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A SURFACE OF DEGREE 24 WITH 1440 SINGULARITIES OF TYPE D4

by

CÉDRIC BONNAFÉ

Abstract. — Using the invariant algebra of the complex reflection group denoted by G32 in
the Shephard–Todd classification, we construct three irreducible surfaces in P3(C) with many
singularities: one of them has degree 24 and contains 1440 quotient singularities of type D4.

Let µD4
(d ) denote the maximal number of quotient singularities of type D4 that an

irreducible projective surface of degree d in P3(C) might have. Miyaoka [Miy] proved
that

µD4
(d ) ¶

16

117
d (d −1)2.

For d = 8, 16 or 24, this reads

µD4
(8) ¶ 53, µD4

(16) ¶ 492 and µD4
(24) ¶ 1736.

The main results of this note are that

(1) µD4
(8) ¾ 44, µD4

(16) ¾ 352 and µD4
(24) ¾ 1440

and that

(2) µD4
(8k ) ¾ 44k 3

for all k ¾ 1. So, let C[x1, x2, x3, x4] be the polynomial ring over C in 4 indeterminates with
its usual grading and let P3(C) = Proj(C[x1, x2, x3, x4]) be the associated projective space of
dimension 3. If f ∈C[x1, x2, x3, x4] is homogeneous, we denote by Z ( f ) the projective hy-
persurface it defines, and by Z ( f )sing its reduced singular locus. If k is a natural number,
we denote by f [k ] the homogeneous polynomial f (x k

1 , x k
2 , x k

3 , x k
4 ). We aim to prove the

following result:

Theorem 1. There exists a homogenous polynomial g of degree 8 such that:
(a) Z (g ) is an irreducible surface of degree 8 in P3(C) with exactly 44 singular points which are

all quotient singularities of type D4.
(b) If k ¾ 1, then Z (g [k ]) is an irreducible surface of degree 8k , whose singular locus has di-

mension 0 and contains at least 44k 3 quotient singularities of type D4.
(c) Z (g [2]) is an irreducible surface of degree 16 with exactly 472 singular points: 24 quotient

singularities of type A1, 96 quotient singularities of type A2 and 352 quotient singularities
of type D4.

(d) Z (g [3]) is an irreducible surface of degree 24 in P3(C) with exactly 1440 singular points
which are all quotient singularities of type D4. The automorphism group ofZ (g [3]) contains
at least 25920 elements and acts transitively on the 1440 singular points.

The author is partly supported by the ANR (Project No ANR-16-CE40-0010-01 GeRepMod).
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The proof relies on extensive MAGMA computations [Magma], and goes as follow. Let

g = x 8
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1 x 2
2 −60x 6

1 x2 x3−60x 6
1 x2 x4−6x 6
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4 .

This is the polynomial of Theorem 1. It has coefficients in Q but note for instance that the
singular points of Z (g ), Z (g [2]) and Z (g [3]) have coordinates in various field extensions
of Q, and most of the singular points are not real (at least in this model). So, let ξ denote
a primitive 24-th root of unity and let ζ = ξ2, ζ4 = ζ3 and ζ3 = ζ4, so that ζ, ζ4 and ζ3 are
roots of unity of order 12, 4 and 3 respectively. Let α be a square root of

18ξ6+14ξ5+48ξ4+2ξ3−36ξ2−14ξ−24.

Let K denote the cyclotomic field Q(ζ) and let L = Q(ξ,α): it is a Galois extension of Q.
We will check that the singular points of Z (g ) and Z (g [3]) are defined over K , while the
singular points of Z (g [2]) are defined over L .

Remark 1. As we will see in the computations below, the polynomial g [3] is invariant un-
der the action of the complex reflection group denoted by G32 in the Shephard–Todd clas-
sification [ShTo]. In fact, we did not find g directly: we found first g [3] by looking at in-
variants of degree 24 of G32, following ideas of Barth [Bar] and Sarti [Sar1], [Sar2], [Sar3]
(for constructing the Barth sextic with 65 nodes and, for instance, the Sarti surface of degree
12 with 600 nodes), who used invariants of Coxeter groups of type H3 and H4. �
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Remark 2. As the expert in computer algebra will notice by reading the MAGMA code
below, the author is not a specialist in programming and asks for some indulgence. �

An important feature of the polynomials g , g [2] and g [3] is that they are invariant
under the action of various linear groups: this will be helpful to treat the big number of
singularities, by separating the various orbits of singular points under their action. Let
W1 be the subgroup of GL4(C) generated by

s1 =







0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 −1






, s2 =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1






and s3 =







1 0 0 0
0 −1 0 0
0 0 0 −1
0 0 −1 0






.

Let W2 be the subgroup of GL4(C) generated by

t1 =







0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 ζ4






, t2 =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 ζ4






and t3







−ζ4 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






.

Finally, let W3 denote the subgroup of GL4(C) generated by

u1 =







1 0 0 0
0 1 0 0
0 0 ζ3 0
0 0 0 1






, u2 =









ζ3+2
3

ζ3−1
3

ζ3−1
3 0

ζ3−1
3

ζ3+2
3

ζ3−1
3 0

ζ3−1
3

ζ3−1
3

ζ3+2
3 0

0 0 0 1









,

u3 =







1 0 0 0
0 a 0 0
0 0 1 0
0 0 0 1






and u4 =









ζ3+2
3

1−ζ3
3 0 1−ζ3

3
1−ζ3

3
ζ3+2

3 0 ζ3−1
3

0 0 1 0
1−ζ3

3
ζ3−1

3 0 ζ3+2
3









.

Proposition 2. If 1 ¶ i ¶ 3, then g [i ] is invariant under the action of Wi .

Commentaries. Let Z(Wi ) denote the center of Wi . In all cases, it is isomorphic to a group
of roots of unity acting by scalar multiplication. Then:
(a) The group W1 has order 48 and is isomorphic to the non-trivial double cover S̃4 of

the symmetric group S4. Hence Aut(Z (g )) contains a subgroup isomorphic to S4.
(b) The group W2 has order 768, contains a normal abelian subgroup H of order 32 and

W2/H ' S4. The group W2/Z(W2) has order 192, is contained in Aut(Z (g [2])), but is
not isomorphic to a Coxeter group of type D4.

(c) The group W3 is the complex reflection group denoted by G32 in the Shephard–Todd
classification (it has order 155920). Recall that the group W3/Z(W3), which is a sub-
group of Aut(Z (g [3])), is a simple group of order 25920, is contained in Aut(Z (g [3])),
and is isomorphic to the derived subgroup of the Weyl group of type E6 (i.e. to the
derived subgroup of the special orthogonal group SO5(F3)). Note that we have used
the form implemented by Michel [Mic] in the Chevie package of Gap3.

It is natural to wonder whether Aut(Z (g [i ])) is actually equal to Wi /Z(Wi ) for i = 1, 2, 3. �

So let us start by defining the polynomial g and the three groups Wi in MAGMA and
checking the facts stated in Proposition 2 and Commentaries. These data, together with
the definition of the fields K and L as well as a function ProjectiveOrbit used for
computing orbits of various points under the action ot the groups Wi , are all contained in
a file g32-article.m, whose content is given in the Appendix. Note that we will first
work with the projective space over Q, and the polynomial g will be defined over Q.
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> load ’g32-article.m’;
>
> Order(W1);
48
> Order(Centre(W1));
2
> bool:=IsIsomorphic(W1/Centre(W1),SymmetricGroup(4));
> bool;
true
> Order(DerivedSubgroup(W1));
24
> gK:=ChangeRing(g,K);
> [gK^i eq gK : i in Generators(W1)];
[ true, true, true ]
>
> Order(W2);
768
> Order(Centre(W2));
4
> g2L:=ChangeRing(g2,L);
> [g2L^i eq g2L : i in Generators(W2)];
[ true, true, true ]
>
> Order(W3);
155520
> Order(W3/Centre(W3));
25920
> IsSimple(W3/Centre(W3));
true
> g3K:=ChangeRing(g3,K);
> [g3K^i eq g3K : i in Generators(W3)];
[ true, true, true, true ]

We now turn to the study of the singularities of the varieties Z (g [i ]) for i ∈ {1, 2, 3}. Note
the following fact, that will be used further:

Lemma 3. If 1 ¶ i < j ¶ 4, then the closed subscheme of P3(C) defined by the ideal 〈g , ∂ g
∂ xi

, ∂ g
∂ x j
〉

has dimension 0.

This is checked thanks to the following code:

> dg:=[Derivative(g,i) : i in [1..4]];
> pairs:=[[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]];
> time [Dimension(Scheme(P3,[g,dg[i[1]],dg[i[2]]])) :
> i in pairs];
[ 0, 0, 0, 0, 0, 0 ]
Time: 20.510 // about 20 seconds

1. Degree 8

Note that the fact that dimZ (g )sing = 0 (see Lemma 3) implies thatZ (g ) is geometrically
irreducible. LetU denote the open subset of P3(C) defined by x1 x2 x3 x4 6= 0. We first check
that Z (g )sing is contained inU .
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> Zg:=Surface(P3,g);
> Zgsing:=SingularSubscheme(Zg);
> H:=Scheme(P3,x1*x2*x3*x4);
> Dimension(Intersection(Zgsing,H));
-1

In particular, all the singular points are contained (for instance) in the affine chart Z (g )aff

defined by “x4 6= 0”. We will make all the remaining computations in this affine chart
(and extend the scalars to the field K ):

> Zgaff:=AffinePatch(Zg,1);
> ZgaffK:=ChangeRing(Zgaff,K);
> ZgaffKsing:=SingularSubscheme(ZgaffK);
> irr1:=IrreducibleComponents(ZgaffKsing);
> irr1:=[ReducedSubscheme(i) : i in irr1];
> Set([Degree(i) : i in irr1]);
{ 1 }
> ZgK:=ChangeRing(Zg,K);
> sings1:=[[Coordinates(i) : i in RationalPoints(j)] :
> j in irr1];
> sings1:=&cat sings1;
> sings1:=[ZgK ! (i cat [1]) : i in sings1];
> # sings1;
44

The result of the command Set([Degree(i) : i in irrg]) shows that all sin-
gular points have coordinate in K , and the last command shows that the number of sin-
gular points in Z (g ) is equal to 44. We then determine the W1-orbits in Z (g )sing and check
that they are all quotient singularities of type D4 by picking up one point in each orbit.

> orbits:=[];
> test:=sings1;
> while (# test) gt 0 do
while> orb:=ProjectiveOrbit(W1,test[1]);
while> orb:=[ZgK ! Coordinates(i) : i in orb];
while> orbits:=orbits cat [orb];
while> test:=[i : i in test | (i in orb) eq false];
while> end while;
> [# i : i in orbits];
[ 24, 8, 12 ]
> for i in orbits do
for> print IsSimpleSurfaceSingularity(i[1]);
for> end for;
true D 4
true D 4
true D 4

This concludes the proof of statement (a) of Theorem 1. As a consequence of the above
computations, the group W1 does not act transitively on the set of singular points (it
admits 3 orbits, of respective length 8, 12 and 24). Note that the points in the W1-orbit
of cardinality 8 are the only real singular points of Z (g ). Figure 1 shows part of the real
locus of Z (g ).
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FIGURE 1. Part of the real locus of Z (g )

2. Degree 8k

Let U denote the open subset of P3(C) defined by x1 x2 x3 x4 6= 0 and let σk : P3(C) →
P3(C), [x1; x2; x3; x4] 7→ [x k

1 , x k
2 , x k

3 , x k
4 ]. The restriction of σk to a morphism U →U is an

étale Galois covering, with group (µk )
4/∆µk (here, µk denotes the group of k -th roots of

unity in C× and ∆ :µk ,→ (µk )
4 is the diagonal embedding). We have Z (g [k ]) =σ∗k (Z (g )).

Let us first prove that Z (g [k ]) is irreducible. We may assume that k ¾ 2, as the result
has been proved for k = 1 in the previous section. Recall that

∂ g [k ]
∂ xi

= k x k−1
i (

∂ g

∂ xi
◦σk ),

so the singular locus of Z (g [k ]) is contained in

{p1, p2, p3, p4}∪
�⋃

i 6= j

σ∗k (Zi , j )
�

,

where pi = [δi 1;δi 2;δi 3;δi 4] (and δi j is the Kronecker symbol) and Zi , j is the subscheme
of P3(C) defined by the ideal 〈g , ∂ g

∂ xi
, ∂ g
∂ x j
〉 (and which has dimension 0 by Lemma 3). Since

σk is finite, this implies that Z (g [k ])sing has dimension 0, so Z (g [k ]) is irreducible.
Now, as σk :U →U is étale and the singular locus of Z (g ) is contained in U (see the

command Dimension(Intersection(Zgsing,H)) of the previous section), the
44 singularities of Z (g ) give 44k 3 singularities in Z (g [k ]) of the same type, i.e. quotient
singularities of type D4. This proves the statement (b) of Theorem 1.

Note that, for k = 2, 3 and 4 (and maybe for bigger k ) we will prove in the next sections
that Z (g [k ]) contains singular points outside ofU .

3. Degree 16

Using the morphism σ2 defined in the previous section and the fact that it is étale over
U , we get that Z (g [2])∩U has exactly 352 singular points, which are all quotient singu-
larities of type D4. We now need to determine the singularities which are not contained
inU . So letH be the complement ofU in P3(C).
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> Zg2:=Surface(P3,g2);
> Zg2sing:=SingularSubscheme(Zg2);
> H:=Scheme(P3,x1*x2*x3*x4);
> Zg2singH:=Intersection(Zg2sing,H);
> time Zg2singH:=ReducedSubscheme(Zg2singH);
Time: 11.300
> irr2H:=IrreducibleComponents(Zg2singH);
> # irr2H;
18
> Set([Degree(i) : i in irr2H]);
{ 4, 8 }
> &+ [Degree(i) : i in irr2H];
120

The last two commands show that Z (g )sing ∩H contains 120 points. We now check that
all the singular points contained inH have coordinates in L :

> Zg2L:=ChangeRing(Zg2,L);
> sings2H:=[[Coordinates(i) :
> i in RationalPoints(ChangeRing(j,L))] :
> j in irr2H];
> sings2H:=&cat sings2H;
> sings2H:=[Zg2L ! i : i in sings2H];
> # sings2H;
120

We now determine the W2-orbits in Z (g )sing ∩H : there is one W2-orbit of cardinality 24
(and we check that its elements are quotient singularities of type A1) and one of cardinal-
ity 96.

> orbits2:=[];
> test:=sings2H;
> W2L:=ChangeRing(W2,L);
> while (# test) gt 0 do
while> orb:=ProjectiveOrbit(W2L,test[1]);
while> orb:=[Zg2L ! Coordinates(i) : i in orb];
while> orbits2:=orbits2 cat [orb];
while> test:=[i : i in test | (i in orb) eq false];
while> end while;
> [# i : i in orbits2];
[ 24, 96 ]
> IsSimpleSurfaceSingularity(orbits2[1][1]);
true A 1

We now study the singularity of Z (g [2]) at the points of the orbit of cardinality 96. It
turns out that that the command IsSimpleSurfaceSingularity takes too much
time to get a conclusion, so we will investigate properties of the equation of Z (g [2]) in
a neighborhood of the first point p (in Magma list orbits[2]). We work in the affine
chart x3 6= 0 (where p = [ξ1;ξ2;ξ3;ξ4] lives), and we denote by (x , y , z ) the coordinates of
the affine chart x3 6= 0 equal to (x1/x3+ξ1/ξ3, x2/x3+ξ2/ξ3, x4/x3+ξ4/ξ3) and we set

f (x , y , z ) = g [2](x , y , 1, z ).

If j ¾ 0, we denote by f j the homogeneous component of f of degree j . As p ∈Z (g [2])sing,
we have f0 = f1 = 0.
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FIGURE 2. Part of the real locus of Z (g [2])

> p:=orbits2[2][1];
> A3L<x,y,z>:=AffineSpace(L,3);
> cop:=Coordinates(p);
> f:=Evaluate(g2L,[x+cop[1],y+cop[2],1,z+cop[4]]);
> cof:=Coefficients(f);
> mof:=Monomials(f);
> l:=# mof;
> f2:=&+ [cof[i]*mof[i] : i in [1..l] |
> Degree(mof[i]) eq 2];
> f2:=f2/Reverse(Coefficients(f2))[1];
> f2;
> Factorization(f2-z^2);
[

<x + (3*xi^7 + 4*xi^5 + xi^3 - xi)*y, 2>
]

The last command shows that there exists a linear change of the coordinates (x , y , z ) 7→
(X , Y , Z ) such that f2 might be transformed into X 2 + Z 2. By standard arguments, this
proves that p is a quotient singularity of type Ak , for some k ¾ 2, which can be obtained
as the Milnor number of f : however, Magma cannot compute this Milnor number in
a reasonable amount of time and we need to copy the polynomial f in the software
Singular [DGPS] to compute this Milnor number (!): we obtain 2. So p is a quotient
singularity of type A2. This completes the proof of statement (c) of Theorem 1.

Figure 2 shows part of the real locus of Z (g ).

4. Degree 24

We now come to the surface Z (g [3]). From Section 2, we know that Z (g [3])sing ∩U
contains 44×33 = 1188 singular points, which are all quotient singularities of type D4. Let
us compute Z (g [3])sing ∩H :

> Zg3:=Surface(P3,g3);
> Zg3sing:=SingularSubscheme(Zg3);
> Zg3singH:=Intersection(Zg3sing,H);
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FIGURE 3. Part of the real locus of Z (g [3])

> time Zg3singH:=ReducedSubscheme(Zg3singH);
Time: 19.320
> time irr3H:=IrreducibleComponents(Zg3singH);
Time: 18.170
> # irr3H;
72
> Set([Degree(i) : i in irr3H]);
{ 2, 4 }
> &+ [Degree(i) : i in irr3H];
252

The last command shows thatZ (g [3])sing∩H contains 252 points. We now show that they
are all defined over K :

> Zg3K:=ChangeRing(Zg3,K);
> sings3H:=[[Coordinates(i) :
> i in RationalPoints(ChangeRing(j,K))] :
> j in irr3H];
> sings3H:=&cat sings3H;
> sings3H:=[Zg3K ! i : i in sings3H];
> # sings3H;
252

So Z (g [3])sing contains 1440 points, and we now check that W3 acts transitively on them:

> p:=sings3H[1];
> time # ProjectiveOrbit(W3,p);
1440
Time: 29.850

The proof of statement (d) of Theorem 1 is complete. Note also that, in the given model,
the surface Z (g [3]) has only 32 real singular points: Figure 3 gives partial views of its real
locus.
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Remark 3. From Section 2, we deduce that Z (g [4])sing has 2816 quotient singularities of
type D4 lying in the open subset U and it can be checked that it has 480 other singular
points lying inH , for which we did not determine the type. �

Remark 4. After investigations in the invariant rings of several complex reflection groups,
we have also been able to construct curves with many singularities. For example:
• Using the reflection group W =G24, we have obtained a cuspidal curve of degree 14

in P2(C)with exactly 42 cusps (all lying in a single W -orbit). Note that W /Z(W ) has
order 168 and is isomorphic to GL3(F2).
• Using the reflection group W =G26, we have obtained a curve of degree 18 in P2(C)

with 72 cusps and 12 nodes (these are the two W -orbits of singular points). Note
that W /Z(W ) has order 216.

Also, other singular surfaces have been obtained. For example:
• Using the reflection group W = G29 (note that W /Z(W ) has order 1920), we have

obtained:
- a surface of degree 8 in P3(C) with 160 nodes, all belonging to the same W -

orbit. Recall that the Endraß octic [End] has degree 8 and 168 nodes (and its
automorphism group has order 16) while the Sarti octic [Sar1] has 144 nodes.

- a surface of degree 8 in P3(C) with 20 singular points of multiplicity 3 and
Milnor number 11, all belonging to the same W -orbit.

• Using the reflection group W = G31 (note that W /Z(W ) has order 11520), we have
obtained a surface of degree 20 in P3(C) with 1920 nodes, all lying in the same W -
orbit. Recall that the Chmutov surface [Chm] of degree 20 has 2926 nodes.

Details will appear in a forthcoming paper. �
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Appendix

This appendix gives a copy of the file g32-article.m loaded at the beginning of
the computations. It contains the data of the polynomial g , the fields K and L , the three
groups Wi and the function ProjectiveOrbit which is used throughout the compu-
tations (it is certainly not the most efficient code, but it is sufficient for our purpose). Note
that W1 and W3 are defined over the field K , while W2 is defined over the field L .

Q:=RationalField();
P3<x1,x2,x3,x4>:=ProjectiveSpace(Q,3);
K<zeta>:=CyclotomicField(12);
zeta3:=zeta^4;
P3K:=ProjectiveSpace(K,3);
K24<xi>:=CyclotomicField(24);
zeta4:=xi^6;
POL<T>:=PolynomialRing(K24);
L<alpha>:=NumberField(T^2-(18*xi^6 + 14*xi^5
+ 48*xi^4 + 2*xi^3 - 36*xi^2 - 14*xi - 24));

P3L:=ProjectiveSpace(L,3);
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g:=x1^8 - 6*x1^6*x2^2 - 60*x1^6*x2*x3
- 60*x1^6*x2*x4 - 6*x1^6*x3^2 + 60*x1^6*x3*x4
- 6*x1^6*x4^2 + 2240*x1^5*x2^2*x3
- 2240*x1^5*x2^2*x4 + 2240*x1^5*x2*x3^2
- 2240*x1^5*x2*x4^2 + 2240*x1^5*x3^2*x4
- 2240*x1^5*x3*x4^2 - 14*x1^4*x2^4
+ 10180*x1^4*x2^3*x3 + 10180*x1^4*x2^3*x4
+ 40412*x1^4*x2^2*x3^2 - 23440*x1^4*x2^2*x3*x4
+ 40412*x1^4*x2^2*x4^2 + 10180*x1^4*x2*x3^3
+ 23440*x1^4*x2*x3^2*x4 + 23440*x1^4*x2*x3*x4^2
+ 10180*x1^4*x2*x4^3 - 14*x1^4*x3^4
- 10180*x1^4*x3^3*x4 + 40412*x1^4*x3^2*x4^2
- 10180*x1^4*x3*x4^3 - 14*x1^4*x4^4
+ 10180*x1^3*x2^4*x3 - 10180*x1^3*x2^4*x4
+ 111980*x1^3*x2^3*x3^2 - 111980*x1^3*x2^3*x4^2
+ 111980*x1^3*x2^2*x3^3 - 111980*x1^3*x2^2*x4^3
+ 10180*x1^3*x2*x3^4 - 10180*x1^3*x2*x4^4
+ 10180*x1^3*x3^4*x4 - 111980*x1^3*x3^3*x4^2
+ 111980*x1^3*x3^2*x4^3 - 10180*x1^3*x3*x4^4
- 6*x1^2*x2^6 + 2240*x1^2*x2^5*x3 + 2240*x1^2*x2^5*x4
+ 40412*x1^2*x2^4*x3^2 + 23440*x1^2*x2^4*x3*x4
+ 40412*x1^2*x2^4*x4^2 + 111980*x1^2*x2^3*x3^3
+ 111980*x1^2*x2^3*x4^3 + 40412*x1^2*x2^2*x3^4
+ 154704*x1^2*x2^2*x3^2*x4^2 + 40412*x1^2*x2^2*x4^4
+ 2240*x1^2*x2*x3^5 - 23440*x1^2*x2*x3^4*x4
- 23440*x1^2*x2*x3*x4^4 + 2240*x1^2*x2*x4^5
- 6*x1^2*x3^6 - 2240*x1^2*x3^5*x4
+ 40412*x1^2*x3^4*x4^2 - 111980*x1^2*x3^3*x4^3
+ 40412*x1^2*x3^2*x4^4 - 2240*x1^2*x3*x4^5
- 6*x1^2*x4^6 - 60*x1*x2^6*x3 + 60*x1*x2^6*x4
+ 2240*x1*x2^5*x3^2 - 2240*x1*x2^5*x4^2
+ 10180*x1*x2^4*x3^3 - 23440*x1*x2^4*x3^2*x4
+ 23440*x1*x2^4*x3*x4^2 - 10180*x1*x2^4*x4^3
+ 10180*x1*x2^3*x3^4 - 10180*x1*x2^3*x4^4
+ 2240*x1*x2^2*x3^5 + 23440*x1*x2^2*x3^4*x4
- 23440*x1*x2^2*x3*x4^4 - 2240*x1*x2^2*x4^5
- 60*x1*x2*x3^6 + 23440*x1*x2*x3^4*x4^2
- 23440*x1*x2*x3^2*x4^4 + 60*x1*x2*x4^6 - 60*x1*x3^6*x4
- 2240*x1*x3^5*x4^2 + 10180*x1*x3^4*x4^3
- 10180*x1*x3^3*x4^4 + 2240*x1*x3^2*x4^5
+ 60*x1*x3*x4^6 + x2^8 - 6*x2^6*x3^2 - 60*x2^6*x3*x4
- 6*x2^6*x4^2 - 2240*x2^5*x3^2*x4 - 2240*x2^5*x3*x4^2
- 14*x2^4*x3^4 + 10180*x2^4*x3^3*x4
+ 40412*x2^4*x3^2*x4^2 + 10180*x2^4*x3*x4^3
- 14*x2^4*x4^4 - 10180*x2^3*x3^4*x4
- 111980*x2^3*x3^3*x4^2 - 111980*x2^3*x3^2*x4^3
- 10180*x2^3*x3*x4^4 - 6*x2^2*x3^6 + 2240*x2^2*x3^5*x4
+ 40412*x2^2*x3^4*x4^2 + 111980*x2^2*x3^3*x4^3
+ 40412*x2^2*x3^2*x4^4 + 2240*x2^2*x3*x4^5 - 6*x2^2*x4^6
+ 60*x2*x3^6*x4 - 2240*x2*x3^5*x4^2 - 10180*x2*x3^4*x4^3
- 10180*x2*x3^3*x4^4 - 2240*x2*x3^2*x4^5 + 60*x2*x3*x4^6
+ x3^8 - 6*x3^6*x4^2 - 14*x3^4*x4^4 - 6*x3^2*x4^6 + x4^8;
g2:=Evaluate(g,[x1^2,x2^2,x3^2,x4^2]);
g3:=Evaluate(g,[x1^3,x2^3,x3^3,x4^3]);
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s1:=Matrix(K,4,4,
[[ 0, 1, 0, 0],
[ 1, 0, 0, 0],
[ 0, 0, 1, 0],
[ 0, 0, 0, -1]]);

s2:=Matrix(K,4,4,
[[ 1, 0, 0, 0],
[ 0, 0, 1, 0],
[ 0, 1, 0, 0],
[ 0, 0, 0, -1]]);

s3:=Matrix(K,4,4,
[[ 1, 0, 0, 0],
[ 0, -1, 0, 0],
[ 0, 0, 0, -1],
[ 0, 0, -1, 0]]);

W1:=MatrixGroup<4,K | [s1,s2,s3]>;

t1:=Matrix(L,4,4,
[[ 0, 1, 0, 0],
[ 1, 0, 0, 0],
[ 0, 0, 1, 0],
[ 0, 0, 0, zeta4]]);

t2:=Matrix(L,4,4,
[[ 1, 0, 0, 0],
[ 0, 0, 1, 0],
[ 0, 1, 0, 0],
[ 0, 0, 0, zeta4]]);

t3:=Matrix(L,4,4,
[[-zeta4, 0, 0, 0],
[ 0, 1, 0, 0],
[ 0, 0, 0, 1],
[ 0, 0, 1, 0]]);

W2:=MatrixGroup<4,L | [t1,t2,t3]>;

u1:=Matrix(K,4,4,
[ [ 1, 0, 0, 0 ],
[ 0, 1, 0, 0 ],
[ 0, 0, zeta3, 0 ],
[ 0, 0, 0, 1 ]]);

u2:=Matrix(K,4,4,
[ [(zeta3+2)/3, (zeta3-1)/3, (zeta3-1)/3, 0 ],
[(zeta3-1)/3, (zeta3+2)/3, (zeta3-1)/3, 0 ],
[(zeta3-1)/3, (zeta3-1)/3, (zeta3+2)/3, 0 ],
[ 0, 0, 0, 1 ]]);

u3:=Matrix(K,4,4,
[ [ 1, 0, 0, 0 ],
[ 0, zeta3, 0, 0 ],
[ 0, 0, 1, 0 ],
[ 0, 0, 0, 1 ]]);

u4:=Matrix(K,4,4,
[ [(zeta3+2)/3,(1-zeta3)/3, 0,(1-zeta3)/3 ],
[(1-zeta3)/3,(zeta3+2)/3, 0,(zeta3-1)/3 ],
[ 0, 0, 1, 0 ],
[(1-zeta3)/3,(zeta3-1)/3, 0,(zeta3+2)/3 ]]);
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W3:=MatrixGroup<4,K | [u1,u2,u3,u4]>;

// ProjectiveOrbit computes orbit of
//points in projective space

ProjectiveOrbit:=function(grp,pt)
local i,j,res,v,w,V,PROJ,grpmod,zgrp;

zgrp:=Centre(grp);
zgr:=[w : w in zgrp | IsScalar(w)];
zgrp:=sub<grp | zgrp>;
grpmod:=Transversal(grp,zgrp);
V:=VectorSpace(grp);
PROJ:=AmbientSpace(Scheme(pt));
v:=V ! Coordinates(pt);
res:=[PROJ ! Coordinates(V,v*Transpose(w)) : w in grp];
return [i : i in Set(res)];

end function;
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