarity relation.

2.3. RDF Summary Graph

In order to be able to properly address the problem
of creating RDF summaries of LOD/RDF graphs we
need to define what an RDF Summary is. We follow
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the Definition 5 of the Knowledge Pattern and we de-
fine the summary as a set of the Knowledge Patterns
that the algorithms compute. The proposed Quality
Framework will help the user understand which pro-
posed summary will better represent the original KB in
terms of structure, coverage and connectivity. So, the
Summary graph is defined as follows:

Definition 6 (Summary graph)
Let G = Gs

⋃
Gi be an RDF graph, including both

schema and instance information. The RDF Summary
Graph S G = {C, P, I} of G is a graph consisting of
a set of Knowledge patterns Π, where pa ∈ Π and for
which:

– C=
⋃

pa∈Π

pa.Cl the set of classes of S G;

– P=
⋃

pa∈Π

pa.Pr the set of properties of S G;

– I=
⋃

pa∈Π

pa.Ins the set of the instances represented

by the summary.

2.4. Bisimilarity Relation

Bisimilarity in a directed labeled graph is an Equiv-
alence Relation defined on a set of nodes N, such that
two nodes (u,v) are bisimilar if and only if the set of
ougoing edges of u is equal to the set of outgoing edges
of v and also, all successor nodes of u and v must be
bisimilar (in other words, the outgoing paths of u and v
are similar). We call the bisimilarity relation when de-
fined based on outgoing paths, Forward (FW) Bisimi-
larity, and when it is based on incoming paths, Back-
ward (BW) Bisimilarity. More on bisimilarity can be
found at [19]. In the example presented in Table 1 we
can notice that Woman and Guernica are grouped to-
gether by an algorithm that is based on bisimilaruty,
while Abraham is missing an outgoing link (exhibited)
and thus is grouped separately.

3. Related work

RDF graph summarization has been intensively
studied, with various approaches and techniques pro-
posed to summarize the RDF graphs, which could be
grouped into four main categories:

1. Aggregation and grouping approaches [31,32,
33,36,26], which are based on grouping the
nodes of an input RDF graph G into clus-
ters/groups based on the similarity of the at-
tribute values and on the neighborhood relation-
ships associated with nodes of G.

2. Structural extraction approaches [12,23,14,22,
15,30,35,20,21,9,24,25,29], which define an equiv-
alence relation on the nodes of the RDF data
graph G, usually based on the set of incident
graph paths. This allows extracting a form of
schema for G by representing the equivalence
classes of nodes of G as nodes in the summary
graph, characterized by the set of incident paths
of each class.

3. Logical compression approaches [17,18], which
are based on compressing the RDF datasets by
generating a set of logical rules from the dataset
and removing triples that can be inferred from
these rules. The summary graph is then repre-
sented by a compressed graph and set of logi-
cal decompression rules, with the drawback that
such approaches do not produce RDF graphs as
summaries.

4. Pattern-mining-based approaches [37,16,38], which
are based on extracting frequent patterns from
the RDF graph, then composing them to build an
approximated summary graph.

Typically, the RDF summarization methods proposed
so far do not address in depth the problem of the qual-
ity of the produced RDF summaries. A noticeable ex-
ception is the work in [11], which proposes a model for
evaluating the precision of the graph summary, com-
pared to a gold standard summary which is a forward
and backward bisimulation summary. The main idea
of the precision model is based on counting the edges
or paths that exist in the summary and/or in the gold
summary graph. The precision of a summary is evalu-
ated in the standard way, based on the number of true
positives (the number of edges existing in the sum-
mary and in the input graph) and false positives (the
number of invalid edges and paths existing in the sum-
mary but not in the input graph). The first limitation
of this quality model [11] is that it works only with
the summaries generated by an algorithm that uses a
bisimulation relation. Similarly to our quality frame-
work, they consider the precision at instance level, i.e
how many of summary class/property instances are
correctly matched in the original KB. Unlike to our
work, this work does not consider the recall at the in-
stance level, because it claims that the way summa-
rization algorithms work, does not allow them to miss
any instance. But this is not always correct, e.g. the ap-
proximate RDF summarization algorithms like [37,38]
might miss a lot of instances. As it is well-known,
the precision alone cannot accurately assess the qual-
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ity, since a high precision can be achieved at the ex-
pense of a poor recall by returning only few (even if
correct) common paths. Additionally and unlike our
work, this model does not consider at all the qual-
ity of the summary at the schema level, e.g. what if
one class/property of the ideal summary is missing or
an extra one is added or a property is assigned to the
wrong class. In all these cases, the result will be the
same, while it is obvious that it should not. Finally,
[11] is missing completely any notion of evaluating the
connectivity of the final summarization result.

One more effort, [13], addressing the quality of hi-
erarchical dataset summaries is reported in the liter-
ature. The hierarchical dataset summary is based on
the grouping of the entities in the KB using their
types and the values of their attributes. The quality of
a given/computed hierarchical grouping of entities is
based on three metrics: (1) the weighted average cov-
erage of the hierarchical grouping, i.e. the average per-
centage of the entities of the original graph that are
covered by each group in the summary; (2) the average
cohesion of the hierarchical grouping where the cohe-
sion of a subgroup measures the extent to which the
entities in it form a united whole; and (3) the height of
a hierarchical grouping, i.e. the number of edges on a
longest path between the root and a leaf. The main lim-
itation of this approach is that it works only with the
hierarchical dataset summaries, since metrics like the
cohesion of the hierarchical groups or the height of the
hierarchy cannot be computed in other cases. More-
over, the proposed groupings provide a summary that
can be used for a quick inspection of the KB but cannot
be queried by any of the standard semantic query lan-
guages. On the other hand and similarly to our quality
framework, [13] considers the recall (named coverage)
at instance level, i.e how many of the instances of the
original KB are correctly covered by the summary con-
cepts. Contrary to our work, this model does not con-
sider at all the quality of the summary at the schema
level. Notions from [13] can also be found in the cur-
rent paper, where algorithms like [37,38] that rely on
approximation get penalized if they approximate too
much, in fact loosing the cohesion of the instances rep-
resented by the computed knowledge patterns.

Besides that, only few efforts have been reported in
the literature addressing the quality of the schema sum-
marization methods in general [34,28,10], i.e. the qual-
ity of the RDF schema that can be obtained through
RDF summarization. The quality of the RDF schema
summary in [28] is based on expert ground truth and
is calculated as the ratio of the number of classes iden-

tified both by the expert users and the summarization
tool over the total number of classes in the summary.
The main limitation of this approach is that it uses a
Boolean match of classes and fails to take into account
similarity between classes when classes are close but
not exactly the same as in the ground truth or when
classes are represented by more than one class in the
summary. Works in schema matching (e.g. [34]) are
also using to some extend similar metrics like recall,
precision, F1-Measure commonly used in Information
Retrieval, but are not relevant to our work since even
if we consider an RDF graph summary as an RDF
schema, we are not interested in matching its classes
and properties one by one, since as stated above this bi-
nary view of the summary results does not offer much
in the quality discussion. Additionally these works do
not take into account issues like the size of the sum-
mary.

To the best of our knowledge, this is the first effort
in the literature to provide a comprehensive Quality
Framework for RDF Graph Summarization, indepen-
dent of the type and specific results of the algorithms
used and the size, type and content of the KBs. We pro-
vide metrics that help us understand not only if this is
a valid summary but also if a summary is better than
another in terms of the specified quality characteris-
tics. And we can do this by assessing information, if
available, both at schema and instance levels.

4. Quality Assessment Model

In this section we present a comprehensive and
coherent way to measure the quality of RDF sum-
maries produced by any algorithm that summarises
RDF graphs. The framework is independent of the way
algorithms work and makes no assumptions on the
type or structure neither of the input nor of the final re-
sults, besides being expressed in RDF; this is required
in order to guarantee the validity of the result but can
be easily extended to other cases of semantic summari-
sation, like for graphs expressed in OWL or Descrip-
tion Logics. In order to achieve this, we work at two
levels:

– schema level, where if an ideal summary exists,
the summary is compared with it by computing
the precision and recall for each class and its
neighbourhood (properties and attributes having
as domain that class) of the produced summary
against the ideal one; we also compute the pre-
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Measure What it indicates How it is computed

S chemaRecall(c,Π) Schema recall of a class c over the set of patterns Π. Divide the number of relevant class’s properties that are reported
in Π on the total number class’s properties.

S chemaRecClassAll Overall schema class recall. Compute the mean of the various S chemaRecall(c,Π) for all the
classes c of the ground-truth Schema S .

S im(pa, c) Similarity between a class c and a pattern pa. Divide the number of common properties between the class c and
the pattern pa on the total number of pa propertiespa.

N ps(c) The number of patterns that represent the class c Count all the patterns having S im(pa, c)>0.
S chemaPrec(c,Π) Schema class precision of the class c over the set of patterns Π. Sum the sim(pa, c) for all the patterns of Π.
S chemaPrecClassAll Overall schema class precision. Compute the mean of the various class precision values

S chemaPrec(c,Π) for all the retrieved classes of the ground-
truth Schema S.

S chemaF1c Schema class F-Measure. Combine the S chemaPrecClassAll and S chemaRecClassAll using the
standard formula of the F-Measure.

S chemaRecPropertyAll Overall Schema property recall. Divide the number of relevant properties extracted by the sum-
mary on the total number of properties in the ground truth schema.

S chemaF1p Schema property F-Measure. Combine the S chemaPrecPropertyAll and S chemaRecPropertyAll us-
ing the standard formula of the F-Measure

S chemaF1 Overall schema F-measure. Combine the class schema F-Measure S chemaF1c and property
schema F-Measure S chemaF1p.

Table 2: Summary description of the proposed Schema Measures

cision and recall of the whole summary against
the ideal one. The first will capture the quality of
the summary at the local (class) level, while the
second will give us the overall quality in terms of
classes’ and properties/attributes’ precision and
recall.

– instance level, where the coverage that the sum-
mary provides for class and property instances is
calculated, i.e. how many instances will be re-
trieved if we query the whole summary graph. We
use again precision and recall against the contents
of the original KB.

At the end, a metric is presented that provides an in-
dication of the quality of the graph summary by mea-
suring whether or not the summary is a connected
graph. Ideally, a summary should be a connected graph
but this also depends on the actual data stored in the
Knowledge Base. Thus a disconnected graph could be
an indication of the data quality in the KB and not nec-
essarily a problem of the summarization process. Nev-
ertheless, we present it here as another indicator of the
quality process, especially if the summary is compared
with an ideal one, but for the reason mentioned before
we avoid to combine it with the rest of the presented
metrics. Finally, we discuss some results that combine
these metrics and interpret their meaning.

4.1. Quality Model in the presence of an ideal
summary (schema level)

In this section we present our quality assessment
framework to evaluate the quality of an RDF graph
summary against a ground truth summary (S) (e.g. one
provided by an expert). We measure how close the
proposed summary is to the ground truth summary by
computing its precision and recall against this ground
truth. We suggest that we compute both the precision
and recall at the class and at the property level and at
the overall summary level. Table 2 gives us a summary
description of the schema-level proposed measures.

Precision and Recall for classes We present here the
recall and the precision measures for the classes of the
detected patterns against a ground truth summary S .
We first introduce the recall over the classes which is
the fraction of relevant classes that are reported in the
summary. Given a set of knowledge patterns Π (as de-
fined in Section 2.1 and referred commonly as patterns
from now on) and a set of classes C ∈ S , we start
by defining the recall of a class c ∈ C over the set of
patterns Π as the fraction of relevant class’s properties
(namely properties that have this class as their domain)
that are reported in Π, we denote it by schema class
recall S chemaRec(c,Π) :

S chemaRecall(c,Π) =

|
⋃

pa∈Π

(A(c) ∩ A(pa))|

|A(c)|
(1)
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The A(pa) is the set of properties and attributes in-
volved in the pattern pa, and the A(c) is the set of prop-
erties and attributes of the ideal class c. Thus, the over-
all summary recall using the classes S chemaRecClassAll

is computed as the mean of the various schema class
recall S chemaRecall(c,Π) for all the classes c of the
ground-truth Schema S .

S chemaRecClassAll =
1

|C|
∑
c∈C

S chemaRecall(c,Π)

(2)

The precision is the fraction of retrieved classes and
properties of the summary that are relevant. If a knowl-
edge pattern of a summary carries a typeof link then
this pattern is relevant to a specific class if the typeof
points to this class, if not this is not relevant to this
class. If no typeof information exists then we use the
available properties and attributes to evaluate the sim-
ilarity between a class and a pattern. Thus we define
the L(c, pa) function to capture this information and
we add this to the similarity function.

L(c, pa) =

{
1, i f typeof(pa) = c or typeof(pa) = ∅
0, otherwise

(3)

The similarity between a class c in the ideal summary
and a pattern pa S im(pa, c) in the computed summary
is defined as the number of common properties be-
tween class c and pattern pa divided on the total num-
ber of the properties of the patterns pa:

S im(pa, c) = L(pa, c) ∗ |A(c) ∩ A(pa)|
|A(pa)| (4)

Given that a class might be represented by more than
one knowledge patterns, depending on the algorithm
used, we are interested in introducing a way to pe-
nalize cases where this happens, thus favoring smaller
summaries over bigger ones. We achieve this by intro-
ducing a weight function that allows us to reduce the
similarity value if this is based on consuming multiple
patterns. Thus we introduce the following exponential
function, which uses coefficient a to allow variations
if needed in the future, and is chosen based on exper-
imental evaluation of the functions that could provide
us with a smooth decay in similarity as patterns’ num-
ber increases. The N ps(c) is the number of patterns
that represent the class c and α ∈ [1, 10].

We define the T(c, pa) function to capture if a pat-
tern pa can be used to represent the class c; this func-
tion returns 1 if the similarity function between the pat-
tern pa and c is bigger than zero (so the pattern cov-
ers some of the elements that define the class) and zero
otherwise.

T(c, pa) =

{
1, i f S im(pa, c) > 0

0, otherwise
(5)

Based on the T(c, pa) function, the number of pat-
terns N ps(c) that represent the class is defined as fol-
lows:

N ps(c) =
∑
pa∈Π

T(c, pa) (6)

W(c) = e1− α
√

N ps(c) (7)

Based on this weight function we define the class pre-
cision metric for every pattern pa in the computed
summary and every class c in the ground truth sum-
mary as follows:

S chemaPrec(c,Π) = W(c) ∗

∑
pa∈Π

S im(pa, c)

N ps(c)
(8)

Thus, we define the schema class precision S chemaPrecClassAll
as the mean of the various class precision values
S chemaPrec(c,Π) for all the classes of the ground-
truth Schema S.

S chemaPrecClassAll =

∑
c∈C

S chemaPrec(c,Π)

|C1| (9)

where C1 ⊆ C is the list of all the ground truth’s re-
trieved classes, or in other words, is the list of the
ground truth’s classes for which S chemaPrec(c,Π) >
0.

However, neither precision nor recall alone can ac-
curately assess the match quality. In particular, recall
can easily be maximized at the expense of a poor pre-
cision by returning as many correspondences as possi-
ble. On the other side, a high precision can be achieved
at the expense of a poor recall by returning only few
(correct) correspondences. Hence it is necessary to
consider both measures and and express this through
a combined measure; we use the F-Measure for this
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purpose, namely S chemaF1c:

S chemaF1c = 2∗ S chemaPrecClassAll ∗ S chemaRecClassAll

S chemaPrecClassAll + S chemaRecClassAll

(10)

Precision and Recall for properties The overall re-
call at the property level, namely S chemaRecPropertyAll
is computed as the ratio between the number of com-
mon properties extracted by the summary and the ones
in the ground truth summary divided by the number of
properties in the ground truth summary:

S chemaRecPropertyAll =

|
⋃

pa∈Π

A(pa) ∩
⋃

c∈C
A(c)|

|
⋃

c∈C
A(c)| (11)

We note that the schema precision at the property
level in our experiments is always equal to 1 (see Sec-
tion 6), which means that in our examples there are
no false positives for properties. Summarization algo-
rithms do not invent new properties but they might re-
port some properties that are not present in the ground
truth summary. So, precision for properties namely
S chemaPrePropertyAll, is computed as the ratio between
the number of common properties between the ex-
tracted summary and the number of properties existing
in the ground truth summary and is as follows:

S chemaPrecPropertyAll =

|
⋃

pa∈Π

A(pa) ∩
⋃

c∈C
A(c)|

|
⋃

pa∈Π

A(pa)| (12)

Thus, the F-Measure for the schema properties,
namely S chemaF1p will be calculated as:

S chemaF1p = 2∗ S chemaPrecPropertyAll ∗ S chemaRecPropertyAll

S chemaPrecPropertyAll + S chemaRecPropertyAll

(13)

Overall Schema level F-measure After defining the
individual metrics for the class schema F-Measure
S chemaF1c and property schema F-Measure S chemaF1p,
we can define the combined overall schema F-measure
S chemaF1 as the weighted harmonic mean of the class
schema F-Measure and property schema F-Measure :

S chemaF1 = β∗S chemaF1p +(1−β)∗S chemaF1c (14)

where the weight β ∈ [0, 1]. The overall schema F-
measure provides a better insight on the combination
of the number of classes found by the summarization
algorithm and the overall number of properties discov-

ered. The metrics used to compute precision and recall
at schema class level include (all) the properties dis-
covered (equations (1), (4) and (11), (12) respectively).
But by penalizing the expression of a class by more
than one patterns while computing the schema class
F-measure, the quality of the results of the summa-
rization algorithms towards the properties gets blurred
and is also penalized, which should not be the case.
So, we use the schema property recall and precision
to recover the notion of quality on property discovery
in all cases for the whole schema, so algorithms that
will discover all or most of the properties will get ac-
knowledged, even if they use multiple knowledge pat-
terns to do that. Even in the case of not having multi-
ple patterns representing a class the computations for
the schema property recall and precision are not re-
dundant because they capture different aspects of the
summary’s quality, since the overall schema class level
precision and recall is an average and thus not the same
as the overall property level precision and recall. So
the first one tells us how much of the semantics of the
classes is recovered in the summary, while the second
tells us how many of the overall schema properties are
present regardless of where they belong.

Connectivity One more important aspect that we
need to consider, is the connectivity of the summary,
i.e is the summary a connected graph? So, we pro-
pose a new metric to measure how many disconnected
graphs exist in the summary and what percentage of
the classes in the ground truth they represent. The con-
nectivity of a summary graph Gs Con(Gs) is defined as
the number of the connected components(independent
subgraphs) of the summary graph divided on the num-
ber of the connected components(independent sub-
graphs) of the ground truth.

Con(Gs) =
numbero f connectedcomponentso f thesummary

numbero f connectedcomponentso f thegroundtruth

(15)

We compute the number of connected components
for the summary (and in the same manner for the
ground truth) using the breadth-first search algorithm,
where given a particular node n, we will find the en-
tire connected component containing n (and no more)
before returning. To find all the connected components
of a summary (or the ground truth) graph, we loop
through the nodes, starting a new breadth-first search,
whenever the loop reaches a node that has not already
been included in a previously found connected com-
ponent. This metric gives an indication of the con-
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Measure What it indicates How it is computed

instances(c) The list of class c instances. ——-
instances(p) The list of subjects which have the property p. ——-
instances(pa) The list of covered class instances by the pattern pa. —-
instances(Π) The list of class instances covered by the set of patternsΠ. —-
instances(D) The list of all class instances of original KB D. —-
Covc(c, pa) The list of the class instances which are represented by a pattern

pa.
Get the instances(pa) if the pattern pa is relevant to the class c or
∅ otherwise.

instances(c,Π) The total number of class instances that are reported by a set of
patterns Π representing the class c.

Sum the |Covc(c, pa)| for all the patterns of the Π.

InstancePrec(c,Π) The instance class precision of a class c over the set of patterns
Π.

Divide the number of original instances of the class c reported in
Π on instances(c,Π).

InstancePrecClassAll Overall instance class precision. The mean of the various InstancePrec(c,Π) for all the classes of
the ground-truth Schema S.

InstanceF1c Instance class F-Measure. Combine the InstancePrecClassAll and S chemaRecClassAll using
the standard formula of the F-Measure.

Covp(p, pa) The list of the original property instances which are successfully
represented by a pattern pa.

Get the instances(p) if the property p is reported in the pattern pa
or get ∅ otherwise.

instances(p,Π) The list of the original property p instances that are successfully
covered by a set of patterns Π.

The Union of the Covp(p, pa) for all the in Π.

InstanceRec(p,Π) The instance property recall. Divide |Π instances(p,Π)| on instances(p).
nstanceRecPropertyAll Overall recall at the instance property lebel Weighted mean of the various InstanceRec(p,Π) for all the prop-

erties of the ground-truth.
InstancePrec(p,Π), The precision of a property p in P over the set of patterns Π.
InstancePrecPropertyAll Overall instance property precision Mean of the various InstanceRec(p,Π) for all the covered prop-

erties of the ground-truth.
InstanceF1p: Instance property F-Measure Combine the InstancePrecPropertyAll and InstanceaRecPropertyAll

using the standard formula of the F-Measure.
InstanceF1 Overall instance F-measure . Combine the class Instance F-Measure InstanceF1c and property

Instance F-Measure InstanceF1p.

Table 3: Summary Description of the proposed Instance Measures

nectivity of a generated summary. If it is 1, it shows
that the summary is a graph connected as well as the
ground truth graph, but if it is bigger than 1 it means
that the summary is more disconnected than desired.
The higher the connectivity, the more the links that
are missing between the classes of the computed graph
compared to the ground truth; this could even capture
correctly a completely disconnected summary graph.
This metric allows us to penalize (if needed) discon-
nected (compared to the ground truth) summary graphs
and allows for progressive linear penalties. It is also
theoretically possible that the summary graph will be
more connected than the ground truth graph, this will
give us values less than 1. The value of the connectivity
can tend to but will never reach 0.

4.2. Quality Model At the Instance Level

We measure the quality with regard to the instances
by introducing the notion of the coverage of the in-
stances of the original KB, i.e. how many of the orig-
inal class and property instances are successfully rep-
resented by the computed RDF summary graph (e.g.

can be retrieved in the case of a SPARQL query). This
requires computing both the precision and recall at the
class instance and at the property instance levels. Ta-
ble 3 gives us a summary description of the proposed
instance level metrics.

Precision and Recall for class instances The overall
recall at the instance class level is the total number of
the class instances represented by the computed sum-
mary divided on the total number of instances of the
original KB D.

InstanceRecClassAll =
|instances(Π)|
|instances(D)| (16)

The class instances(Π) is the list of instances cov-
ered by the set of patterns Π, instances(D) is the list
of all instances of the original KB D. To avoid the
problem of overlapping of instances in several patterns
which will cause the over-coverage, we calculate the
instances(Π), instances(D) as follows:

instances(Π) =
⋃

pa∈Π

instances(pa) (17)
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instances(D) =
⋃
c∈C

instances(c) (18)

The instances(pa) denotes the list of covered in-
stances by the pattern pa and the instances(c) denotes
the list of instances of the type c in the original KB D.

We denote by Covc(c, pa), the list of the class in-
stances which are represented by a pattern pa:

Covc(c, pa) =

{
instances(pa), i f L(c, pa) = 1

∅, otherwise
(19)

Thus, we can define the total number of class in-
stances instances(c,Π) that are reported by a set of
patterns Π representing the class c as:

instances(c,Π) =
∑
pa∈Π

|Covc(c, pa)| (20)

We define InstancePrec(c,Π) the instance preci-
sion of a class c in C over the set of patterns Π as fol-
lows:

InstancePrec(c,Π) =
|instances(c) ∩ instances(c,Π)|

|instances(c,Π)|
(21)

Thus, we define the overall instance class precision
denoted by InstancePrecClassAll as the weighted mean
of the various InstancePrec(c,Π) for all the retrieved
classes:

InstancePrecClassAll =
∑
c∈C

wi(c)∗InstancePrec(c,Π) (22)

The wi(c) is the weight of a class c and it measures the
percentage of class instances of the class c with respect
to the total number of class instances in the KB. This is
used to weight in the importance of the specific class in
terms of the number of instances it "represents"; so the
more instances it "represents" the bigger the weight. It
is defined as the number of instances of class c in the
KB instances(c) compared to the total number of class
instances in the KB instances(D).

wi(c) =
instances(c)

instance(D)
(23)

The overall instance class recall and the overall in-
stance class precision are combined by the instance

class F-Measure, namely InstanceF1c:

InstanceF1c = 2∗ InstancePrecClassAll ∗ InstanceRecClassAll

InstancePrecClassAll + InstancePrecClassAll

(24)

Precision and Recall at Property Level The Cov(p, pa)
represents the list of the original property instances which
are successfully represented by a pattern pa:

Covp(p, pa) =

{
instances(pa), i f p ∈ pa
∅, otherwise

(25)

We denote by the instances(p,Π) the list of the origi-
nal property instances that are successfully covered by
a set of patterns Π:

Instance(p,Π)) =
⋃

pa∈Π

(Covp(p, pa)∩instances(p)) (26)

The instances(p) denotes the list of original instances
which have the property p in original KB D. Thus, the
instance property recall InstanceRec(p,Π) defined as:

InstanceRec(p,Π) =
|instances(p,Π) ∩ instances(p)|

|instances(p)|
(27)

The overall recall at the instance property level
InstanceRecPropertyAll is computed as the weighted
mean of the various instance property recall InstanceRec
for all the properties of the ground-truth.

InstanceRecPropertyAll =
∑
p∈P

wi(p)∗InstanceRec(p,Π) (28)

The wi(p) is the weight of the property p and it mea-
sures the percentage of instances of a property p with
respect to the total number of property instances in the
KB. It is defined as the number of instances of property
p in the KB instances(p) compared to the total number
of property instances in the KB. Again the idea here is
to capture the important properties by weighting in the
number of property instances each one represents.

wi(p) =
instances(p)∑

p1∈P
instances(p1)

(29)
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We define InstancePrec(p,Π), the precision of a prop-
erty p in P over the set of patterns Π as follows:

InstancePrec(p,Π) =
|instances(p) ∩ instances(p,Π)|

|instances(p,Π)|
(30)

Thus, we define the overall instance precision for prop-
erty instances denoted by InstancePrecPropertyAll as the
mean of the various InstancePrec(c,Π) for all the
properties of the ground-truth Schema S:

InstancePrecPropertyAll =

∑
p∈P

InstancePrec(p,Π)

|P1| (31)

where P1 ⊆ P is the list of retrieved properties, or in
other words the list of properties having
InstancePrec(p,Π) > 0. The overall instance re-
call and the overall instance precision for property in-
stances are combined by the instance class F-Measure,
namely S chemaF1c:

InstanceF1p = 2∗ InstancePrecPropertyAll ∗ InstanceRecPropertyAll

InstancePrecPropertyAll + InstancePrecPropertyAll

(32)

Thus, the overall instance F-measure InstanceF1 is
obtained by combining the overall instance schema F-
Measure InstanceF1c and overall property instance F-
Measure InstanceF1p.

InstanceF1 = β∗InstanceF1p+(1−β)∗InstanceF1c (33)

where the weight β ∈ [0, 1]. The overall instance F-
measure can be viewed as a compromise between over-
all class instance F-Measure and overall property in-
stance F-Measure. It is high only when both overall
class and property instance F-Measure are high. It is
equivalent to the class instance F-Measure when β = 0
and to the property instance F-Measure when β = 1.

We need also to make one last point for the compu-
tation of the instance-level metrics, for the case when
our KB contains no schema information. In this case
and in order to make the instance level class precision
and recall computable we need to annotate the KB with
typeo f (class) so as to be able to compute the metrics
presented above. If not, we will declare the instance
level class precision and recall uncomputable but we
will be able to continue the quality assessment using
the rest of the metrics, including property precision
and recall at the instance level. This demonstrates that

the proposed Quality Framework will work under all
circumstances.

5. Representative Algorithms for validating the
Quality Framework

5.1. Algorithms’ description

As we have already mentioned in section 3, the RDF
graph summarization algorithms could be grouped into
four main categories. Based on the results reported
in the literature we have chosen three of the most
well performing RDF graph summarization algorithms
[20,12,37] according to their authors. Our selection of
these algorithms was also based on specific properties
and features that they demonstrate: (a) they do not re-
quire the presence of RDF schema (triples) in order to
work properly, (b) they work on both homo- and het-
erogeneous KBs, (c) they provide statistical informa-
tion about the available data (which can be used to es-
timate a query’s expected results’ size), and (d) they
provide a summary graph that is considerably smaller
than the original graph.

ExpLOD [20,21] is a RDF graph summarization al-
gorithm and tool that produces summary graphs for
specific aspects of an RDF dataset, like class or pred-
icate usage. The summary graph is computed over the
RDF graph based on a forward bisimulation that cre-
ates group nodes based on classes and predicates. Two
nodes v and u are bisimilar if they have the same set of
types and properties. The generated summaries contain
metadata about the structure of the RDF graph, like the
sets of used RDF classes and properties. Some statis-
tics like the number of instances per class or per prop-
erty are aggregated with this structural information.
The ExpLOD summaries are extracted by partition
refinement algorithms or alternatively via SPARQL
query where the summary graph is a labeled graph
with unlabeled edges. The advantage of ExpLOD ap-
proach is that its generated summaries show a dataset’s
structure as homo- or heterogeneous as it may be. The
big disadvantage is the need for transforming the orig-
inal RDF KB into a ExpLOD graph which is an unla-
beled edges graph, where for each triple in RDF KB
it generates a node for the subject, node for the object
and a unique node for the predicate. Then an edge is
drawn from the subject node to the predicate node and
other edge from the predicate node to the object node.
This process requires the materialization of the whole
dataset and this can be limiting in cases of large KBs.
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The second limitation is that the created summary is
not necessarily a RDF graph itself.

Campinas et al [12] are creating their own RDF
summarization graph, whose nodes represent a subset
of the original nodes based on their types or used pred-
icates. This summary graph is generated by the follow-
ing mechanism: (1) extract the types and predicates for
each node in the original graph; (2) group the nodes
which share the same set of types into the same node
summary where two nodes, one of type A and one of
types A and B, will end up in different disjoint sum-
mary nodes; (3) group based on attributes only if a
node does not have a class definition. Like ExpLOD,
a summary node is created for each combination of
classes, i.e., two nodes, one of type A and one of types
A and B, will end up in different disjoint summary
nodes. Some statistics like the number of instances per
class or the number of property instances are aggre-
gated with this summary graph. Unlike ExpLOD, the
summary nodes are not further partitioned based on
their interlinks (properties), i.e., two nodes of type A,
one has a, b and c properties and one has a and d prop-
erties will end up in the same summary node. Unlike
ExpLOD, their summary graph is a RDF graph which
makes it compatible for storing at RDF databases and
queried by SPARQL.

Zneika et al. [37,38] present an approach for RDF
graph summarization based on mining a set of approx-
imate graph patterns is presented. It aims at extract-
ing the best approximate RDF graph patterns that de-
scribe the input dataset and it works in three indepen-
dent steps that are described below.

Binary Matrix Mapper: Transform the RDF graph
into a binary matrix, where the rows represent the sub-
jects and the columns represent the predicates. They
preserve the semantics of the information by capturing
distinct types (if present), all attributes and properties
(capturing property participation both as subject and
object for an instance).

Graph Pattern Identification: The binary matrix
created in previous step is used in a calibrated version
of the PaNDa+ [27] algorithm, which allows to exper-
iment with different cost functions while retrieving the
best approximate RDF graph patterns. Each extracted
pattern identifies a set of subjects (rows) all having ap-
proximately the same properties (cols). The patterns
are extracted so as to minimize errors and to maxi-
mize the coverage (i.e. provide a richer description)
of the input data. A pattern thus encompasses a set of
concepts (type, property, attribute) of the RDF dataset,

holding at the same time information about the number
of instances that support this set of concepts.

Constructing the RDF summary graph: A process,
which reconstructs the summary as a valid RDF graph
using the extracted patterns is applied at the end. The
process exploits information already embedded in the
binary matrix and constructs a valid RDF schema to
summarize the KB.

5.2. Algorithms’ implementation

We implemented the three algorithms used in the ex-
periments hereafter ourselves. The implementations of
two of the algorithms (ExpLOD and Camplinas et al.)
were not available from the original authors so we had
to implement them ourselves in Java, based on the cor-
responding papers. We validated the implementation
running tests with the datasets described in the origi-
nal papers. Since we were getting the same results we
are quite confident that the implementations are cor-
rect. Given also that performance benchmarking is out
of scope of this current work, we did not have to deal
with any kind of extreme optimizations.

5.3. Working Example

In an effort to better explain the way our quality
assessment framework works and captures the differ-
ences among the different summaries we provide a
working example. We have created an artificial dataset
containing information about music artists and their
productions. Figure 2 shows a visualization example of
the RDF instance graph of this dataset. We have 3000
resources describing the music-artists and all of them
have the name and made properties, while only 2500
resources have the rdf:type property, 2049 resources
have the homepage property, 2850 have the img prop-
erty, 50 resources have the biography property. We
can also notice that we have 5000 resources describ-
ing the records and all of them have the date, image,
track and maker properties, while 4995 resources have
the title property and only 28 resources have the de-
scription property. There are also 45000 resources de-
scribing the tracks and all of them have the rdf:type,
title, track-number and available-as properties, while
only 5 resources have the olga property (used to link a
track to a Document for tracking in the On-Line Guitar
Archive). These tracks are available as a Playlist or/and
as ED2K formats. Figure 3 shows an ideal summary
for this dataset as was suggested by an expert.
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Fig. 2.: An artificial dataset about music artists and their productions

Fig. 3.: The ideal summary of the dataset depicted in Figure 2

Tables 4, 5 and 6 present the three RDF summaries
generated using the three discussed algorithms: Ex-
pLOD, Campinas et al and Zneika et al respectively.
The first column shows the pattern id, the second
shows the predicates involved in the pattern, while the
third column shows the corresponding ideal summary
class for a pattern. The last column shows the num-
ber of instances per pattern. The Figures 4, 5 and 6 are
a visualization representing for three RDF summaries
generated using ExpLOD, Campinas et al and Zneika
et al. receptively.

5.3.1. Schema-level metrics
Here we calculate the precision for the MusicArtist

class for the three summaries. We start by the ExpLOD
summary described in table 4, Sim(Pa1,MusicArtist)=1,
because all the properties of the pattern Pa1 are prop-
erties of the MusicArtist in the ideal summary. Ac-
tually for each Pa ∈ {Pa1, Pa2, Pa3, Pa4, Pa6, Pa7}
Sim(Pa,MusicArtist)=1 for the same reason. Concern-
ing the pattern Pa5, it has 6 properties, 5 of which
are properties of MusicArtist that are included in the
ideal summary. But the pattern Pa5 has also chosen
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Fig. 4.: The ExpLOD Summary of the dataset depicted in Figure 2

Fig. 5.: The Campinas et al Summary of the dataset depicted in Figure 2

the discography property, which is not included in the
ideal summary. That makes the Sim(Pa5,MusicArtist)
= 5

6 . Any other pattern Pa in the table has S im(MusicArtist, Pa) =
0, because it has a different typeof and there are no
common properties between these patterns and the
MusicArtist class. So the Nps(MusicArtist)=7, and
with the α = 3 then W(MusicArtist) = e1− 3√7 =

0.40. Hence, the precision of the patterns correspond-
ing to the MusicArtist class is: S chemaPrec(MusicArtist,Π) =

0.40 ∗ 1 + 1 + 1 + 1 + 0.83 + 1 + 1

7
= 0.39.

Now let us take the Campinas et al. summary de-
scribed in Table 5. In this table we can see that we
have two patterns Pa1 and Pa2 represent the Musi-
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Fig. 6.: The Zneika et al Summary of the dataset depicted in Figure 2

cArtist class, so N ps(Musicartist) = 2, thus the
weight: W(MusicArist) = e1− 3√2 = 0.77. The first
pattern Pa1 has 6 properties where 5 of these 6 prop-
erties are properties of MusicArtist in the ideal sum-
mary. But it has chosen the discography property,
too, which is not included in the ideal summary.
That makes Sim(MusicArtist,Pa1)= 5

6 . Respectively,
Pa2 has Sim(Musicartist,Pa2)=1, since all of its prop-
erties are included in the ideal summary. From all
above we conclude the precision of Campinas et al.:

S chemaPrec(MusicArtist,Π) = 0.77 ∗ 1 + 0.83

2
=

0.70.
Now let us compute the precision of the Musi-

cArtist for the Zneika et al. summary depicted in Ta-
ble 6, Sim(Pa1,MusicArtist)=1, because all the prop-
erties of the pattern Pa1 are properties of the Mu-
sicArtist in the ideal summary. Any other pattern
Pa in the table 6 has Sim(Musicartist,Pa)=0, be-
cause it has a different typeof link and no common
properties exist between each one of these patterns
and the MusicArtist class. So N ps(MusicArtist) =
1, and keeping α = 3 then W(MusicArist) =

e1− 3√1 = 1. Hence, the precision of class MusicArtist

is: S chemaPrec(MusicArtist,Π) = 1 ∗ 1

1
= 1.

Following the same procedure, we can calculate the
precision for each class in the set of classes of the ideal
summary; these results are reported in table 7a. We
should also note that the class Document, which is re-
ported in the summaries of the ExpLod and Campinas
et al., is not a class in the ideal summary.

Table 7b shows the values of the recall for the list of
ideal summary classes. We can note that for ExpLOD
and Campinas et al, all recall values are 1, as their
patterns cover all the properties in the ideal summary.
While for Zneika et al, the recall for the MusicArtist

is 0.8, because pattern Pa1, which represents the Mu-
sicArtist class, does not cover the biography property,
so its recall equals 4 properties over 5 in the ideal sum-
mary, S chemaRec(MusicArtist,Π) = 4

5 = 0.80.
To calculate the schema-level property precision, we

notice that each one of the ExpLOD and Campinas
et al. has 16 properties, 13 of these 16 are included
in the ideal summary, the other three: discography,
description, and ogla are not. That makes the prop-
erty precision for each one of these two summaries
S chemaPrecPropertyAll = 13

16 = 0.81. The properties re-
ported by the Zneika et al summary are all included in
the ideal summary, thus its precision is 1.

Concerning the recall at the property level, ExpLOD
and Campinas et al. recall equals 1, as they included
all the properties in the ideal summary, while Zneika et
al missed one property which is biography, so its recall
is S chemaRecPropertyAll

12
13 = 0.92.

5.3.2. Instance-level metrics
Table 9b shows the values of the recall for the list of

distinct properties of the dataset depicted in Figure 2.
We can note that for ExpLOD and Campinas et al, all
recall values are 1, as their patterns cover all the prop-
erty instances of the datasets. While for Zneika et al,
the property instance recall values for the biography,
discography and description are 0, because these prop-
erties are completely missing from Zneika el. sum-
mary.

While Table 9a shows the values of the property
instance precision. We can note that for ExpLOD ,
all precision values are 1, as its patterns described
in Table 4 are correctly identified all the property
instances of the datasets. For the example, for the
property homepage having 2049 instances in origi-
nal dataset, you can see that it is included in 4 pat-
terns {Pa1, Pa2, Pa5, Pa7}, thus |Instance( biography,
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ID Pattern corresponding class Instance number
Pa1 MusicArtist(c), name, img, homepage, made MusicArtist 1500
Pa2 name, img, homepage, made MusicArtist 500
Pa3 MusicArtist(c), name, img, made MusicArtist 800
Pa4 MusicArtist(c), name, made MusicArtist 150
Pa5 MusicArtist(c), name, img, homepage, made, biography, discog-

raphy
MusicArtist 35

Pa6 MusicArtist(c), name, made, biography MusicArtist 1
Pa7 MusicArtist(c), name, made, img, homepage, biography MusicArtist 14
Pa8 Record(c), image, title, date, maker, track Record 3000
Pa9 image, title, date, maker, track Record 1966
Pa10 image, date, maker, track Record 5
Pa11 image, description, title, date, maker, track Record 29
Pa12 Track(c), title, track-number, available-as Track 44995
Pa13 Track(c), title, track-number, available-as, olga Track 5
Pa14 Playlist(c), format Playlist 43000
Pa15 Playlist(c) Playlist 2000
Pa16 ED2K(c), format ED2K 50
Pa17 format – 50
Pa18 Document Document 5

Table 4: ExpLOD summary for the dataset depicted in Figure 2

ID Pattern corresponding class Instance number
Pa1 MusicArtist(c), name, img, homepage, made, biography, discog-

raphy
MusicArtist 2500

Pa2 name, img, homepage, made MusicArtist 500
Pa3 Record(c), image, title, date, maker, track Record 3000
Pa4 image, title, date, maker, track Record 1966
Pa5 image, date, maker, track Record 5
Pa6 image, description, title, date, maker Record 29
Pa7 Track(c), title, track-number, available-as, olga Track 45000
Pa8 Playlist(c), format Playlist 45000
Pa8 ED2K(c), format ED2K 50
Pa9 format - 50
Pa10 Document Document 5

Table 5: Campinas et al summary for the dataset depicted in Figure 2

ID Pattern corresponding class Instance number
Pa1 MusicArtist(c), name, img, homepage, made MusicArtist 3000
Pa2 Record(c), image, title, date , maker, track Record 5000
Pa3 Track(c), title, track-number, available-as Track 45000
Pa4 Playlist(c), format Playlist 45000

Table 6: Zneika el al summary for the dataset depicted in Figure 2

ExpLod Campinas et al Zneika et al

S chemaPrec(MusicArtist,Π) 0.39 0.70 1
S chemaPrec(Record,Π) 0.52 0.52 1
S chemaPrec(Track,Π) 0.67 0.80 1

S chemaPrec(Playlist,Π) 0.64 0.64 1
S chemaPrec(ED2K,Π) 0.77 0.77 -

S chemaPrecClassAll 0.60 0.69 1

(a) Schema Precision at Class level

ExpLod Campinas et al Zneika et al

S chemaRec(MusicArtist,Π) 1 1 0.80
S chemaRec(Record,Π) 1 1 1
S chemaRec(Track,Π) 1 1 1

S chemaRrc(Playlist,Π) 1 1 1
S chemaRec(ED2K,Π) 1 1 0

S chemaRecClassAll 1 1 0.76

(b) Schema Recall at Class level

Table 7: Schema Metrics at Class level
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ExpLod Campinas et al Zneika et al

S chemaPrecPropertyAll 0.81 0.81 1

(a) Schema Precision at Property level

ExpLod Campinas et al Zneika et al

S chemaRecPropertyAll 1 1 0.92

(b) Schema Recall at property level

Table 8: Schema Metrics at Property level

Π)| = 1500+500+35+14 = 2049. Hence, the Instan-
cePrec( homepage,Π) = 2049

2049 = 1. Following the same
procedure, we can find that all property precision val-
ues are 1 for the Explod summary.

Now let us try to compute the instance precision
value for the homepage property for the Campinas et
al. summary described in Table 5. From this table 5 we
can note that this property is included in the patterns
Pa1 and Pa2, thus |Instance(hompage,Π)| = 2500 +
500. Hence,the InstancePrec(homepage,Π)= 2049

3000 =
0.68.

Now let us take the Zneika el al. summary de-
scribed in table 6. In this table we can see that
only the pattern Pa1 has the homepage property.
Thus |Instance(hompage,Π)| = 3000. Hence,the
InstancePrec(homepage,Π)= 2049

3000 = 0.68.
Following the same procedure, we can calculate the

instance property precision for all the dataset proper-
ties ; these results are reported in Table 9a.

On the other hand, the results for the class precision
and recall at the instance level in this example is al-
ways equal to 1 or almost 1 (since in one case only a
few class instances are missing) and thus their com-
putation provides no further insights for this example.
This is why, the corresponding tables were omitted.

5.3.3. Connectivity
Table 10 reports the connectivity metric values for

the summaries produced by the three discussed al-
gorithms. It shows that the ExpLod has a value of
6 for this metric because its summary ends up with
6 separate components while the ideal summary de-
picted in Figure 3 has exactly one connected compo-
nent. This value means the ExpLOD provides a dis-
connected summary. The two other algorithms report
a value of 1, which means that these two algorithm
provide a summary as connected as the ideal one (one
connected component in this case).

6. Experiments

In this section, we compare the quality of the gen-
erated summaries of the three RDF graph summariza-

tion approaches covered in section 5. We implemented
these three approaches in Java 1.8 using the Nxparser2

API to parse the RDF triples. All the experiments ran
on a Intel(R) Core(i5) Opteron 2.5 GHz server with
16 GB of RAM (of which 14 GB was assigned to
the Java Virtual Machine), running Windows 7. Sec-
tion 6.1 describes the datasets considered in the exper-
iments. Section 6.2 gives a quality evaluation of the
created summaries based on the three discussed ap-
proaches and using the metrics described in section 4.

6.1. Datasets

Table 11 shows the datasets from the LOD cloud
that are considered for the experiments. The first seven
columns show the following information about each
dataset: its name, the number of triples it contains, and
the number of instances, classes, predicates, properties
and attributes. The eighth column shows the class in-
stance distribution metric which provides an indication
on how instances are spread across the classes and it
is defined as the standard deviation (SD) in the num-
ber of instances per class. When the number of class
instances per class in a dataset is quite close then the
standard deviation is small; while, when there are con-
siderable differences, the standard deviation will be
relatively large. The ninth column shows the property
instance distribution metric which provides an indica-
tion on how instances are spread across the properties
and it is also defined as standard deviation (SD) in the
number of instances per property.

The main goal of our datasets selection is to use
real-world datasets from diverse domains with differ-
ent size (number of triples) and with different numbers
of classes (and class instances) and properties (and
properties instances). We are also interested in the dis-
tribution of the data which might indicate if the struc-
ture of the KB or the size of the represented knowledge
could affect the quality of the generated summaries.
So we have datasets from 270 thousand (Jpeel) to 263
million triples (Lobid), from one (Bank2) to 53 unique

2Nxparser: https://github.com/nxparser/nxparser
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ExpLod Campinas et al Zneika et al

InstancePrec(name,Π) 1 1 1
InstancePrec(img,Π) 1 0.95 0.95

InstancePrec(homepage,Π) 1 0.68 0.68
InstancePrec(made,Π) 1 1 1

InstancePrec(biography,Π) 1 0.02 -
InstancePrec(discography,Π) 1 0.01 -

InstancePrec(image,Π) 1 1 1
InstancePrec(title,Π) 1 1 0.999
InstancePrec(date,Π) 1 1 1

InstancePrec(maker,Π) 1 1 1
InstancePrec(track,Π) 1 1 1

InstancePrec(descrption,Π) 1 1 -
InstancePrec(track − number,Π) 1 1 1
InstancePrec(available− as,Π) 1 1 1

InstancePrec(olga,Π) 1 0.0001 -
InstancePrec( f ormat,Π) 1 1 1

InstancePrecPropertyAll 1 0.80 0.88

(a) Instance Precision at Property level

ExpLod Campinas et al Zneika et al

InstanceRec(name,Π) 1 1 1
InstanceRec(img,Π) 1 1 1

InstanceRec(homepage,Π) 1 1 1
InstanceRec(made,Π) 1 1 1

InstanceRec(biography,Π) 1 1 0
InstanceRec(discography,Π) 1 1 0

InstanceRec(image,Π) 1 1 1
InstanceRec(title,Π) 1 1 1
InstanceRec(date,Π) 1 1 1

InstanceRec(maker,Π) 1 1 1
InstanceRec(track,Π) 1 1 1

InstanceRec(descrption,Π) 1 1 0
InstanceRec(track − number,Π) 1 1 1
InstanceRec(available− as,Π) 1 1 1

InstanceRec(olga,Π) 1 1 0
InstanceRec( f ormat,Π) 1 1 1

InstancePrecPropertyAll 1 1 0.99

(b) Instance Recall at Property level

Table 9: Instance Metrics at Property level

s ExpLod Campinas et al Zneika et al
Connectivity 6 1 1

Table 10: Connectivity

classes (LinkedMDB), from about 76 thousand(Jpeel)
to about 18 million unique instances/entities and from
12 to 222 predicates. These datasets range from being
very homogeneous (the Bank dataset where all sub-
jects have the same list of attributes and properties) to
being very heterogeneous (LinkedMDB where the at-
tributes and properties are very heterogeneous across
types). The diversity of the datasets can help us to un-
derstand better how the selected approaches work in
different situations and thus validate that the proposed
quality metrics will capture the different behaviours
correctly.

6.2. Evaluation Results

In this section, we discuss the quality results of the
RDF graph summarization approaches covered in sec-
tion 5, evaluated over all the datasets described in Ta-
ble 11 for the following two cases:

– Typed Dataset: the KB contains schema infor-
mation, like definition of classes and properties
and more importantly a significant number of
instances of a dataset have at least one typeof
link/property.

– Untyped Dataset: there is no schema informa-
tion in the KB and more importantly none of the

datasets subjects/objects or properties has a de-
fined type (we explicitly checked and deleted all
of them).

The distinction for the experimentation is important
because there are algorithms that try to exploit schema
related information (mainly typeof links) in order to
gain insights for the structure of the KB. While, where
ever available using this information could be valu-
able, we would like to test the summarization algo-
rithms in cases when this information is not available,
too. With that we can validate that the proposed Qual-
ity Framework will correctly capture the differences in
the results and will correctly identify, for example, al-
gorithms that work well in both cases.

6.2.1. Implementation of the Quality Framework
We implemented our Quality Framework as a soft-

ware that takes as input the results of any RDF Graph
Summarization algorithm and the ideal summary and
computes the different metrics that are required to cap-
ture the quality of the results at the different levels de-
scribed earlier. It outputs the values for the different
metrics in an automated fashion and allows to com-
pute F-measures where applicable. In principle it can
be used to compare the quality of any summary against
an ideal one or to understand how close two summaries
are to one another. It is implemented in Java and we
plan to make it available as open source software.

We describe the different steps applied in the form
of algorithmic pseudocode that allows to track the
computations taking place at the different levels that
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Dataset Triples Instances Classes Predicates properties attributes Class instance distribution Property instance distribution
Mean SD Mean SD

Jpeel [4] 271,369 76,229 9 26 14 12 8,449 8,289.61 9,374.48 15,988.21
Jamendo [3] 1,047,950 335,925 11 25 14 11 20,542 19,622.08 34,633.48 59,458.62

Sec a 1,813,135 460,446 5 12 3 9 66,861.8 41,233.64 144,041.83 63,388.13
linkedMDB [6] 6,148,121 694, 400 53 222 153 69 13,971 37,368.26 24,758.70 80,271.76

Bank [1] 7,348,860 200,429 1 33 0 33 200,429 0 197,065.61 4,786.98
Wordnet [8] 8,574,807 647,215 5 63 55 8 129,147 69,768.22 59,947.92 113,775.88
DBLP [2] 41,802,523 5,942,858 10 19 9 10 497,153.9 971,029.76 538,837.42 805,531.71

Linkedct [5] 49,084,152 5,364,776 30 121 44 77 178,826 217,293.64 214,010.65 218,145.29
Lobid [7] 263,215,517 17,854,885 24 104 40 64 663,355.26 996,359.95 661,974.82 979,956.84
DBpediab 438,336,517 3,769,926 436 1894 919 975 129,248 188,372.89 86,136.66 227,632.07

Table 11: Descriptive statistics of the datasets

aU.S. SEC data: http://www.govtrack.us/data/misc/sec.n3.gz
bhttp://wiki.dbpedia.org/data-set-38

(a) Typed datasets (b) Untyped datasets

Fig. 7.: F-Measure results for typed/untyped presented datasets at the schema Level

(a) Typed datasets (b) Untyped Datasets

Fig. 8.: Class precision results for typed/untyped presented datasets at the schema Level

are Quality Framework operates. The pseudocode of
Algorithm 1 gives an overview of our implementation
of the computations at the schema level. The func-
tion which computes the schema class recall is shown
in Algorithm 2, while the one, which computes the

schema class precision, is shown in Algorithm 3. The
function which computes the schema property preci-
sion and recall is shown Algorithm 4. In the same man-
ner, the pseudocode in Algorithm 5 gives an overview
of the computations at the Instance level. The func-



21

Algorithm 1. Schema Level Metrics
INPUT: Set of knowledge patterns
Π = {Pai : i : 1.....N}, ideal summary S={C, P, I}
where C, P, and I are Set of classes, properties and
instances, α and β.
OUTPUT: Recc schema class Recall, Precc schema
class precision , Recp schema property recall , Precp

schema property precision, Fc Schema class
F-Measure , Fp Schema property F-Measure and
SchemaF1 overall schema F-Measure .

1: Begin
2: Recc ← Schema-Class-Recall(C,Π)

3: Precc ← Schema-Class-Precision(C,Π, α)

4: Fc ←
Precc ∗ Recc

Precc + Recc
5: Precp,Rrecp ←Schema-Property-Recall-Precision(C,Π)

6: Fp ←
Precp ∗ Recp

Precp + Recp
7: S chemaF1← β ∗ Fp + (1− β) ∗ Fc

8: End

Algorithm 2. Function Schema Class Recall
1: function SCHEMA-CLASS-RECALL(C,Π)
2: Recc ← 0 . schema class recall
3: for each c∈ C do

4: ListA← ∅ . the list of common properties of c and Π

5: for each pa ∈ Π do
6: ListA← ListA ∪ (A(c) ∩ A(pa))
7: . where A(c), A(Pa) are the set properties of pa and c

8: end for
9: rec←

|ListA|
|A(c)|

10: Recc ← Recc + rec
11: end for
12: Recc ←

Recc

|C|
13: return Recc

14: end function

tion which computes the instance class recall is shown
in Algorithm 6, while the one, which computes the
instance class precision, is shown Algorithm 7. The
function which computes the instance property preci-
sion and recall is shown in Algorithm 8.

6.2.2. Results for schema level metrics
Table 13 reports the precision, recall and F-Measure

values at the schema level for classes and properties of
the generated RDF summaries over the set of datasets
depicted in table 11 for the typed and untyped cases.
The left part of Table 13 shows the results for the typed
used datasets while the right part shows the results for
untyped used datasets. The Figures 7 and 8 are a flow
chart representing for The overall schema F-Measure

Algorithm 3. Function Schema Class Precision
1: function SCHEMA-CLASS-PRECISION(C,Π, α)
2: Precc ← 0 . the Schema class precision

3: for each c ∈ C do
4: Nps← 0
5: prec← 0
6: for each Pa ∈ Π do
7: compute the similarity Sim(pa,c) using the equa-

tion (4)
8: prec← prec + S im(pa, c)

9: if Sim(pa,c)>0 then
10: Nps← N ps + 1

11: end if
12: end for
13: W← e1− α√N ps

14: Prec← w ∗
prec
N ps

15: Precc ← Precc + Prec
16: end for
17: Precc ←

Precc

|C|
18: Return Precc

19: end function

Algorithm 4. Function Schema Property Precision and Re-
call

1: function SCHEMA-PROPERTY-RECALL-
PRECISION(C,Π)

2: Recp ← 0 . the Schema property recall

3: Precp ← 0 . the Schema property precision

4: ListA← ∅ . all the properties involved in C

5: ListB← ∅ . all the properties involved in Π

6: for each c ∈ C do
7: ListA← (ListA ∪ (A(c))

8: end for
9: for each pa ∈ Π do

10: ListB← (ListB ∪ (A(pa))

11: end for
12: ListC ← (ListA ∩ ListB) . the common properties between ListA

and ListB

13: Recp ←
|ListC|
|ListA|

14: Precp ←
|ListC|
|ListB|

15: return Recp, Precp

16: end function

and the class precision metrics values receptively that
carries more visualization details.

We can note from Table 13 that the schema property
recall, schema property precision and the schema prop-
erty F-Measure, reported in columns Rp, Pp and Fp re-
spectively, are always equal to 1 for the ExpLod and
the Campinas et al algorithms over all the presented
datasets. The same is true for the schema class recall
reported in column Rc. We can also note from the right
part of the 13 that the values of the previously men-
tioned measures are equal to 1. This is because the Ex-
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Algorithm 5. Instance Level Metrics
INPUT: Set of knowledge patterns
Π = {Pai : i : 1.....N}, Ideal summary S and β.
OUTPUT: InsRecc Instance class Recall, InsPrecc

Instance class precision , InsRecp Instance property
recall, InsPrecp Instance property precision, InsFc

Instance class F-Measure, InsFp Instance property
F-Measure and InstanceF1 overall Instance
F-Measure.

1: Begin
2: InsRecc ← Instance-Class-Recall(C,Π)

3: InstPrecc ← Instance-Class-Precision(C,Π, α)

4: InsFc ←
InsPrecc ∗ InsRecc

InsPrecc + InsRecc
5: InsPrecp, InsRrecp ← Instance-Property-Recall-

Precision(C,Π)

6: InsFp ←
InsPrecp ∗ InsRecp

InsPrecp + InsRecp
7: InstanceF1← β ∗ InsFp + (1− β) ∗ InsFc

8: End

Algorithm 6. Function Instance Class Recall
1: function INSTANCE-CLASS-RECALL(C,Π)
2: InsRecc ← 0
3: InstancesΠ ← ∅ . list of all the class instances reported in Π

4: InstancesC ← ∅ . list of all the class instances involved in D

5: for each c ∈ C do
6: InstancesC ← (InstancesC ∪ instances(c))

7: end for
8: for each pa ∈ Π do
9: InstancesΠ ← (InstancesΠ ∪ (instances(pa))

10: end for
11: InsRecc ←

|InstancesΠ|
|InstancesC |

. InsRecc Instance class recall

12: return InsRecc

13: end function

pLod and Campinas et al algorithms depend on the no-
tion of the forward bisimulation that groups the orig-
inal nodes based on classes and/or predicates, hence
they are no missed properties or types (and of course
nothing new is added), thus the schema class recall val-
ues will be always 1 for the ExpLod and the Campinas
et al. A predicates-based grouping is necessary for the
Campinas et al algorithm when the entities’ nodes do
not have a class definition, hence they are no missed
properties for the untyped case, which explains why
the values for these measures have not changed for the
untyped datasets. This also explains why we have the
same measures’ values for the ExpLod and Campinas
et al for the untyped datasets. For Zneika et al algo-
rithm, although it depends on the approximation type
selected, if we exclude the linkedct dataset the values

Algorithm 7. Function Instance Class Precision
1: function INSTANCE-CLASS-PRECISION(C,Π)
2: InsPrecc ← 0

3: for each c ∈ C do
4: Covc ← 0
5: CovList← ∅
6: prec← 0

7: for each pa ∈ Π do
8: if L(pa,c)=1 then
9: Covc ← Covc + |instances(pa)|

10: CovList ← CovList ∪ (instances(c) ∩
instances(pa)) . the list of class c instances reported in π

11: end if
12: end for
13: InsPrecc ← InsPrecc +

CovList
Covc

14: end for
15: InsPrecc ←

InsPrecc

|C1|
16: Return InsPrecc

17: end function

Algorithm 8. Function Instance Property Precision and Re-
call

1: function SCHEMA-CLASS-PRECISION(P,Π)
2: InsRecp ← 0
3: InsPrecp ← 0

4: for each p ∈ P do
5: CovList← ∅
6: Covp ← 0
7: for each pa ∈ Π do
8: if p ∈ pa then
9: CovList ← CovList ∪ (instances(p) ∩

instances(pa))

10: Covp← Covp + |instances(pa)|
11: end if
12: end for
13: InsRecp ← InsRecp +

CovList
|instances(p)|

14: InsPrecp ← Precp +
CovList

covp
15: end for
16: InsRecp ←

InsRecp

|P|

17: InsPrecp ←
InsPrecp

|P1|
18: Return InsPrecp, InsRecp

19: end function

for measures mentioned previously are also equal to 1
for the typed an untyped datasets, which means that the
algorithm successfully summarizes the KBs, despite
the fact that by construction the algorithm uses approx-
imate pattern mining to detect the classes and proper-
ties available and thus some could have been possibly
missed.

Another notable observation from the Table 13g and
the Figure 7b, is that for the Bank dataset and for the
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overall schema F-Measure the perfect value (equal to
1) is reported for the Zneika et al and Campinas et al
algorithms. This is because the Bank dataset is a fully
typed and homogeneous dataset(each subject of this
dataset has at least one typeof link/property) and as we
explained earlier, the Campinas et al algorithm groups
the original nodes based only on their types when types
exist, hence they are no missed or added properties in
this case.

For the Sec dataset, the table 13e shows that the
values of schema class precision reported in column
Pc and depicted in Figure 8a are low for the three
discussed algorithms. This is because that the ground
truth schema of the Sec dataset contains a lot of inher-
itance relationships and as none of three discussed al-
gorithms deals with inheritance, the three algorithms
end up with a lot of overlapping patterns (some prop-
erties which belong to the subclasses are assigned to
the patterns which represent the superclasses).

Tables 13s,13t report metrics values at the schema
level for the generated RDF summaries of the Camp-
inas et al and Zneika et al algorithms over the DBpe-
dia dataset for the typed and untyped cases. We do not
report results for the ExpLOd algorithm because Ex-
pLOD’s implementation was bound to datasets that fit
in main memory and DBpedia could not fit in main
memory. We notice from these tables that the values
of the schema class precision reported in column Pc

are low for the Zneika el al and Campinas et al sum-
maries. This is because the DBpedia KB contains a
lot of entities/resources having multiple classes/types
and a lot of classes carry subsumption (inheritance)
relationships. Actually, on average an entity has four
types associated with it, and as apparently none of the
two mentioned algorithms deals adequately with mul-
tiple classification, the two algorithms end up with a lot
of overlapping patterns (some properties which belong
to class A are assigned to the patterns which repre-
sent class B in the multiple classification case or some
properties which belong to the subclasses are assigned
to the patterns which represent the superclasses in in-
heritance case). An additional reason to have a poorer
precision for the Campinas et al summary is that the
type definitions are missing of a quite large number
of DBpedia KB’s instances. As already discussed in
this case, the Campinas et al groups the nodes based
on the properties and this makes it generating a sum-
mary where a lot of the ideal summary classes are rep-
resented by several knowledge patterns.

Table 13 shows well that algorithms like ExpLod do
not provide quality summaries in extreme cases like

the Bank dataset (where we have only one class) or
in heterogeneous datasets like LinkedMDB, Linkedct
and DBLP, where they report very low class precision
values, because instances of the same class in these
cases have quite different properties and they cannot
be grouped together by ExpLod. This is because the
ExpLod algorithm depends on the notion of the for-
ward bisimulation [19] that groups the original nodes
based on the existence of common typeof and property
links. In other words, two nodes v and u are bisimi-
lar and will end-up in the same equivalent class (pat-
tern) if they have exactly the same set of types and
properties. Thus, it might generate a summary where
many ideal summary classes are represented by several
knowledge patterns. For example, in the Bank dataset
case, which contains only one class in the ideal sum-
mary, ExpLOD generated 79 knowledge patterns. And
as we mentioned in section 4.1 we have included in
our framework a way to penalize these cases by in-
troducing the W(c) exponential function (see equation
7). Table 13 and Figures 8 and 7 also demonstrate that
the Zneika et al algorithm gives better results, when
compared with the other two algorithms, over all the
presented datasets, and it showcases that it works well
with heterogeneous datasets like the LinkedMdb, un-
like the ExpLod and Campinas et al that give a low
class precision with the heterogeneous datasets.

By comparing the results for the typed datasets case
depicted in Figure 8a and the untyped datasets depicted
in Figure 8b. We can easily observe that the behavior
of Zneika et al and ExpLod algorithms in the case of
the untyped cases is the same as in the case of the typed
datasets, which means that the quality of the summary
is not affected by the presence (or not) of schema in-
formation in the KB. While we can easily observe the
significant impact the absence of typeof schema infor-
mation had for the Campinas et al algorithm.

The discussion so far provides some insights on how
we can use the proposed Quality Framework to assess
the quality of the summaries produced by the differ-
ent algorithms. Since we are looking at comparing the
quality of the computed summary to a ground truth
summary provided by an expert in general we can ob-
serve that:

– the summarization algorithms usually capture
correctly the properties involved in the data but
miss at different levels (and for different reasons)
some of the classes. The Quality Framework pro-
vides enough resolution to really identify the al-
gorithms that provide a better summary in turn
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of the classes reported and the quality of this re-
port (e.g. are all properties reported, is the class
present as one entity in the computed summary,
etc.).

– the summarization algorithms do not capture well
cases where the data are multiply classified or
where there are quite widespread subsumption re-
lationships.

– the summarization algorithms could have quite a
few differences when reporting on the contents of
the KB and the quality of the summaries could
greatly vary and this is mostly because of the dif-
ferences in the precision of reporting the classes
in the summary, including penalizing verbose de-
scriptions (like those reported by Explod). So ac-
tually we can capture even fine differences where
for example a single class in the ground truth is
represented by two in the computed summary.

6.2.3. Results for instance level metrics
Table 14 reports the precision, the recall and the

F-Measure of RDF summaries at the instance level,
based on the same datasets and algorithms as before.
The left part of Table 13 shows the results for the typed
datasets while the right part shows the results for un-
typed datasets. For each dataset, we report the preci-
sion, the recall and the F-measure values at class and
property level. We note that ExpLod produces the best
results (actually perfect ones, always 1) since it is not
missing any property or class instance because Ex-
pLod works by grouping of even two instances if they
have the same set of attributes and types, thus does
not add any false positives. We can also note that the
instance class precision and the instance recall preci-
sion reported in columns Pc and Rc are always equal to
1 for Campinas et al algorithm over all the presented
datasets, while the property instance precision reported
in column Pp is low in most presented datasets. This is
because the Campinas et al algorithm works by group-
ing of two instances if they have the same set types,
thus it does not add any false positives at the class
level but maybe it will assign some properties to sub-
jects/instances which do not actually have these prop-
erties at the KB (false positive at the property level).
This explain why it is important to take into consider-
ation quality metrics at the property and class level.

Table 14 shows also that the behavior of Zneika et
al and ExpLod algorithms in the case of the untyped
datasets is the same or approximately the same as in
the case of the typed datasets, which means that the
quality of the summary with regard to the coverage

of the instances is not affected by the presence (or
not) of schema information in the KB for these two
algorithms. On the other hand, we can easily observe
the great positive impact left by the absence of typeof
schema information for the Campinas et al algorithm.

Also, tables 14s,14t report metrics values at the in-
stance level for the generated RDF summaries of the
Campinas et al and Zneika et al algorithms over the
DBpedia dataset for the typed and untyped cases re-
spectively. From the table 14t, we can note that Camp-
inas et al produces the perfect results since it is not
missing any property or class instance because for the
untyped case, Campinas et al works by grouping of
instances if they have the same set of properties, re-
gardless of how many they are; thus does not add any
false positives. On the contrary, the table 14s shows the
Campinas et al produces a very poor value for the in-
stance level property precision reported in column Pp

because with the presence of the class definition for
the entities in the KB, works by grouping of instances
based only on the types they carry and ignores e.g.
how many they are. Thus with a very heterogeneous
KB like DBpedia, the Campinas el al algorithm ends
up with a lot of extra property instances since for all
the properties the same number of property instances
is assumed, since the algorithm looks only at the type
information.

From this discussion, we can observe that the sum-
marization algorithms provide results of good quality
when the coverage of the instances in the KB is con-
cerned. The proposed quality metrics clearly show that
relying only on this metric is not adequate to judge the
quality of a summary since a lot of the algorithms re-
port perfect scores in all measures. But still we have
cases where we can distinguish the quality among the
results based on the instances covered by the com-
puted summary, especially when algorithms use ap-
proximative methods to compute the summary (one al-
gorithm in our case). It is worth noting here that our
Quality Framework can capture both under-coverage
(when not all instances are represented in the final re-
sult) and over-coverage (when some instances are rep-
resented more than once or some fictitious instances
are included) of instances. With the metrics at the in-
stance level we can capture these fine differences for
covering correctly or not and how much the instance
in the KB.
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Dataset ExpLod Campinas et al Zneika et al

Jpeel 25 1 1
Jamendo 31 1 1

Sec 6 1 1
LinkedMDB 8464 1 1

Bank 11 1 1
Wordnet 778 1 1
DBLP 108 1 1

Linkedct 5699 1 1
Lobid 9786 1 1

Table 12: Connectivity Metric results

6.2.4. Results combining schema- and instance-level
metrics

By comparing the results in both cases, it becomes
clear why it is important, to take into consideration
quality metrics that capture information both at the in-
stance and the conceptual level. Otherwise behaviors
like the one demonstrated by ExpLod cannot be cap-
tured and summaries that are flawed might be indis-
tinguishable from better ones. Overall, we could argue
that the Quality Framework introduced in section 4 is
adequate for capturing the fine differences in quality of
the summaries produced by the three algorithms. We
can also see that with a closer look at the results we
can gain or verify insights on how specific algorithms
work and the quality of the summaries they produce.

One final metric to be considered is whether the fi-
nal graph is connected or not and appears as more than
one connected components. This might mean that the
summarization algorithm while captures correctly the
important properties and classes in the KB fails to pro-
vide at the end a connected graph. This is important
because this might signify whether the summary graph
is usable or not for answering for example SPARQL
queries. Table 12 reports the connectivity metric val-
ues for the summaries produced by the three discussed
algorithms over all the datasets described in table 11.It
shows that the ExpLod has always high values for this
metric which means it provides a disconnected sum-
mary, while the two others have always 1, which means
that these two algorithms provide a fully connected
summary.

So measuring the quality at the schema level, the
instance level and the connected components of the
graph can give us a detailed view of the strengths and
weaknesses of a summary and decide whether to use
it or not depending on the potential use and applica-
tion. We avoided combining all the measures together
because this might blur the final picture. The idea is
not to necessarily prove an algorithm as better or worse

(we can do this to a great extend through the differ-
ent F-measures) but mainly to help the user understand
the different qualities of the summaries and choose the
best one for the different needs of the diverse use cases.

7. Conclusions and Future Work

In this paper, we introduced a quality framework
by defining a set of metrics, that can be used to com-
prehensively evaluate any RDF summarization algo-
rithm that is reported in the literature. The metrics pro-
posed are independent of the algorithm, the KB (thus
the data) and the existence or not of schema informa-
tion within the KB. The proposed Quality Framework
proposed in the paper captures correctly various desir-
able properties of the original KB. So, it accounts for:

– the conciseness of the summary by:

∗ Penalizing the verboseness in the form of mul-
tiple patterns representing a single class in the
ideal summary
∗ Capturing the similarity of the different pat-

terns or groups created by the summarization
algorithm with the corresponding ideal sum-
mary parts, even if this similarity is not 100%

– the connectedness of the summary by:

∗ Introducing a metric on the connectivity of
the summary, thus prioritizing connected sum-
maries against not so connected ones

– the comprehensibility of the summary by:

∗ Covering the schema part and thus understand-
ing how good a summary is at the structural
level
∗ Covering the instance part and thus under-

standing how good a summary is at covering
the instances that are in the KB
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Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.46 0.63 1 1 1 0.81
Campinas et al 1 0.77 0.87 1 1 1 0.93

Zneika et al 1 0.84 0.90 1 1 1 0.95

(a) Typed Jpeel

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.40 0.57 1 1 1 0.78
Campinas et al 1 0.40 0.57 1 1 1 0.78

Zneika et al 1 0.66 0.79 1 1 1 0.89

(b) Untyped Jpeel

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.74 0.85 1 1 1 0.92
Campinas et al 1 0.83 0.90 1 1 1 0.95

Zneika et al 1 0.92 0.95 1 1 1 0.97

(c) Typed Jamendo

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.60 0.75 1 1 1 0.87
Campinas et al 1 0.60 0.75 1 1 1 0.87

Zneika et al 1 0.79 0.88 1 1 1 0.94

(d) Untyped Jamendo

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.21 0.34 1 1 1 0.67
Campinas et al 1 0.28 0.43 1 1 1 0.71

Zneika et al 1 0.53 0.69 1 1 1 0.84

(e) Typed Sec

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.58 0.73 1 1 1 0.86
Campinas et al 1 0.58 0.73 1 1 1 0.86

Zneika et al 1 0.83 0.90 1 1 1 0.95

(f) Untyped Sec

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.03 0.05 1 1 1 0.52
Campinas et al 1 1 1 1 1 1 1

Zneika et al 1 1 1 1 1 1 1

(g) Typed Bank

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.03 0.05 1 1 1 0.52
Campinas et al 1 0.03 0.05 1 1 1 0.52

Zneika et al 1 1 1 1 1 1 1

(h) Untype Bank

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.28 0.43 1 1 1 0.71
Campinas et al 1 0.33 0.49 1 1 1 0.74

Zneika et al 1 0.87 0.93 1 1 1 0.96

(i) Typed LinkedMDB

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.20 0.33 1 1 1 0.66
Campinas et al 1 0.20 0.33 1 1 1 0.66

Zneika et al 1 0.80 0.89 1 1 1 0.94

(j) Untyped LinkedMDB

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.27 0.42 1 1 1 0.71
Campinas et al 1 0.80 0.88 1 1 1 0.94

Zneika et al 1 0.89 0.94 1 1 1 0.97

(k) Typed Wordnet

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.16 0.27 1 1 1 0.63
Campinas et al 1 0.16 0.27 1 1 1 0.63

Zneika et al 1 0.70 0.85 1 1 1 0.92

(l) Untyped Wordnet

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.33 0.49 1 1 1 0.74
Campinas et al 1 0.73 0.84 1 1 1 0.92

Zneika et al 1 0.82 0.90 1 1 1 0.96

(m) Typed DBLP

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.28 0.43 1 1 1 0.71
Campinas et al 1 0.28 0.43 1 1 1 0.71

Zneika et al 1 0.66 0.79 1 1 1 0.89

(n) Untyped DBLP

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.14 0.09 1 1 1 0.54
Campinas et al 1 0.95 0.97 1 1 1 0.98

Zneika et al 0.95 0.91 0.92 0.93 1 0.96 0.94

(o) Typed Linkedct

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.11 0.19 1 1 1 0.59
Campinas et al 1 0.11 0.19 1 1 1 0.59

Zneika et al 1 0.75 0.85 1 1 1 0.94

(p) Untyped Linkedct

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.23 0.37 1 1 1 0.68
Campinas et al 1 0.82 0.90 1 1 1 0.95

Zneika et al 1 0.85 0.91 1 1 1 0.96

(q) Typed Lobid

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 0.23 0.37 1 1 1 0.68
Campinas et al 1 0.23 0.37 1 1 1 0.68

Zneika et al 1 0.80 0.87 1 1 1 0.93

(r) Untyped Lobid

Algorithm Rc Pc F1c Rp Pp Fp F1

Campinas et al 1 0.21 0.34 1 1 1 0.67
Zneika et al 0.92 0.51 0.65 0.93 1 0.96 0.80

(s) Typed DBpedia

Algorithm Rc Pc F1c Rp Pp Fp F1

Campinas et al 1 0.12 0.21 1 1 1 0.60
Zneika et al 0.91 0.57 0.70 0.95 1 0.97 0.83

(t) Untyped DBpedia

Table 13: Precision, Recall and F-Measure at the Schema level. The Rc column reports the schema class Recall S chemaRecClassAll. The Pc

column reports the schema class precision S chemaPrecClassAll. The F1c reports the schema class F-measure S chemaF1c. The Rp column reports
the schema property Recall S chemaRecPropertyAll. The Pp coulmn reports the schema property precision S chemaPrecPropertyAll. The F1p column
reports the schema property F-measure S chemaF1p. The F1 column reports the overall schema F-Measure S chemaF1
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Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.33 0.49 0.74

Zneika et al 0.99 0.96 0.97 0.99 0.95 0.97 0.97

(a) Typed Jpeel

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 1 1 1

Zneika et al 0.99 0.96 0.97 0.99 0.95 0.97 0.97

(b) Untyped Jpeel

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.49 0.65 0.82

Zneika et al 1 0.98 0.99 1 0.98 0.99 0.99

(c) Typed Jamendo

Algorithm Rc Pc F1c Rp Pp Fp F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 1 1 1

Zneika et al 1 0.98 0.99 1 0.98 0.99 0.99

(d) Untyped Jamendo

Algorithm Rc Pc F1c Rp Pp F1p F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.92 0.95 0.97

Zneika et al 1 1 1 1 1 1 1

(e) Typed Sec

Algorithm Rc Pc F1c Rp Pp F1p F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 1 1 1

Zneika et al 1 1 1 1 1 1 1

(f) Untyped Sec

Algorithm Rc Pc F1c Rp Pp F1p F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.97 0.98 0.99

Zneika et al 1 1 1 1 0.97 0.98 0.99

(g) Typed Bank

Algorithm Rc Pc F1c Rp Pp F1p F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 1 1 1

Zneika et al 1 1 1 1 0.97 0.98 0.99

(h) Untyped Bank

Algorithm Rc Pc F1c Rp Pp F1p F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.08 0.14 0.57

Zneika et al 1 0.93 0.96 1 0.73 0.84 0.89

(i) Typed LinkedMDB

Algorithm Rc Pc F1c Rp Pp F1p F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 1 1 1

Zneika et al 1 0.93 0.96 1 0.73 0.84 0.89

(j) Untyped LinkedMDB

Algorithm Rc Pc F1c Rp Pp F1p F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.32 0.48 0.74

Zneika et al 1 0.80 0.88 1 0.82 0.90 0.89

(k) Typed Wordnet

Algorithm Rc Pc F1c Rp Pp F1p F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 1 1 1

Zneika et al 1 0.93 0.96 1 0.73 0.84 0.89

(l) Untyped Wordnet

Algorithm Rc Pc F1c Rp Pp F1p F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.64 0.78 0.89

Zneika et al 1 0.82 0.90 1 0.71 0.83 0.86

(m) Typed DBLP

Algorithm Rc Pc F1c Rp Pp F1p F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.79 0.88 0.94

Zneika et al 1 1 1 1 0.96 0.98 0.99

(n) Untyped DBLP

Algorithm Rc Pc F1c Rp Pp F1p F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.79 0.88 0.94

Zneika et al 1 1 1 1 0.96 0.98 0.99

(o) Typed Linkedct

Algorithm Rc Pc F1c Rp Pp F1p F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 1 1 1

Zneika et al 1 0.93 0.96 1 0.73 0.84 0.89

(p) Untyped Linkedct

Algorithm Rc Pc F1c Rp Pp F1p F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 0.37 0.54 0.77

Zneika et al 1 0.91 0.95 1 0.86 0.92 0.935

(q) Typed Lobid

Algorithm Rc Pc F1c Rp Pp F1p F1

ExpLod 1 1 1 1 1 1 1
Campinas et al 1 1 1 1 1 1 1

Zneika et al 1 0.89 0.94 1 0.77 0.88 0.91

(r) Untyped Lobid

Algorithm Rc Pc F1c Rp Pp Fp F1

Campinas et 1 1 1 1 0.06 0.36 0.68
Zneika et al 0.92 0.73 0.81 0.89 0.61 0.72 0.76

(s) Typed DBpedia

Algorithm Rc Pc F1c Rp Pp Fp F1

Campinas et al 1 1 1 1 1 1 1
Zneika et al 1 0.91 0.95 1 0.86 0.92 0.93

(t) Untyped DBpedia

Table 14: Precision, Recall and F-Measure at the instance level. The Rc column reports the instance class Recall InstanceRecClassAll. The Pc

column reports the instance class precision InstancePrecClassAll. The F1c column reports the instance class F-measure InstanceF1c. The Rp col-
umn reports the instance property Recall InstanceRecPropertyAll. The Pp column reports the instance property precision InstancePrecPropertyAll.
The F1p column reports the instance property F-measure InstanceF1p. The F1 column reports the overall instance F-Measure InstanceF1
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∗ Understanding how well connected the sum-
mary and thus the content of the KB is

∗ Capturing subtle differences in the result sum-
mary, like the omission of just one property
or the approximation over the number of in-
stances that allows the user to really understand
why and where there is a problem

– the overall quality of the summary so that it can
be compared with other summaries by combin-
ing the different metrics like precision, recall, F-
measure at different levels with connectedness in
order to allow for the overall comparison, while
the different metrics still provide a more detailed
idea on where there are problems with a com-
puted summary.

We made a big effort on validating that the proposed
Quality Framework correctly captures the differences
present in different summaries by evaluating three dif-
ferent algorithms (that work in substantially different
ways) over ten different and diverse datasets, showcas-
ing that indeed the different aspects are correctly cap-
tured in terms of quality and that the results are easily
matched towards the status of the KB.

To the best of our knowledge, the literature does not
report any other effort that tries to capture the quality
properties of RDF graph summaries both at the con-
cept (schema) and instance level in a complete and
comprehensive way. The experiments showed that us-
ing the proposed set of metrics we are able now to
compare the quality at different levels of the RDF sum-
maries produced by different algorithms found in the
literature, applied on different and diverse datasets and
extract useful insights for their suitability for various
tasks.

We plan to extend this work by applying the frame-
work to Linked Data sources where quality results
might be different for each part of the linked datasets.
We would like to explore both theoretically and exper-
imentally whether there are ways to provide consoli-
dated quality metrics treating the linked KBs as one,
which will go beyond simply averaging the individual
quality results. We would also like to use the frame-
work to assess the quality of the results of more algo-
rithms, in order to validate experimentally its suitabil-
ity.
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