On complete monotonicity of linear combination of finite psi functions
Bai-Ni Guo, Feng Qi

To cite this version:
hal-01773131v2

HAL Id: hal-01773131
https://hal.science/hal-01773131v2
Submitted on 18 Jan 2020
ON COMPLETE MONOTONICITY OF LINEAR COMBINATION OF FINITE PSI FUNCTIONS

Bai-Ni Guo and Feng Qi

Reprinted from the Communications of the Korean Mathematical Society
Vol. 34, No. 4, October 2019

©2019 Korean Mathematical Society
ON COMPLETE MONOTONICITY OF LINEAR COMBINATION OF FINITE PSI FUNCTIONS

Bai-Ni Guo and Feng Qi

Abstract. In the paper, the authors supply complete monotonicity of linear combination of finite psi functions and extend some known results.

1. Preliminaries

It is well-known [1, 12, 14] that the classical gamma function \(\Gamma(z) \) can be defined by
\[
\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, dt, \quad \Re(z) > 0
\]
or by
\[
\Gamma(z) = \lim_{n \to \infty} \frac{n^z}{\prod_{k=0}^{n} (z+k)}, \quad z \in \mathbb{C} \setminus \{0, -1, -2, \ldots\}
\]
and that the logarithmic derivative
\[
\psi(z) = \frac{\Gamma'(z)}{\Gamma(z)}
\]
is called the psi or digamma function.

From [11, Chapter XIII], [30, Chapter 1], and [31, Chapter IV], we recall that an infinitely differentiable and nonnegative function \(f(x) \) is said to be completely monotonic on an interval \(I \) if and only if
\[
(-1)^{m-1} f^{(m-1)}(x) \geq 0
\]
for all \(m \in \mathbb{N} \) and \(x \in I \). The Bernstein–Widder theorem [31, p. 161, Theorem 12b] states that a necessary and sufficient condition for \(f(x) \) to be completely monotonic on \((0, \infty)\) is that
\[
f(x) = \int_0^\infty e^{-xt} \, d\mu(t)
\]
for \(x \in (0, \infty) \), where \(\mu \) is non-decreasing and the above integral converges. In other words or simply speaking, a function is completely monotonic on \((0, \infty)\) if and only if it is a Laplace transform.

2. Motivations

In [2, Theorem 4.1], it was obtained that, if \(a_k \) and \(b_k \) for \(1 \leq k \leq m \) satisfy \(a_1 \geq a_2 \geq \cdots \geq a_m \) and \(b_1 \geq b_2 \geq \cdots \geq b_m > 0 \), then

\[
\phi_0(x) = \sum_{k=1}^{m} a_k \psi(b_k x)
\]

is completely monotonic on \((0, \infty)\) if and only if

\[
\sum_{k=1}^{m} a_k = 0 \quad \text{and} \quad \sum_{k=1}^{m} a_k \ln b_k \geq 0.
\]

In [8, Lemma 2.1], the function \(\phi_0(x) \) was extended as

\[
\phi_\delta(x) = \sum_{k=1}^{m} a_k \psi(b_k x + \delta)
\]

for \(x > 0 \) and \(\delta \geq 0 \) and it was acquired that, if \(a_1 \geq a_2 \geq \cdots \geq a_m \) and \(b_1 \geq b_2 \geq \cdots \geq b_m \geq 0 \) such that \(\sum_{k=1}^{m} a_k \geq 0 \), then, when \(\delta \geq \frac{1}{2} \), the first derivative \(\phi'_\delta(x) \) is completely monotonic and, consequently, the function \(\phi_\delta(x) \) is increasing and concave, on \((0, \infty)\). These results were applied in [8] to discuss a problem arising in the context of statistical density estimation based on Bernstein polynomials.

In this paper, we supply an alternative proof for the above complete monotonicity of the functions \(\phi_0(x) \) and \(\phi_\delta(x) \) for \(\delta \geq \frac{1}{2} \) on \((0, \infty)\) and obtain slightly extended conclusions.
3. Main results and their proofs

We now state and prove our main results alternatively.

Theorem 1. If $\delta \geq \frac{1}{2}$, $(a_i - a_j)(b_i - b_j) \geq 0$ for all $1 \leq i, j \leq m$, and $\sum_{k=1}^{m} a_k \geq 0$, then the first derivative $\pm \phi'_\delta(x)$ is completely monotonic and, consequently, the function $\pm \phi_\delta(x)$ is increasing and concave, on $(0, \infty)$.

If $(a_i - a_j)(b_i - b_j) \leq 0$ for all $1 \leq i, j \leq m$, then the function $\pm \phi_0(x)$ is completely monotonic on $(0, \infty)$ if and only if $\sum_{k=1}^{m} a_k = 0$ and $\sum_{k=1}^{m} a_k \ln b_k \geq 0$.

Proof. Using the formula $\psi'(z) = \int_0^\infty \frac{t}{1-e^{-t}} e^{-zt} d\tau$, $\Re(z) > 0$ in [1, p. 260, 6.4.1] gives

$$\psi'(\tau x + \delta) = \int_0^\infty \frac{t}{1-e^{-t}} e^{-(\tau x + \delta)t} d\tau$$

$$= \int_0^\infty \frac{te^{-\delta t}}{1-e^{-t}} e^{-\tau xt} d\tau$$

$$= \frac{1}{\tau} \int_0^\infty h(v) e^{-\tau vx} d\tau,$$

where $\tau > 0$ and $h_\delta(t) = \frac{te^{-\delta t}}{1-e^{-\tau}}$. Hence

$$\phi'_\delta(x) = \sum_{k=1}^{m} a_k b_k \psi'(b_k x + \delta) = \int_0^\infty \left[\sum_{k=1}^{m} a_k h_\delta \left(\frac{v}{b_k} \right) \right] e^{-\tau vx} d\tau.$$

In [9,32], it was established that the positive function

$$h_\delta(t) = \begin{cases}
\frac{t}{e^{\delta t} - e^{(\delta - 1)t}}, & t \neq 0, \\
1, & t = 0,
\end{cases}$$

is decreasing on \mathbb{R} if $\delta \geq 1$, increasing on \mathbb{R} if $\delta \leq 0$, increasing in $(-\infty, 0)$ if $\delta \leq \frac{1}{2}$, and decreasing in $(0, \infty)$ if $\delta \geq \frac{1}{2}$. For more information on properties and applications of $h_\delta(t)$, please refer to the papers and review articles [3,4,6,15–19,24,28] and closely related references therein. Therefore, by virtue of the Čebyšev inequality in [10, p. 36, Section 2.5, Theorem 1], we acquire

$$\frac{1}{m} \sum_{k=1}^{m} a_k h_\delta \left(\frac{v}{b_k} \right) \geq \left(\frac{1}{m} \sum_{k=1}^{m} a_k \right) \left[\frac{1}{m} \sum_{k=1}^{m} h_\delta \left(\frac{v}{b_k} \right) \right] \geq 0.$$

This means that the first derivative $\pm \phi'_\delta(x)$ is completely monotonic on $(0, \infty)$. Consequently, the function $\pm \phi_\delta(x)$ is increasing and concave on $(0, \infty)$.
When $\delta = 0$, the function $h_0(t)$ is positive and increasing on $[0, \infty)$ and
\[
\frac{1}{m} \sum_{k=1}^{m} a_k h_0 \left(\frac{v}{b_k} \right) \succcurlyeq \left(\frac{1}{m} \sum_{k=1}^{m} a_k \right) \left[\frac{1}{m} \sum_{k=1}^{m} h_0 \left(\frac{v}{b_k} \right) \right].
\]
Accordingly, when $\sum_{k=1}^{m} a_k \preceq 0$, the first derivative $\mp \phi_0'(x)$ is completely monotonic and the function $\mp \phi_0(x)$ is increasing on $(0, \infty)$. Furthermore, utilizing
\[
\lim_{x \to \infty} [\ln x - \psi(x)] = 0
\]
in [5, Theorem 1] and [7, 27] yields that the limit
\[
\phi_0(x) = \sum_{k=1}^{m} a_k [\psi(b_k x) - \ln(b_k x)] + \sum_{k=1}^{m} a_k \ln b_k + (\ln x) \sum_{k=1}^{m} a_k \to \sum_{k=1}^{m} a_k \ln b_k
\]
as $x \to \infty$ is valid and
\[
\mp \phi_0(x) \leq \mp \sum_{k=1}^{m} a_k \ln b_k
\]
if and only if $\sum_{k=1}^{m} a_k = 0$. When and only when $\sum_{k=1}^{m} a_k \ln b_k \succcurlyeq 0$, the function $\pm \phi_0(x)$ is positive and, consequently, completely monotonic, on $(0, \infty)$. The proof of Theorem 1 is complete.

Remark 1. This paper is a slight revision of the preprint [20].

References

[20] ———, An alternative proof for complete monotonicity of linear combinations of many psi functions, HAL archives (2018), available online at https://hal.archives-ouvertes.fr/hal-01773131.

Bai-Ni Guo
School of Mathematics and Informatics
Henan Polytechnic University
Jiaozuo 454010, Henan, P. R. China
Email address: bai.ni.guo@gmail.com

Feng Qi
School of Mathematical Sciences
Tianjin Polytechnic University
Tianjin 300387, P. R. China
Email address: qifeng618@gmail.com