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AN ALTERNATIVE PROOF FOR COMPLETE MONOTONICITY

OF LINEAR COMBINATIONS OF MANY PSI FUNCTIONS

FENG QI AND BAI-NI GUO

Abstract. In the paper, the authors supply an alternative proof for complete

monotonicity of linear combinations of many psi functions and slightly extend
some known results.

1. Preliminaries

It is well-known [1, 12, 13] that the classical gamma function can be defined by

Γ(z) =

∫ ∞
0

tz−1e−t d t, <(z) > 0

or by

Γ(z) = lim
n→∞

n!nz∏n
k=0(z + k)

, z ∈ C \ {0,−1,−2, . . . }

and that the logarithmic derivative ψ(z) = [ln Γ(z)]′ = Γ′(z)
Γ(z) is called the psi or

di-gamma function.
From [11, Chapter XIII], [28, Chapter 1], and [29, Chapter IV], we recall that

an infinitely differentiable and nonnegative function f(x) is said to be completely
monotonic on an interval I if and only if (−1)m−1f (m−1)(x) ≥ 0 for all m ∈ N
and x ∈ I. The Bernstein–Widder theorem [29, p. 161, Theorem 12b] states that
a necessary and sufficient condition for f(x) to be completely monotonic on (0,∞)
is that f(x) =

∫∞
0
e−xt dµ(t) for x ∈ (0,∞), where µ is a positive measure on

[0,∞) such that the above integral converges. In other words or simply speaking, a
function is completely monotonic on (0,∞) if and only if it is a Laplace transform.

2. Motivations

In [2, Theorem 4.1], it was obtained that, if ak and bk for 1 ≤ k ≤ m satisfy
a1 ≥ a2 ≥ · · · ≥ am and b1 ≥ b2 ≥ · · · ≥ bm > 0, then

φ0(x) =

m∑
k=1

akψ(bkx)

is completely monotonic on (0,∞) if and only if
∑m
k=1 ak = 0 and

∑m
k=1 ak ln bk ≥ 0.

In [8, Lemma 2.1], the function φ0(x) was extended as

φδ(x) =

m∑
k=1

akψ(bkx+ δ)
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for x > 0 and δ ≥ 0 and it was acquired that, if a1 ≥ a2 ≥ · · · ≥ am and
b1 ≥ b2 ≥ · · · ≥ bm ≥ 0 such that

∑m
k=1 ak ≥ 0, then, when δ ≥ 1

2 , the first
derivative φ′δ(x) is completely monotonic and, consequently, the function φδ(x) is
increasing and concave, on (0,∞). These results were applied in [8] to discuss a
problem arising in the context of statistical density estimation based on Bernstein
polynomials.

In the proof of [27, Theorem 2.2], it was obtained that the funciton(
m∑
i=1

αi

)2

ψ′

(
1 + x

m∑
i=1

αi

)
−

m∑
i=1

α2
iψ
′(1 + αix), αi > 0

is completely monotonic and, consequently,(
m∑
i=1

ai

)
ψ

(
1 + x

m∑
i=1

ai

)
−

m∑
i=1

aiψ(1 + aix), αi > 0 (1)

is positive, increasing, and concave, with respect to x ∈ (0,∞). In other words,
the function defined by (1) is a Bernstein function of x ∈ (0,∞). For detailed
information on the Bernstein functions, please refer to the monograph [28], the
papers [17, 18, 19, 23, 24] and closely related references.

In this paper, we will supply an alternative proof for the above complete mono-
tonicity of the functions φ0(x) and φδ(x) for δ ≥ 1

2 on (0,∞) and obtain slightly
extended conclusions.

3. Main results and their proof

We now state and prove our main results alternatively.

Theorem 1. If δ ≥ 1
2 , (ai−aj)(bi−bj) R 0 for all 1 ≤ i, j ≤ m, and

∑m
k−1 ak R 0,

then the first derivative ±φ′δ(x) is completely monotonic and, consequently, the
function ±φδ(x) is increasing and concave, on (0,∞).

If (ai − aj)(bi − bj) R 0 for all 1 ≤ i, j ≤ m, then the function ±φ0(x) is

completely monotonic on (0,∞) if and only if
∑m
k=1 ak = 0 and

∑m
k=1 ak ln bk R 0.

Proof. Using the formula

ψ′(z) =

∫ ∞
0

t

1− e−t
e−zt d t, <(z) > 0

in [1, p. 260, 6.4.1] gives

ψ′(τx+ δ) =

∫ ∞
0

t

1− e−t
e−(τx+δ)t d t

=

∫ ∞
0

te−δt

1− e−t
e−τxt d t =

1

τ

∫ ∞
0

h

(
v

τ

)
e−vx d v,

where τ > 0 and hδ(t) = te−δt

1−e−t . Hence

φ′δ(x) =

m∑
k=1

akbkψ
′(bkx+ δ) =

∫ ∞
0

[
m∑
k=1

akhδ

(
v

bk

)]
e−vx d v.
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In [9, 30], it was established that the positive function

hδ(t) =


t

eδt − e(δ−1)t
, t 6= 0

1, t = 0

is decreasing on R if δ ≥ 1, increasing on R if δ ≤ 0, increasing in (−∞, 0) if
δ ≤ 1

2 , and decreasing in (0,∞) if δ ≥ 1
2 . For more information on properties and

applications of hδ(t), please refer to the papers and review articles [3, 4, 5, 14, 15,
16, 20, 21, 22, 26] and closely related references therein. Therefore, by virtue of the
Čebyšev inequality in [10, p. 36, Section 2.5, Theorem 1], we acquire

1

m

m∑
k=1

akhδ

(
v

bk

)
R

(
1

m

m∑
k=1

ak

)[
1

m

m∑
k=1

hδ

(
v

bk

)]
R 0.

This means that the first derivative ±φ′δ(x) is completely monotonic on (0,∞).
Consequently, the function ±φδ(x) is increasing and concave on (0,∞).

When δ = 0, the function h0(t) is positive and increasing on [0,∞) and

1

m

m∑
k=1

akh0

(
v

bk

)
Q

(
1

m

m∑
k=1

ak

)[
1

m

m∑
k=1

h0

(
v

bk

)]
.

Accordingly, when
∑m
k=1 ak Q 0, the first derivative ∓φ′0(x) is completely mono-

tonic and the function ∓φ0(x) is increasing on (0,∞). Furthermore, utilizing

lim
x→∞

[lnx− ψ(x)] = 0

in [6, Theorem 1] and [7, 25] yields that the limit

φ0(x) =

m∑
k=1

ak[ψ(bkx)− ln(bkx)] +

m∑
k=1

ak ln bk + (lnx)

m∑
k=1

ak →
m∑
k=1

ak ln bk

as x→∞ is valid and

∓φ0(x) ≤ ∓
m∑
k=1

ak ln bk

if and only if
∑m
k=1 ak = 0. When and only when

∑m
k=1 ak ln bk R 0, the function

±φ0(x) is positive and, consequently, completely monotonic, on (0,∞). The proof
of Theorem 1 is complete. �
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