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Introduction

Deep learning (see [START_REF] Lecun | Deep learning[END_REF] for a review) is currently the state of the art of many intelligence artificial applications. Yet, deep learning performances are plagued by adversarial examples (see [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF][START_REF] Papernot | The limitations of deep learning in adversarial settings[END_REF][START_REF] Szegedy | Intriguing properties of neural networks[END_REF] as samples of adversarial example literature). At test time, it is possible to design a specific invisible/marginal perturbation such as a targeted network eventually predicts different outputs on original and disturbed input. This threat is worsen as producing adversarial examples does not require to have access to the internal structure of the network [START_REF] Narodytska | Simple black-box adversarial attacks on deep neural networks[END_REF] and can have physical implementation [START_REF] Kurakin | Adversarial examples in the physical world[END_REF].

In addition, an other issue is the lack of global smoothness of deep network, typically linked to Lispchitz constant of the network, and, not just to local smoothness which is strengthen by adversarial defences. Thus, quite orthogonally with the very large effort of the community on adversarial defence (e.g. [START_REF] Zhang | Theoretically principled trade-off between robustness and accuracy[END_REF][START_REF] Wong | Provable defenses against adversarial examples via the convex outer adversarial polytope[END_REF][START_REF] Shaham | Understanding adversarial training: Increasing local stability of supervised models through robust optimization[END_REF]), this paper focus on Lispchitz related penalty like [START_REF] Peter L Bartlett | Spectrallynormalized margin bounds for neural networks[END_REF][START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF]. Now, most Lispchitz related methods only measures their effects with accuracy i.e. global smoothness is measured as a way to reduce overfitting. But, there is no trivial link between smoothness (model dependant) and overfitting (model and data dependant). Instead, this paper offers as framework to measure Lispchitz penalty effect by accuracy under stress (including adversarial attack but not only) i.e. global smoothness is measured as a way to increase local smoothness (even if adversarial defence are obviously a more straightforward way to do so for small perturbation).

In contrast, this paper presents remote sensing experiments (object detection and image segmentation on remote sensing datasets) which shows consistently that the offered Lispchitz related penalty increases performance under stress while being related to the global smoothness of the network (an not just local smoothness).

In this paper, the focus is given to remote sensing applications. On one hand, remote sensing image can not be hacked like social network images (by modifying encoding), or, autonomous driving images (by hacking traffic signs). But, on the other hand, remote sensing system should deal with large illumination changes, death pixels, atmospheric blur, and, camouflage which is totally an adversarial attack. Also, many remote sensing applications like car counting, or, image based smart farming are currently waiting certification framework to be used in real life while autonomous driving may require more time. And, such framework will probably include robustness evaluation.

So, the contributions of this paper are:

• it offers a new Lispchitz related penalty

• which is evaluated as a way to increase performances under stress i.e. to increase local smoothness and not to reduce overfitting

• using a toolbox (made public) for stress evaluation including both adversarial attack (typically Fast gradient sign method (FGSM) [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF]), and, common perturbation (a subset of [START_REF] Hendrycks | Benchmarking neural network robustness to common corruptions and perturbations[END_REF])

• the consistent trend of our remote sensing experiments is that this new penalty term increases performance under stress

The new penalty term is presented in section 3 after related works of section 2. Experiments are presented in section 4 before conclusion.

2 Related works

Stress test and adversarial defence

Definition of dependable evaluation is not that clear. Two theoretical dead end forbids a formal dependable evaluation: without a formal definition of the task, formal proof of correctness is impossible (typically [START_REF] Katz | Reluplex: An efficient smt solver for verifying deep neural networks[END_REF] can prove some property but it can prove nothing about accuracy on unknown samples), and, all classifiers are equally bad averaged on all classification problem [START_REF] David | The lack of a priori distinctions between learning algorithms[END_REF].

So dependable evaluation should have something to do with very large testing datasets. But, very large datasets are expensive to collect. Thus, more realistically, dependable evaluation will be related to middle size testing datasets augmented to be stress tests (and simulation, plus, formal property which are out of the scope of this paper).

Typically, [START_REF] Hendrycks | Benchmarking neural network robustness to common corruptions and perturbations[END_REF] offers a toolbox to augment testing data with agnostic perturbations, and shows that classical network performs poorly on these augmented data. This toolbox could obviously be combined by adversarial attack like FGSM. Now, high performance under stress can be straightforwardly achieves by local smoothness typically obtained by considering state of the art of adversarial defence, but also, by global smoothness typically related to Lispchitz constant.

Most classical adversarial defence is adversarial training [START_REF] Shaham | Understanding adversarial training: Increasing local stability of supervised models through robust optimization[END_REF] i.e. training on data plus adversarial data. An emerging way is [START_REF] Wong | Provable defenses against adversarial examples via the convex outer adversarial polytope[END_REF] where network output is optimized to be absolutely stable around each training point allowing mathematical guarantee. A soft version of [START_REF] Wong | Provable defenses against adversarial examples via the convex outer adversarial polytope[END_REF] is [START_REF] Zhang | Theoretically principled trade-off between robustness and accuracy[END_REF] where the guarantee on robustness is relaxed to allow a training closer to classical training with a simpler trade off between robustness, and, (training) accuracy.

However, none of these methods is designed to increase global smoothness of the network. This global smoothness is more related to Lispchitz constant.

Lispchitz methods

A function f from R I in R J is said K Lipschitz for a norm ||.||I and ||.||J if ∀x, y ∈ R D , ||f (x) -f (y)||J ≤ K||x -y||I .
As continuous, piecewise infinitely derivable function, relu based deep network are K Lipschitz function. So, naively, deep network could be expected to be smooth function. However both K and I can be very large: K is estimated to by higher than 50000 for first Alexnet layers in L2 norm [START_REF] Szegedy | Intriguing properties of neural networks[END_REF] while I = 227×227×3. So, modifying each pixel value a an input image just by 1 can lead to a 7729350000 gap from the original likelihood produced by Alexnet on this image. Thus, to be really smooth, deep network should have a much more lower Lipschitz coefficient (LC).

Different penalties have been offered in literature to tackle this issue including L2 penalty, spectral penalty [START_REF] Peter L Bartlett | Spectrallynormalized margin bounds for neural networks[END_REF] or gradient penalty [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF]. This penalties are usually added to classical binary cross entropy loss. More formally, let x be input image, y the corresponding ground truth, f the network with θ the current weights, and, hence, f (x, θ) the probability produced by the network. Then, the total loss is l(x, y, θ) = BCE(f (x, θ), y) + λR(f, x, θ) with BCE the binary cross entropy and R the regularity function (e.g. ||θ|| or other). Weights θ of the network are then updated using stochastic gradient descent approach i.e. following the gradient ∇ θ l(x, y, θ).

As measuring the global smoothness of the network is not straightforward, most evaluations of these methods were focused on accuracy i.e. these regularisation losses have been used as a way to control overfitting. In this paper, the evaluation is instead focused on accuracy under stress. Indeed, as global smoothness should imply a relative local smoothness, evaluating accuracy under stress seems more relevant than overfitting reduction which is not directly related to robustness.

Applications

Soon after deep learning becomes the state of the art of image classification with Alexnet [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF], deep learning object detector appear with [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF] and immediately outperforms previous state of the art in object detection (like [START_REF] Felzenszwalb | A discriminatively trained, multiscale, deformable part model[END_REF]).

Since [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF], a large number of deep learning detectors have been designed. Most salient deep detectors are [START_REF] Shaoqing Ren | Faster R-CNN: Towards real-time object detection with region proposal networks[END_REF] which improves [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF] but using deep learning box proposal instead of static one, [START_REF] Redmon | You only look once: Unified, real-time object detection[END_REF] which directly predicts boxes from a dense feature map, then extended by [START_REF] Liu | Ssd: Single shot multibox detector[END_REF] which offers a better way to encode boxes score in feature map. Alternatively, detection can also be extracted from semantic segmentation map when object does not overlap. This segment before detect paradigm is widely used in remote sensing [START_REF] Audebert | Segmentbefore-detect: Vehicle detection and classification through semantic segmentation of aerial images[END_REF].

Segmentation is independently an other task where networks outperforms previous state of the art since [START_REF] Lagrange | Benchmarking classification of earthobservation data: From learning explicit features to convolutional networks[END_REF]. Typical structure for image segmentation is UNet [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF].

Both these tasks can found tremendous applications in remote sensing which are usually non critical applications. This way, such remote sensing applications may be the first real life industrial application of deep learning (excluding multimedia applications). This is why this paper focus on remote sensing applications (see datasets).

Batch centred Lispchitz regularization

This section describes the offered new Lispchitz regularization and difference with previous Lispchitz regularizations.

L2 weight penalty is the easiest way to lower LC, but, controlling of the regularisation is hard as all weights of all layers are considered equally. Spectral penalty takes advantages of the layered structure of the network. However, as pointed by [START_REF] Huster | Limitations of the lipschitz constant as a defense against adversarial examples[END_REF], product of each layer spectral norm is a very loose bound of LC. Finally, penalizing gradient norm (according to inputs not weights i.e. ||∇xf (x)||) has the advantage to estimate the real LC, but, only locally around each point on with the gradient is computed (and with the disadvantage of requiring second order derivatives).

Also, penalizing gradient norm is usually done on the loss: training tries to make the loss more Lispchitz. But this is problematic as loss is compute after softmax.

Instead in this paper, the objective is to make only the features more Lispchitz -neither the classifier (e.g. three last layers) neither the loss. So, network f is decomposed into an encoder g and a classifier h with weights θ being decomposed into φ, ψ, likelihood on input x is then g(h(x, φ), ψ) and loss on this sample (associated with y ground truth) is l(x, y, φ, ψ) = BCE(g(h(x, φ), ψ), y) + λ||∇xh(x, φ)|| where ||∇xh(x, φ)|| design the sum of ||∇xhi(x, φ)|| for all components i.

In practice, framework (like pytorch or tensorflow) allows to compute scalar function loss but does not allow to share the graph of derivative making it intractable to compute the sum over i of individual gradient. Yet, this paper offers to compute a batch centred Lispchitz regularization: ∇x h(x) -h ref is computed with h ref being the average of h(x) on the batch.

Experiments

Setting

Experiments have been conducted on a public remote sensing datasets of object detection and segmentation.

To evaluate performance under stress a toolbox similar to [START_REF] Hendrycks | Benchmarking neural network robustness to common corruptions and perturbations[END_REF] has been developed for detection context. Also, this toolbox contains adversarial noise (implemented by FGSM).

For detection, following [START_REF] Chan-Hon-Tong | Object detection in remote sensing images with center only[END_REF], task considered is center object detection. A distance of 1 meter is set to allow a predicted center to be matched with a ground truth center. Then, prediction and ground truth are matched like in classical detection. Performance is summarized by the g score (product of recall and precision). 3 datasets are used for detection: ISPRS POTSDAM1 , VEDAI [START_REF] Razakarivony | Vehicle detection in aerial imagery: A small target detection benchmark[END_REF], and the GDRSS DFC data fusion contest 2015 [START_REF] Lagrange | Benchmarking classification of earthobservation data: From learning explicit features to convolutional networks[END_REF].

Dataset are resized in order to provide a large range of resolution: VEDAI is used with little resizing such that a car is contained into a 32x32 box, DFC2015 is resized such that a car is contained into a 48x48 box, and, finally, POTSDAM is slightly resized such that a car is contained into a 64x64 box. Obviously, performance are expected to increase with the resolution (this will be the case).

For segmentation, performance is measured by the straightforward overall accuracy on the same datasets except VEDAI where no labelling is available.

Detector are based on SSD [START_REF] Liu | Ssd: Single shot multibox detector[END_REF] but adapted to center regression. Core of the detector are both VGG and Resnet like in [START_REF] Liu | Ssd: Single shot multibox detector[END_REF]. For segmentation, UNet is straightforwardly considered.

Results

All regularisation losses are evaluated with the same pipeline. However, on these datasets, L2 weight penalty has no impact on the performance except for large λ for which it makes all weights collapsing to 0 (leading to a very poor result) Spectral regularity exhibits a very strong numerical instability. Also, standard gradient penalty [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF] tends to degrade the performances (with and without stress). The fact that these methods to have such negative impact is quite surprising. For [START_REF] Arjovsky | Wasserstein generative adversarial networks[END_REF] which is very close to our method, it may be due to the softmax (it penalizes after softmax and here it is penalize before independently from the label). Either, these methods are not adapted to this remote sensing context, or, this paper may have too naively implement these (despite λ which balances BCE loss and regularity loss is optimized on a grid). So, no conclusion will be stated for them. Now, an interesting result is comparison of performance with and without our regularity. Indeed, the main result of this paper is that the offered gradient regularisation mitigated the drop of performances caused by stress consistently across all datasets, tasks and networks. Raw performance are given as reference to measure this drop (see tabular 1). Most striking results is in table 2: native model are very sensitive to FGSM, and, performance under two FGSM steps are very low compared to performances on raw data. Yet, adding the offered regularization moderate this drop. Regularized algorithms eventually outperform their raw version by average 5% (g-score for detection, accuracy for segmentation). Off course, adversarial training may be even more efficient, but, here the regularisation is linked to global smoothness of the network, not just local.
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An other striking results is in table 3: image are noised by a strong Gaussian noise (variance is 512). Again, performances drop, but, this drop is mitigated by regularisation. Let stress that, as, performance is measured in g-score in detection, it can even increase with noise by increasing precision and/or ratio between precision and recall. Typically, on VEDAI, performances often increase with agnostic noise (never observed for adversarial noise). This phenomenons is not seen in segmentation as accuracy is much more smooth metric. On this last experiment, it is not clear at all to known if common adversarial training and/or certified defense based polytop would have been effective in front of such large x axis is level of Gaussian noise. y axis is gscore.

Conclusion

This article focuses on object detection performance under stress, and, benchmark different kind of regularization theoretically expected to make the detector more Lipschitz. On three public remote sensing datasets, performances under stress on detection/segmentation are increased by using batch based gradient norm penalty. Such kind of regularisation are a way to advance on safety issue raise by deep learning detector.

However, as perspective, our result is far from closing this issue. First, such experiment should be reproduced in more large datasets, and, mainly, performance under stress still heavily decreases with stress level (even if this drop is much slower with regularisation than without). An other serious point is that, in our experiment, the more an algorithm is efficient on raw data, the more it tend to be sensitive to noise (typically performance without noise are higher on POTSDAM than on VEDAI, but, the drop of performance with noise is higher too on POTSDAM compared to VEDAI).
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 3 Figure 3: Performances vs level of Gaussian noise.x axis is level of Gaussian noise. y axis is gscore.

Table 1 :

 1 Performances on raw data (without noise). On raw data, performance are quite similar with or without regularisation (a little less when adding regularisation), and, consistent with the literature. Performances are measured in g-score in detection for SSD (based on VGG and RESNET) -accuracy in segmentation for UNET.
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Table 2 :

 2 Performances after 2 steps of FGSM. Adding regularization greatly moderate the performance drop caused by two step of FGSM attack compared to raw training. Performances are measured in g-score in detection for SSD (based on VGG and RESNET) -accuracy in segmentation for UNET (no available for VEDAI).
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Figure 1: Performances vs steps of FGSM. x axis is number of steps of FGSM. y axis is gscore.

amplitude Gaussian noise while global smoothness offers some protection.

More detailed results are quantified in following figures (all raw results including variance estimation on several training are available on the github) which print performance for detection algorithms on the 3 datasets for Gaussian, black-white and adversarial noise (see figures 1, 2, 3). x axis is the level of noise: step of FGSM, percentage of dead pixel or Gaussian variance level (variance is proportionnal to square of level). y axis is the performance.
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Figure 2: Performances vs percentage of dead pixels.

x axis is percentage of dead pixel. y axis is gscore.