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INTRODUCTION

There are several ways to improve response time (i.e., to limit the number of disk Input/Output) in a DBMS. Indexing, clustering (i.e., storing related entities close together on secondary storage) and buffering (i.e., fetching clustered entities at the same time and setting up replacement strategies) are widely used techniques in conventional DBMSs. However, OODBs present additional semantics like structural properties (inheritance, composite objects) and interrelationships between objects. New techniques have then to be thought of.

We have chosen to study three clustering algorithms found in the literature that we consider to be different enough to be representative of the current research on clustering techniques in OODBs: Cactis, CK and ORION clustering algorithms. The Cactis and ORION clustering algorithms are already implemented in DBMSs.

These particular algorithms have been selected because they present characteristics that are interesting to compare. For instance, CK and ORION are dynamic clustering algorithms as the Cactis clustering algorithm is static. ORION also uses only users' hints to cluster a database; the Cactis clustering algorithm uses only statistics about the database and the CK algorithm makes use of both.

Furthermore, the aim of previous performance evaluations performed on these algorithms was only to compare the effects of one particular clustering strategy to those of a "no clustering" policy [START_REF] Chang | Effective Clustering and Buffering in an Object-Oriented DBMS[END_REF]HURS89]. We intend to compare each of these three algorithms to each other to determine which one performs the best in a given environment. The characteristics that make this algorithm the best should be isolated.

This paper is organized as follows. Section 2 explains the principles of clustering in OODBs. The three studied clustering algorithms are described in Section 3. Section 4 describes our simulation model. In Section 5, the simulation results are analyzed. Section 6 concludes this paper and provides future research directions.

CLUSTERING IN OODBs

Clustering principles

The goal of object clustering is to reduce the number of disk I/Os for object retrieval. Typically, the unit of data transferred from disk is a page instead of an individual object. If two objects are clustered on the same page, it will take only one disk I/O to access both objects successively. [START_REF] Hurson | Object-Oriented Database Management Systems: Evolution and Performance Issues[END_REF] Clustering algorithms attempt to improve the performance of object-oriented database systems by placing on the same page related sets of objects [START_REF] Tsangaris | On the Performance of Object Clustering Techniques[END_REF]. In object-oriented databases, complex objects are the basic units of data manipulation. The subobjects of a complex object may come from different classes. Traditional storage systems tend to group records of the same type physically close to each other on disk. This results in tedious and expensive reconstruction procedures (such as join operations) to retrieve complex objects. Therefore, it is logical to cluster related objects of different classes together to achieve acceptable performance. [START_REF] Hurson | Object-Oriented Database Management Systems: Evolution and Performance Issues[END_REF] The problem of clustering can be seen as a graph partitioning problem. The nodes of the graph are the objects and the edges are the links between objects. This problem is NP-complete. However, as the graph of objects represents the database state, all is needed is an incremental solution where new objects are placed at the "right place". Most of the algorithms used can be classified as greedy algorithms: they scan the objects according to their links and try to place them into the same cluster unit. Thus the cost of clustering has no major impact on the overall system.

[BENZ90]

Clustering strategies

According to [START_REF] Cattell | Object Data Management: Object-Oriented and Extended Relational Database Systems[END_REF], clustering in an OODB can actually be performed in many different ways:

• composite objects: objects can be clustered according to aggregation relationships;

• references: some OODBs allow objects to be clustered according to relationships with other objects; composite objects clustering is, in fact, a special case of this, clustered by aggregation relationships;

• object types: objects may also be clustered by their types; if there is a generalization hierarchy, subtype instances may also be clustered in the same segment;

• indexes: as in relational DBMSs, it may be possible to cluster objects by an index on their attributes;

• custom: some OODBs allow clustering to be performed "on the fly".

Unless objects are stored redundantly, an object can generally be clustered according to one of these rules. Where the rules do not conflict, however, it is possible to follow multiple clustering rules.

Clustering may be performed at two levels:

• pages: objects may be clustered according to the smallest physical unit read from disk, which is normally a page; this type of clustering can produce the greatest gains in performance when a "working set" of objects cannot be precisely defined for all applications; page clustering is more useful for clustering by index, reference and composite objects;

• segments: objects may be clustered in larger units, when the user is able to specify a meaningful logical grouping for segmentation; segment clustering is most useful for type clustering; it may also be used for composite objects, if used at a sufficiently course grain.

The largest performance gains are generally afforded by page clustering, since pages are the unit of access from disk and a "working set" of pages is selected dynamically according to the access characteristics of an application program. Segment clustering produces efficiency gains only if relatively large contiguous units are transferred from disk, or when efficiency gains can be made through grouping operations (for example, for composite objects deletion).

Users' hints

To expedite the retrieval of related data, database systems often take hints from the user (or database administrator) to store related data physically close together [START_REF] Kim | Object-Oriented Databases: Definition and Research Directions[END_REF]. For example, the GemStone database administrator, or a savvy application programmer can hint GemStone that certain objects are often used together and so should be clustered on disk [MAIE86]. The VBASE system allows explicit clustering hints when objects are created [START_REF] Andrews | Programming with Vbase[END_REF]. The strategy adopted in ONTOS is to allow the programmer to specify clustering and to provide tools for reclustering when more experience with the applications permits better choices to be made [START_REF] Andrews | ONTOS: A Persistent Database for C++[END_REF].

Static versus dynamic clustering

In the static case, clustering is done at the time objects are created and no reorganization is implied when the links between objects are updated [START_REF] Benzaken | Enhancing Performance in a Persistent Object Store: Clustering Strategies in O 2[END_REF]. A static clustering scheme offers a good placement policy for complex objects but does not take into account the dynamic evolution of objects. In applications such as design databases, objects are constantly updated during early parts of the design cycle. Frequent updates may destroy the initially clustered structure. To keep the object structure optimized, reorganization might be necessary for efficient future accesses [START_REF] Deux | The Story of O 2[END_REF].

Dynamic clustering is done at run time when objects are accessed concurrently and becomes attractive in an environment where the read operations dominate the write operations [START_REF] Benzaken | Enhancing Performance in a Persistent Object Store: Clustering Strategies in O 2[END_REF]. A dynamic clustering scheme should try to recluster when scattered access cost becomes too high. However, reclustering will generate overhead such as extra disk I/Os, so it is important to determine when a reorganization should occur. If the overhead is not justified, reclustering may actually degrade the overall performance [START_REF] Cheng | Effective clustering of complex objects in object-oriented databases[END_REF].

CLUSTERING ALGORITHMS

Cactis clustering algorithm

Cactis [START_REF] Hudson | Cactis: A Self-Adaptive Concurrent Implementation of an Object-Oriented Database Management System[END_REF] is an object-oriented, multi-user DBMS developed at the University of Colorado. It is designed to support applications that require rich data modeling capabilities and the ability to specify functionally-defined data.

The Cactis clustering algorithm is designed to place objects that are frequently referenced together into the same block (i.e., page, i.e., I/O unit) on secondary storage. It can improve response time up to 60%.

In order to improve the locality of data references, data is clustered on the basis of usage patterns. A count of the total number of times each object in the database is accessed is kept, as well as the number of times each relationship between objects in the process of attribute evaluation or marking out-of-date is crossed. Then, the database is periodically reorganized on the basis of this information. The database is packed into blocks using the greedy algorithm shown in Figure 1.

This clustering algorithm is also implemented in the Zeitgeist system [START_REF] Ford | ZEITGEIST: Database Support for Object-Oriented Programming[END_REF].

The Cactis clustering algorithm is a static algorithm since it is periodically used to recluster the database when the database is idle. This implies that the database is not clustered on the first run because no information about the database is available [START_REF] Chabridon | Clustering Techniques for Object-Oriented Database Systems[END_REF].

This algorithm does not require users' hints. This is an advantage since no arbitrary choice has to be made by the user [START_REF] Chabridon | Clustering Techniques for Object-Oriented Database Systems[END_REF]. But it also implies some time overhead (time to compute total number of times each object is accessed and number of times each relationship is crossed) and space overhead (the main memory space used to store the counters grows with the database size). It also raises the problem of getting pertinent statistics about the database.

Repeat

Choose the most referenced object in the database that has not yet been assigned a block. Place this object into a new block.

Repeat

Choose the relationship belonging to some object assigned to the block such that:

(1) the relationship is connected to an unassigned object outside the block and, (2) the total usage count for the relationship is the highest. Assign the object attached to this relationship to the block. Until the block is full. Until all objects are assigned blocks. 

ORION clustering method

ORION is a series of next-generation database systems that have been prototyped at MCC (Microelectronics Computer Technology Corp.) as vehicles for research into the next-generation database architecture and into the integration of programming languages and databases [START_REF] Kim | Architecture of the ORION Next-Generation Database System[END_REF]. ORION has been designed for Artificial Intelligence (AI), Computer-Aided Design and Manufacturing (CAD/CAM) and Office Information System (IOS) applications [START_REF] Banerjee | Data Model Issues for Object-Oriented Applications[END_REF].

ORION supports only a simple clustering scheme. Instances of the same class are clustered in the same physical segment (i.e., a number of blocks or pages). Each class is associated with one single segment. [START_REF] Kim | Architecture of the ORION Next-Generation Database System[END_REF] But ORION also provides direct support for composite objects, i.e., objects with a hierarchy of exclusive component objects (see Figure 2). The hierarchy of classes to which the objects belong is a composite object hierarchy. The object-oriented data model, in its conventional form, is sufficient to represent a collection of related objects. However, it does not capture the IS-PART-OF relationship between objects; one object simply references, but does not own, other objects. A composite object hierarchy captures the IS-PART-OF relationship between a parent class and its component classes, whereas a class hierarchy represents the IS-A relationship between a superclass and its subclasses. [START_REF] Banerjee | Data Model Issues for Object-Oriented Applications[END_REF] Then it becomes advantageous to store instances of multiple classes in the same segment. User assistance is required to determine which classes should share the segment. The user can dynamically issue a Cluster message containing a "ListOfClassNames" argument specifying the classes that are to be placed in the same segment. [START_REF] Banerjee | Data Model Issues for Object-Oriented Applications[END_REF] In ORION, segments have a fixed size. So the number of pages they contain gives the number of I/Os necessary to load the segment. When a segment is full, a new page is allocated and linked to the segment (a pointer must be maintained in the segment descriptor). This -4 -implies some overhead to find the address of each additional page [START_REF] Chabridon | Clustering Techniques for Object-Oriented Database Systems[END_REF].

Figure 2: Example of composite object

The advantage of this method is its simplicity that makes the method fast and easy to implement since no cost model is defined and no overhead is implied to determine what is the optimal storage unit for an object. But simplicity also turns to a limitation since users' hints can only be based on the static information given by the data model and not on some information determined by the database usage and which could lead to a better clustering. [START_REF] Chabridon | Clustering Techniques for Object-Oriented Database Systems[END_REF] 

CK clustering algorithm

The CK algorithm (from its authors' names: Chang and Katz) is defined in the CAD/CAM context. It can improve response time up to 200% when the Read/Write ratio is high (which is true for real CAD applications) [START_REF] Chang | Exploiting Inheritance and Structure Semantics for Effective Clustering and Buffering in an Object-Oriented DBMS[END_REF]. The CK algorithm makes use of several new concepts, such as structural relationships and instance-to-instance inheritance. Coupling the concept of versions with composite objects leads to configurations. A configuration is a composite unit whose components are bound to specific versions (see Figure 3) [START_REF] Chang | Inheritance in computer-aided design databases: semantics and implementation issues[END_REF].

Structural relationships

If two objects are alternative representations of the same real world entity, they are equivalent.

-5 -

Instance-to-instance inheritance

Besides structural relationships, inheritance provides additional semantics. As in object-oriented programming languages, a class/subclass hierarchy can be defined for an OODB based on the IS-A relationship. A subclass inherits the structure (i.e., attributes' definitions) and the methods of its superclass. However, in OODBs, this form of inheritance (called type inheritance) is not sufficient. [START_REF] Chabridon | Clustering Techniques for Object-Oriented Database Systems[END_REF] The CK algorithm also uses instance-to-instance inheritance that not only transfers the existence of attributes from one object to another (like type inheritance), but moreover the values of these attributes [START_REF] Wilkes | Instance Inheritance Mechanisms for Object Oriented Databases[END_REF].

Instance-to-instance inheritance is important in computer-aided design databases, since a new version tends to resemble its immediate ancestor. It is useful if a new version can inherit its attributes' values, and more importantly its constraints, from its ancestor.

[KATZ91]

Algorithm presentation

Instance-to-instance inheritance introduces more complexity because it allows attributes to be selectively inherited at run-time. This run-time flexibility requires a sophisticated approach for clustering. The CK algorithm is based on interobjects access frequencies (given by the user at data type creation time) for each kind of structural relationship, e.g., 20% of access along version relationships, 75% of access along configuration relationships and 5% of access along equivalence relationships.

When a new object is created, the algorithm chooses an initial placement based on which relationship is most frequently used to reach the object (in the above example, a new instance would probably be placed in the same page as its composite objects). Then, for each inherited attribute, cost formulas are used to choose between implementation by copy or by reference, i.e., either by copying the attribute's value or reference it with a pointer. The augmented access frequencies (i.e., relationship traversal frequencies plus inheritance traversal frequencies) may change the initial placement. The clustering algorithm pseudo code is given in Figure 4.

Then, if the best candidate page is full, either the next best candidate page is chosen or the page is split if the expected access cost resulting from the split is an improvement over placement in the next best candidate page.

Page splitting is performed by a greedy algorithm that partitions the inheritance-dependency graph into two sub-graphs that each fit into one page. This algorithm is not optimal, but it is linear (whereas an exact partitioning algorithm would be NP-complete). It is described in Figure 5.

SIMULATION MODEL

Object base

For our simulations, we used a random object base whose class hierarchy forms a DAG, as in [START_REF] He | An Efficient Storage Protocol for Distributed Object-Oriented Databases[END_REF]. The database generation was performed in two phases: first generate class hierarchies and class definition (see Figure 6), then generate instances for these classes. To simplify the class hierarchy, we did not take into account multiple inheritance because it has no effect on clustering. We also assumed that a given class had one single ancestor version and one single descendant version but could have several component classes or equivalent classes.

Instance creation has been designed as a special kind of query. However, the initial database is to be created before any other query can occur, given an initial number of objects. The method we used to generate instances is shown in Figure 7.

Query generation

The HyperModel Benchmark [START_REF] Anderson | The HyperModel Benchmark[END_REF][START_REF] Berre | The HyperModel Benchmark for Evaluating Object-Oriented Databases[END_REF] provides 20 different types of transactions. From those 20, we have isolated 15 types of transactions (some of them are slightly modified to match the structural relationships we use). Each transaction has a probability to occur.

• Name Lookup: Retrieve a randomly selected object; fetch one of its (randomly selected) attributes' value.

• Range Lookup: Select a class at random; select one of its attributes at random; determine randomly two test values; fetch all the attributes of all the instances of the class whose selected attribute's value are in the range defined by the test values.

• Group Lookup: Given a randomly selected starting object, fetch all the attributes of either:

-all its component objects, -all its equivalent objects, -all its descendant versions. • Reference Lookup: Given a randomly selected starting object, fetch all the attributes of either:

-its composite object, -all its ancestor versions. The Page_split algorithm assumes that the arc costs C ei (i.e., run-time lookup cost) between objects are always maintained and sorted. The node capacity Cap vi (i.e., the object size) is also maintained. Subset A and B represent the sets of objects assigned to the new pages after splitting. Both subsets are empty ate the beginning. E is the initial set of arcs relating the objects.

• Step (1): Select the maximum value arc from E as e target and set E to be (E -{e target }). Let v head and v tail be the head and the tail nodes of e target . • Step (2): Supposed both v head and v tail are new to subsets A and B. Insert v head and v tail in subset A if Cap vhead plus Cap vtail is less than the remaining capacity of subset A. Otherwise, insert v head and v tail in subset B if subset B has space for these nodes. If neither subset A or B could accommodate both v head and v tail , a broken arc is found and C etarget is added into C total .

• Step (3): Supposed v head is in subset A and v tail is not in subset A or B. Insert v tail into subset A if feasible. Otherwise, a broken arc is found and C etarget is added into C total .

• Step (4): Supposed both v head and v tail are visited before, a broken arc is found and C etarget is added into C total .

• Step (5): Look back to step (1) until arc set E is empty. Given a number of classes, we first build a class hierarchy that includes versions (1). Then we build a composite hierarchy and add equivalence relationships (2).

(1)

A new class is added.

A random number of versions of this class is added (descendant versions).

If the new class has a superclass (given a probability of having a superclass) then randomly select a superclass among the existing classes, inherit attributes and methods of the superclass, for each additional version of the class: randomly select a superclass among the initial class superclass descendant versions, inherit attributes and methods of the superclass. Add additional random attributes and methods to all versions (sizes of attributes and methods are assigned randomly). Compute object size for these classes. • Closure Traversal: Given a randomly selected starting object, follow one of the three structural relationships (i.e., version, configuration or equivalence) to a certain predefined (random) depth D; fetch a random attribute from the resulting object; the followed relationship can be either always the same or randomly selected.

• Editing: Select an object at random; update one of its attribute (randomly chosen) with a random value.

• Object Creation: Creation of a new object (cf. object base generation). This activates the CK clustering algorithm.

• Reclustering: The ORION clustering algorithm needs a "Cluster message" to be dynamically activated [START_REF] Banerjee | Data Model Issues for Object-Oriented Applications[END_REF]. The Cactis clustering algorithm is static. We can assume it will also wait for a cluster message before reorganizing the database. However, cluster messages for the Cactis algorithm should be far less frequent than cluster messages for the ORION algorithm since the Cactis clustering algorithm is supposed to run when the database is idle [START_REF] Hudson | Cactis: A Self-Adaptive Concurrent Implementation of an Object-Oriented Database Management System[END_REF].

Overall model

The overall simulation model is inspired by the one provided in [START_REF] Chang | Effective Clustering and Buffering in an Object-Oriented DBMS[END_REF]. It is composed as follows (see Figure 8). • Client module: After a predefined think time, the client issues the transactions to the Transaction Manager according to some frequencies of occurence.

• Transaction Manager module: The transaction manager extracts from transactions which objects have to be accessed or updated, and performs the operations. In the case of a regular operation, object requests are sent to the Buffering Manager. In the case of instance creation or a Cluster message, the Clustering Manager is invoked.

• Buffering Manager: The Buffering Manager checks if an object is in main memory and requests it to the I/O Subsystem if it is not. It also deals with page replacement strategie (when a new page is needed, the oldest page in memory is dropped and replaced by the new one).

• Clustering Manager: The Clustering Manager is activated depending on the algorithm (i.e., Cactis, CK or ORION) it implements. It deals with reorganizing the database on secondary storage to achieve better performance.

• I/O Subsystem: This module deals with physical accesses to secondary storage.

Simulation parameters

Tables 1 and 2 provide the simulation parameters we used for our simulation experiments. 

SIMULATION RESULTS

To compare the performance of the three clustering algorithms, we conducted four testing cases: varying the database size, the workload, the buffer capacity and the Read/Write ratio. Due to space limitation, we present in the following subsections only some of the results we obtained.

Effects of the database size

We first tested the effect of varying the initial number of objects in the database using a uniform random distribution to choose the transactions' starting objects. This is not always realistic since there may be objects that are "hotter" (i.e., more frequently accessed) than others in real world applications. Furthermore, the performance of the Cactis clustering algorithm depends on run-time computed statistics, such as object's access frequencies, that are not the same when using different random distributions to select the transactions starting object. So we implemented in a second series of simulations a normal random distribution for the transactions' starting objects, which is very similar to the "skewed random" function introduced in [START_REF] Tsangaris | On the Performance of Object Clustering Techniques[END_REF].

Figure 9a shows that response time when using Cactis is 24 % lower than when using ORION. Figure 9b shows that, for CK, response time increases linearly with the number of objects and that CK algorithm totally outperforms the other two (being about 800 times better than Cactis). "PS ON" and "PS OFF" stand for page splitting used or not. The more a clustering algorithm is complex (i.e., the more it clusters object according to precise rules), the more it uses a greater amount of disk pages to cluster the object base. The maximum number of disk pages used (as shown in Figure 11), as expected, is higher for the more complex algorithms, i.e., CK needs 1.8 times as many pages as Cactis and Cactis needs 1.3 times as many pages as ORION, for which number of pages increases linearly. 

Parameter name

Effect of the buffer capacity

On one hand, increasing the buffer capacity may lessen the effects of clustering since a given set of related objects has a higher probability of being in main memory instead of on secondary storage. On the other hand, objects are also accessed when reorganizing the database. Thus, increasing buffer capacity should decrease clustering overhead, especially for the ORION clustering algorithm that may make several non-consecutive accesses to each object. We performed this set of simulations using an initial database of 400 objects and selecting the transactions' starting objects from a uniform random distribution.

Figures 12a and12b show that response time decrease linearly with the buffer size for the Cactis and CK algorithms. The dual effect of increasing the buffer capacity is seen on both transactions I/Os and clustering overhead. The ORION algorithm has a similar behavior, but the gain in performance is seen earlier than with the other algorithms and then the gain in performance is less important (see Figure 12a). We can explain this by the fact that the ORION algorithm uses a smaller amount of pages than the other algorithms to cluster the database. Thus, the buffer size grows faster relatively to the database size. For instance, a buffer size of 20 pages represents 25% of the database size for ORION versus only 15% for Cactis and 9% for CK. Figure 12a presents rather big variations in performance when buffer capacity grows over 40 pages. However, these values oscillate around a mean value that decreases slowly but linearly.

Figure 12a: Response time vs. buffer size

Effect of the Read/Write ratio

Read/Write ratio is an important factor when seeking to evaluate DBMSs performances. Furthermore, [START_REF] Chang | Effective Clustering and Buffering in an Object-Oriented DBMS[END_REF] claims that CK algorithm performs better when the Read/Write ratio is high. For our simulation experiments, we used an initial database of 400 objects and a buffer size of 10 pages.

Figure 12b: Response time vs. buffer size

The performance of the Cactis and ORION algorithms decreases when the Read/Write ratio decreases (see Figure 13a). On the contrary, response time decreases along with the Read/Write ratio in the case of CK (see Figure 13b). 

CONCLUSIONS

It is clear from our simulation experiments that the CK algorithm outperforms both Cactis and ORION in terms of overall performance. The results we obtained showed that this is due to both a good clustering capability and to the dynamic conception of the algorithm that allow an extremely low clustering overhead. Such a good behavior is achieved because the CK algorithm is activated only at object creation time and only accesses the few objects that are related to the newly created object once. Therefore, transactions are never blocked very long during clustering, as they are when the Cactis or the ORION algorithm is used. (The Cactis and ORION algorithms have to access all the objects in the database, even several times in the case of ORION, to reorganize the database; and transactions cannot be run when a reorganization occurs.) CK good clustering capability is based on the users' hints that specify the inter-objects access frequencies for each structural relationship and thus allows to cluster together objects that are likable to be accessed together.

Our simulations showed too that Cactis had also a good clustering capability. This is due to the use of statistics (i.e., objects access frequencies and relationships use frequencies) that allow to cluster together objects that are actually accessed together. Though, the Cactis algorithm is still completely outperformed by the CK algorithm. This is because, when using Cactis, clustering overhead increases very quickly with the number of objects, thus annihilating any gain achieved from good clustering capability. However, we have to keep in mind that this algorithm has been designed to run when the database is idle so that reclustering does not alter the database performance. Hence, if clustering overhead was not taken into account, the Cactis algorithm should perform about as well as CK algorithm as long as the statistics used during the last reorganization are pertinent.

In terms of disk space, the more a clustering algorithm is simple, the less space it should use. Actually, the more a clustering algorithm is complex, the more it clusters objects according to sharp criteria. Thus, a smaller number of objects are likely to be clustered in the same clustering unit (either a page or a segment). So the number of pages needed to store the database is greater. Our simulation experiments confirm that fact. The ORION algorithm is the less greedy algorithm in terms of disk pages used. Then the Cactis algorithm follows, using almost half the number of disk pages needed by CK to cluster the database. However, reorganizing the database, the Cactis and ORION algorithms need to build a new set of pages before deleting the old one. Thus they require about twice as much space as our graphs show.

Future research about this subject could be in a first step completing the simulation tests, notably by determining the effects of database changes, e.g., varying the probability for a class to belong to a composite class hierarchy, the average number and size of attributes, etc.

Then the next step would be the design and evaluation of one or several new clustering algorithms. One alternative would be to build a dynamic clustering algorithm that would use the same statistics as Cactis (i.e., objects access frequencies and relationships use frequencies) to cluster objects together, but could be able to use them at run-time (e.g., an algorithm activated at object creation time, like CK). Such an algorithm could have Cactis' good clustering capability without being handicapped by an important clustering overhead.

Another alternative would be to modify the CK algorithm so that it does not use users' hints for interobjects access frequencies any more and rely only on statistics, in order to make the algorithm even more accurate and performant. The problem with users' hints is that their accuracy depends the user (either the database administrator or a programmer) knowledge of the database. On the other hand, automatically gathered statistics show an exact image of the database status. Thus, by computing interobjects access frequencies for each structural relationship and each object at run-time, a better performance should be achieved.

Figure 1 :

 1 Figure 1: Cactis clustering algorithm [HUDS89]

  and equivalence relationships. Objects sharing the same interface but having different implementations are called versions [BATO85]. They represent different design alternatives. For example, if an object is identified by the pattern: Name[Version].Type where "Name" is the object name, "Version" its version number and "Type" its type; Nice[1].car, Nice[2].car and Nice[3].car would be three versions of the same object "Nice" type of which is "car".

Figure 3 :

 3 Figure 3: Example of configurations A very important characteristic of OODBs is the presence of composite (complex or nested) objects. This concept is represented through composite/component relationships among objects.Coupling the concept of versions with composite objects leads to configurations. A configuration is a composite unit whose components are bound to specific versions (see Figure3)[START_REF] Chang | Inheritance in computer-aided design databases: semantics and implementation issues[END_REF].If two objects are alternative representations of the same real world entity, they are equivalent.

Figure 4 :

 4 Figure 4: Pseudo code for CK clustering algorithm [CHAN90]

Figure 5 :

 5 Figure 5: Page_split algorithm [CHAN90]

  Scan all the classes. For each class: If it is a component of one class (given a probability of being component) then randomly select a class composed of the new class. If it has an equivalent class (given a probability of having an equivalent) then randomly select an equivalent class.

Figure 6 :

 6 Figure 6: Class lattice generation For each new object: Randomly select a class. If the new object class is a component of another class then randomly select an instance of this class (if any) to be composed of the new object. If the new object class is a version then randomly select one ancestor object in the new object class ancestor class, If using CK, inherit values of common attributes (either by copy or by reference). If the new object class has an equivalent class then randomly select one equivalent object among instances of the equivalent class.

Figure 7 :

 7 Figure 7: Instances generation

Figure 8 :

 8 Figure 8: Overall simulation model

Figure 9a :

 9a Figure 9a: Response time vs. number of objects (U) Figures 9a and 10 show indeed that Cactis performs 1.5 times better when objects are not accessed through a uniform distribution,

Figure 9b :

 9b Figure 9b: Response time vs. number of objects (U)

Figure 11 :

 11 Figure 11: Number of pages vs. number of objects

Figure 13a :

 13a Figure 13a: Response time vs. R/W ratio
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  Sequential Scan: Select a class at random; select one of its attributes at random; fetch this attribute's values for every instance of the class.

	PROCEDURE cluster_object(target_objet)
	BEGIN	
	/* step 1: get initial information */
	cluster_policy:=get_policy( );	/* Is page splitting enabled? */
	copy_set:=get_by_copy_set( );	/* Inherited attributes implemented by copy. */
	ref_set:=get_by_ref_set( );	/* Inherited attributes implemented by reference. */
	inh_page_set:=get_all_inh_page( );	/* Source pages for inherited attributes. */
	struct_page_set:=get_all_struct_page( );	/* Source pages for structural objects. */
	page_set:=inh_page_set+struct_page_set;
	/* step 2: calculate ref_set lookup cost for each page */
	FOR p IN page_set	/* If by-reference attribute r is */
		FOR r IN ref_set	/* not in page p, storing target object */
		IF r NOT_IN p	/* in page p requires one run-time */
		BEGIN	/* lookup for attribute r. */
		weight(p):=1/(prob(p,struct_rel));
		Ref_LookUp(p):=Ref_LookUp(p)+weight(p);
		END;
	/* step 3: calculate copy_set lookup and storage cost for each page */
	FOR c IN copy_set	/* If by-copy attribute c is not in page */
		FOR p IN page_set	/* p, we could either cache it in page p */
		IF c NOT_IN p	/* or change its implementation to be */
		BEGIN	/* by-reference. */
		weight(p):=1/(prob(p,struct_rel));
		Copy_storage(p):=Copy_storage(p)+size_of(c);
		Copy_LookUp(p):=Copy_LookUp(p)+weight(p);
		END;
	/* step 4: calculate total cost of every page. If by-copy attributes are */
	/*	implemented by reference, the total cost of storing target object */
	/*	in page p is represented by Total(p,1). Otherwise, the cost */
	/*	is represented by Total(p,2). */
	FOR p IN page_set
		Total_cost(p,1):=Ref_LookUp(p)*Lookup_cost+Copy_LookUp(p)*Lookup_cost;
		Total_cost(p,2):=Ref_LookUp(p)*Lookup_cost+Copy_storage(p)*Storage_cost;
	/* step 5: pick up best candidate page and try to insert the object */
	candidate_page:=Minimum(Total_cost);
	IF (cluster_policy EQ no_split)
		WHILE (NOT_FIT(candidate_page))
		candidate_page:=Next_Min(Total_cost);
	IF ((cluster_policy EQ page_split) AND (NOT_FIT(candidate_page))
		Split_page(candidate_page);
	END;	

Table 1 :

 1 Static parameters

		Designation	Value	Justification, References
	RAVGTHINK	Average client think time	4 s	[CHAN89a]
	RCC	Average locking/unlocking	0.5 ms	[SRIN91]
		time (concurrency control)		
	IMLVL	Multiprogramming level	10	[GRUE91]
	IWDSIZE	Size of one memory word	4 bytes	[GRUE91]
	ICPU	CPU power	2 Mips	[GRUE91]
	RMACC	Memory word access time	0.0001 ms	[GRUE91]
	RMTEST	Time for comparison of two	0.0007 ms	Two memory accesses, one
		memory words		subtraction
	IPGSIZE	Size of disk page	2048 bytes	[CHEN91]
	RSEEK	Average disk seek time	28 ms	[CHEN91]
	RLATENCY	Average disk latency time	8,33 ms	[CHEN91]
	RTRANSFER	Disk page transfer time	1.28 ms	[CHEN91]
	Parameter name	Designation	Default value	Range
	NCL	Number of classes	20	10-30
	IAVGVER	Average number of versions	3	1-5
		per class		
	RPSUPER	Probability for a class of	0.9	0-1
		having a superclass		
	RPCOMP	Probability for a class of	0.5	0-1
		being a component class		
	RPEQUI	Probability for a class of	0.1	0-1
		having an equivalent class		
	INOBJ	Initial number of objects	400	100-1000
	IAVGASIZE	Average attribute size	1 word	1-3 words
	IAVGNATTR	Average number of attributes	10	5-20
		per class		
	IBUFF	Size of memory buffer	10 pages	10-100 pages
	IMD	Maximum depth in Closure	5	3-10
		Traversals		
	ISEGSIZE	Default segment size	5	3-10
		(ORION)		
	ITHRESHOLD	Update Threshold (CK)	25	0-255
	ISCALEF	Scale factor (CK)	0.5	0-1
	ISPLIT	Page split policy (CK)	ON	ON/OFF
	PT1-PT12	Probability of Read	0.065	0-1
		Transaction (#1-12)		
	PT13	Probability of Editing	0.1695 (Cactis)	0-1
			0.169 (ORION)	
			0.17 (CK)	
	PT14	Probability of Object	0.05	0-1
		Creation		
	PT15	Probability of Reclustering	0.0005 (Cactis)	0-1
			0.001 (ORION)	
			0 (CK)	
		Table 2: Dynamic parameters