
HAL Id: hal-01773131
https://hal.science/hal-01773131v2

Submitted on 18 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On complete monotonicity of linear combination of finite
psi functions

Bai-Ni Guo, Feng Qi

To cite this version:
Bai-Ni Guo, Feng Qi. On complete monotonicity of linear combination of finite psi functions. Commu-
nications of the Korean Mathematical Society, 2019, 34 (4), pp.1223–1228. �10.4134/CKMS.c180430�.
�hal-01773131v2�

https://hal.science/hal-01773131v2
https://hal.archives-ouvertes.fr


Commun. Korean Math. Soc. 34 (2019), No. 4, pp. 1223–1228

https://doi.org/10.4134/CKMS.c180430

pISSN: 1225-1763 / eISSN: 2234-3024

ON COMPLETE MONOTONICITY OF LINEAR

COMBINATION OF FINITE PSI FUNCTIONS

Bai-Ni Guo and Feng Qi

Reprinted from the

Communications of the Korean Mathematical Society

Vol. 34, No. 4, October 2019

c©2019 Korean Mathematical Society



Commun. Korean Math. Soc. 34 (2019), No. 4, pp. 1223–1228

https://doi.org/10.4134/CKMS.c180430

pISSN: 1225-1763 / eISSN: 2234-3024

ON COMPLETE MONOTONICITY OF LINEAR
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Bai-Ni Guo and Feng Qi

Abstract. In the paper, the authors supply complete monotonicity of

linear combination of finite psi functions and extend some known results.

1. Preliminaries

It is well-known [1, 12, 14] that the classical gamma function Γ(z) can be
defined by

Γ(z) =

∫ ∞
0

tz−1e−t d t, <(z) > 0

or by

Γ(z) = lim
n→∞

n!nz∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }

and that the logarithmic derivative

ψ(z) = [ln Γ(z)]′ =
Γ′(z)

Γ(z)

is called the psi or digamma function.
From [11, Chapter XIII], [30, Chapter 1], and [31, Chapter IV], we recall

that an infinitely differentiable and nonnegative function f(x) is said to be
completely monotonic on an interval I if and only if

(−1)m−1f (m−1)(x) ≥ 0

for all m ∈ N and x ∈ I. The Bernstein–Widder theorem [31, p. 161, Theo-
rem 12b] states that a necessary and sufficient condition for f(x) to be com-
pletely monotonic on (0,∞) is that

f(x) =

∫ ∞
0

e−xt dµ(t)
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for x ∈ (0,∞), where µ is non-decreasing and the above integral converges. In
other words or simply speaking, a function is completely monotonic on (0,∞)
if and only if it is a Laplace transform.

2. Motivations

In [2, Theorem 4.1], it was obtained that, if ak and bk for 1 ≤ k ≤ m satisfy
a1 ≥ a2 ≥ · · · ≥ am and b1 ≥ b2 ≥ · · · ≥ bm > 0, then

φ0(x) =

m∑
k=1

akψ(bkx)

is completely monotonic on (0,∞) if and only if

m∑
k=1

ak = 0 and

m∑
k=1

ak ln bk ≥ 0.

In [8, Lemma 2.1], the function φ0(x) was extended as

φδ(x) =

m∑
k=1

akψ(bkx+ δ)

for x > 0 and δ ≥ 0 and it was acquired that, if a1 ≥ a2 ≥ · · · ≥ am and
b1 ≥ b2 ≥ · · · ≥ bm ≥ 0 such that

∑m
k=1 ak ≥ 0, then, when δ ≥ 1

2 , the
first derivative φ′δ(x) is completely monotonic and, consequently, the function
φδ(x) is increasing and concave, on (0,∞). These results were applied in [8] to
discuss a problem arising in the context of statistical density estimation based
on Bernstein polynomials.

In the proof of [29, Theorem 2.2], it was obtained that the function(
m∑
i=1

ai

)2

ψ′

(
1 + x

m∑
i=1

ai

)
−

m∑
i=1

a2iψ
′(1 + aix), ai > 0

is completely monotonic and, consequently,

(1)

(
m∑
i=1

ai

)
ψ

(
1 + x

m∑
i=1

ai

)
−

m∑
i=1

aiψ(1 + aix), ai > 0

is positive, increasing, and concave, with respect to x ∈ (0,∞). See also the
proof of [13, Theorem 2.1]. In other words, the function defined by (1) is a
Bernstein function of x ∈ (0,∞). For detailed information on the Bernstein
functions, please refer to the monograph [30], the papers [21–23, 25, 26] and
closely related references.

In this paper, we supply an alternative proof for the above complete mono-
tonicity of the functions φ0(x) and φδ(x) for δ ≥ 1

2 on (0,∞) and obtain slightly
extended conclusions.



MONOTONICITY OF LINEAR COMBINATIONS OF PSI FUNCTIONS 1225

3. Main results and their proofs

We now state and prove our main results alternatively.

Theorem 1. If δ ≥ 1
2 , (ai − aj)(bi − bj) R 0 for all 1 ≤ i, j ≤ m, and∑m

k−1 ak R 0, then the first derivative ±φ′δ(x) is completely monotonic and,
consequently, the function ±φδ(x) is increasing and concave, on (0,∞).

If (ai − aj)(bi − bj) R 0 for all 1 ≤ i, j ≤ m, then the function ±φ0(x) is

completely monotonic on (0,∞) if and only if
∑m
k=1 ak = 0 and

∑m
k=1 ak ln bk R

0.

Proof. Using the formula

ψ′(z) =

∫ ∞
0

t

1− e−t
e−zt d t, <(z) > 0

in [1, p. 260, 6.4.1] gives

ψ′(τx+ δ) =

∫ ∞
0

t

1− e−t
e−(τx+δ)t d t

=

∫ ∞
0

te−δt

1− e−t
e−τxt d t

=
1

τ

∫ ∞
0

h

(
v

τ

)
e−vx d v,

where τ > 0 and hδ(t) = te−δt

1−e−t . Hence

φ′δ(x) =

m∑
k=1

akbkψ
′(bkx+ δ) =

∫ ∞
0

[
m∑
k=1

akhδ

(
v

bk

)]
e−vx d v.

In [9, 32], it was established that the positive function

hδ(t) =


t

eδt − e(δ−1)t
, t 6= 0,

1, t = 0,

is decreasing on R if δ ≥ 1, increasing on R if δ ≤ 0, increasing in (−∞, 0) if
δ ≤ 1

2 , and decreasing in (0,∞) if δ ≥ 1
2 . For more information on properties

and applications of hδ(t), please refer to the papers and review articles [3,4,6,
15–19,24,28] and closely related references therein. Therefore, by virtue of the
Čebyšev inequality in [10, p. 36, Section 2.5, Theorem 1], we acquire

1

m

m∑
k=1

akhδ

(
v

bk

)
R

(
1

m

m∑
k=1

ak

)[
1

m

m∑
k=1

hδ

(
v

bk

)]
R 0.

This means that the first derivative ±φ′δ(x) is completely monotonic on (0,∞).
Consequently, the function ±φδ(x) is increasing and concave on (0,∞).
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When δ = 0, the function h0(t) is positive and increasing on [0,∞) and

1

m

m∑
k=1

akh0

(
v

bk

)
Q

(
1

m

m∑
k=1

ak

)[
1

m

m∑
k=1

h0

(
v

bk

)]
.

Accordingly, when
∑m
k=1 ak Q 0, the first derivative ∓φ′0(x) is completely

monotonic and the function ∓φ0(x) is increasing on (0,∞). Furthermore, uti-
lizing

lim
x→∞

[lnx− ψ(x)] = 0

in [5, Theorem 1] and [7, 27] yields that the limit

φ0(x) =

m∑
k=1

ak[ψ(bkx)− ln(bkx)] +

m∑
k=1

ak ln bk + (lnx)

m∑
k=1

ak →
m∑
k=1

ak ln bk

as x→∞ is valid and

∓φ0(x) ≤ ∓
m∑
k=1

ak ln bk

if and only if
∑m
k=1 ak = 0. When and only when

∑m
k=1 ak ln bk R 0, the

function±φ0(x) is positive and, consequently, completely monotonic, on (0,∞).
The proof of Theorem 1 is complete. �

Remark 1. This paper is a slight revision of the preprint [20].
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